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Abstract: To improve patient survival in sepsis, it is necessary to curtail exaggerated inflammatory
responses. Fucoxanthin (FX), a carotenoid derived from brown algae, efficiently suppresses pro-
inflammatory cytokine expression via IRF3 activation, thereby reducing mortality in a mouse model
of sepsis. However, the effects of FX-targeted IRF3 on the bacterial flora (which is disrupted in sepsis)
and the mechanisms by which it impacts sepsis development remain unclear. This study aims to
elucidate how FX-targeted IRF3 modulates intestinal microbiota compositions, influencing sepsis
development. FX significantly reduced the bacterial load in the abdominal cavity of mice with cecal
ligation and puncture (CLP)-induced sepsis via IRF3 activation and increased short-chain fatty acids,
like acetic and propionic acids, with respect to their intestines. FX also altered the structure of the
intestinal flora, notably elevating beneficial Verrucomicrobiota and Akkermansia spp. while reducing
harmful Morganella spp. Investigating the inflammation–flora link, we found positive correlations
between the abundances of Morganella spp., Proteus spp., Escherichia spp., and Klebsiella spp. and
pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) induced by CLP. These bacteria were negatively
correlated with acetic and propionic acid production. FX alters microbial diversity and promotes
short-chain fatty acid production in mice with CLP-induced sepsis, reshaping gut homeostasis. These
findings support the value of FX for the treatment of sepsis.

Keywords: sepsis; aloe emodin; inflammation; cecal ligation puncture; gut microbiota

1. Introduction

Sepsis, characterized by life-threatening organ dysfunction or failure, is linked to
an aberration in the equilibrium between inflammatory responses and immune system
suppression [1]. The activation of cytokines, complement components, and the coagulation
system contributes to the excessive inflammatory response associated with sepsis [2–4].
Despite ongoing advancements in the clinical management of sepsis, specific pharmaceuti-
cal interventions are lacking. Sepsis-inducing infections are the leading cause of mortality
among critically ill surgical patients [5]. Previous clinical studies have shown that a cy-
tokine storm, involving a significant systemic release of proinflammatory cytokines in
animal experiments, leads to systemic inflammation [6]. Eliminating proinflammatory
cytokines reduces organ damage and mortality associated with inflammation [7].

The cecal ligation and puncture (CLP) model is used extensively because it closely
mimics the clinical progression of sepsis in humans [8]. When the CLP model is applied,
intestinal bacteria, fungi, and metabolites migrate into the abdominal cavity, leading to
abdominal infections and systemic sepsis [9].
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The gut microbiome plays a pivotal role in maintaining body homeostasis, exerting
a significant influence on pathogen defense, food digestion and absorption, and immune
system regulation [10,11]. It exhibits a robust correlation with the onset of sepsis [12,13].

Fucoxanthin (FX), a naturally occurring carotenoid derived from brown algae, is a
promising drug candidate for treating various diseases, including sepsis, with minimal tox-
icity and adverse reactions [14]. Previous studies have demonstrated that FX significantly
reduces mortality in a CLP-induced sepsis mouse model via interferon regulatory factor 3
(IRF3), effectively suppresses pro-inflammatory cytokines and ROS, improves pathological
damage, and activates autoimmune cells [15–18].

However, the precise mechanisms underlying the regulatory role of FX-targeted IRF3
in modulating the composition of the bacterial flora and its subsequent impact on sepsis
development remain unclear. To examine the impact of FX on peritoneal and intestinal
microbes in mice, we generated CLP sepsis models in wild-type (WT) and Irf3−/− mice. This
study aims to establish a novel theoretical framework for utilizing FX in sepsis treatment.

2. Results
2.1. Effect of FX on Mice with CLP-Induced Sepsis via the Inhibition of IRF3

CLP-induced sepsis was modeled in mice with FX (1.0 mg/kg/day). In WT mice, the
group treated with FX (1.0 mg/kg/day) exhibited decreased agglomeration, enhanced ac-
tivity, and improved appetite than those in the untreated CLP group. Conversely, in Irf3−/−

mice, there were no statistically significant disparities in physical parameters between the
CLP + FX and CLP groups (Figure 1a,b).

In a CLP-induced sepsis mouse model, FX suppressed pro-inflammatory cytokine
levels by inhibiting IRF3. The lung tissues of mice in the CLP group demonstrated higher
expression levels with respect to pro-inflammatory cytokines IL-1β, IL-6, and TNF-β at
both the protein and mRNA levels than those in the Control group. After FX treatment, WT
mice subjected to CLP showed significantly lower protein and mRNA expression levels
with respect to pro-inflammatory cytokines than those in the CLP-treated mice (p < 0.0001;
Figure 1c–e). Conversely, no significant inhibitory effect was observed in Irf3−/− mice
(p > 0.05; Figure 1f–h). These results support the inhibitory effect of FX on inflammation in
mice with CLP-induced sepsis. Additionally, the observed effects were IRF3-dependent.

2.2. FX Can Effectively Reduce Bacterial Counts in the Abdominal Cavity of Mice with CLP Sepsis
via IRF3

To investigate the effect of FX on the abundance of microorganisms within the abdom-
inal cavity of CLP mice, the ascites of WT mice was diluted 105 times and that of Irf3−/−

mice was diluted 104 times based on the dilution ratio determined during the preliminary
experiment. The coated samples were then subjected to microbial growth and colony
enumeration.

As shown in Figure 2 for WT mice, minimal colony growth was observed in the plates
of the Sham and Sham + FX groups. Conversely, a substantial number of colonies were
observed in the plates for the CLP group (p < 0.0001). Notably, the number of colonies
in the plates of the CLP + FX group was significantly lower than that in the CLP group
(p < 0.0001).

For Irf3−/− mice, no colony growth was detected in the plates of the Sham and
Sham + FX groups (Figure 2). Conversely, a substantial number of colonies were observed
in the plates of the CLP group (p < 0.0001). However, there was no significant difference in
the number of colonies in the plates of the CLP + FX and CLP groups (p > 0.05).

These findings indicate that CLP induces a lasting intraperitoneal microbial infection
in mice, while FX demonstrates reduces the quantity of intraperitoneal microbial bacteria
in mice with CLP sepsis by activating IRF3, thereby achieving an anti-bacterial effect.
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Figure 1. Fucoxanthin (FX) exhibited therapeutic effects in WT and Irf3−/− mice with cecal ligation
and puncture (CLP)-induced sepsis. (a,b) Schematic diagram of the state of WT (a) and Irf3−/−

(b) mice after 24 h of treatment. (c−h) FX inhibits inflammatory cytokines via IRF3 in a mouse model
of CLP-induced sepsis; (c−e) concentrations of TNF-α (c), IL-1β (d), and IL-6 (e) in the lung tissues
of WT and Irf3−/− mice were determined using ELISA; (f–h) mRNA levels of TNF-α (f), IL-1β (g),
and IL-6 (h) in the lung tissues of WT and Irf3−/− mice were determined using RT−qPCR. The data
were analyzed using ANOVA and Tukey’s post hoc tests; * p < 0.05, ** p < 0.01, and **** p < 0.0001. ns,
not significant. Results are representative of at least three independent experiments. Blue represents
Sham, purple represents Sham + FX, pink represents CLP, orange represents CLP + FX, and each
point represents one mouse.
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Figure 2. Effects of FX on the intraperitoneal bacterial load. (a–d) Growth of intraperitoneal bacterial
colonies in WT mice; (e–h) growth of intraperitoneal bacterial colonies in Irf3−/− mice; (i) intraperi-
toneal load statistics in WT mice (n = 10); (j) intraperitoneal load statistics in Irf3−/− mice (n = 7).
(k) Effect of FX on short-chain fatty acid acetic acid in the ascites of mice with CLP sepsis (n = 4);
(l) effect of FX on propionic acid in the ascites of mice with CLP sepsis (n = 4). The data were analyzed
using ANOVA and Tukey’s post hoc test; ** p < 0.01, and **** p < 0.0001. ns, not significant. Results
are representative of at least three independent experiments.
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2.3. FX Can Effectively Reduce the Content of Acetic Acid and Propionic Acid in the Peritoneal
Lavage of CLP Sepsis Mice via IRF3

According to the data presented in Figure 2k,l, the absence of acetic acid and propionic
acid was observed in both the Sham and Sham + FX groups. In WT mice, the levels of acetic
acid and propionic acid in the CLP group were significantly higher than those in the Sham
group (p < 0.0001). Conversely, acetic acid and propionic acid levels were significantly
decreased following FX administration (p < 0.0001). In Irf3−/− mice, the levels of acetic acid
and propionic acid in the CLP group were significantly higher than those in the Sham group
(p < 0.01). However, the levels of acetic and propionic acid did not change significantly after
FX treatment (p > 0.05). FX had a strong inhibitory effect on acetic acid and propionic acid
contents in the peritoneal lavage of mice with CLP sepsis, and these effects were mediated
by IRF3.

2.4. FX Regulated Intestinal Flora Homeostasis via IRF3

To investigate the effect of FX on the intestinal flora of WT and Irf3−/− mice, we
used third-generation 16S RNA sequencing technology to examine variations in microbial
communities among the groups. A Venn diagram shows that the number of operational
taxonomic units (OTUs) unique to WT mice in the Sham, Sham + FX, CLP, and CLP + FX
groups was 1, 10, 6, and 1, respectively, while the number of OTUs unique to Irf3−/−

mice in the Sham, Sham + FX, CLP, and CLP + FX groups was 4, 2, 5, and 5, respectively
(Figure 3a). Analyses of alpha diversity indices, including Chao1, Shannon, Simpson, and
Ace, revealed significant differences between the CLP and CLP + FX groups of WT mice
and the Irf3−/− mice (Figure 3b–e). Next, we performed a beta diversity analysis based on
weighted UniFrac distances, as illustrated in Figure 3f,g. A PCoA revealed a significant
separation of gut microbial communities between the eight groups of WT and Irf3−/− mice
(p < 0.05), and ANOSIM confirmed these results (p < 0.05).

To further investigate variations in the microbiota structure, genus-level abundances
of microbes were analyzed (Figure 4). As shown in Figure 3h–j, Akkermansia spp. domi-
nated the Sham group of both WT and Irf3−/− mice. Among the most abundant genera in
the Sham + FX group of both WT and Irf3−/− mice were Akkermansia, uncultured Murib-
aculaceae, Escherichia, Shigella, Bacteroides, Lactobacillus, Clostridium sensu stricto 1, and
Lachnospiraceae NK4A136. In WT mice, Akkermansia and Escherichia spp. were most
abundant in the CLP group. Conversely, the abundance of Akkermansia spp. increased
significantly after FX treatment in the CLP + FX group (p < 0.05). In Irf3−/− mice, CLP + FX
mice did not display a notably higher abundance of Akkermansia spp. than that of Irf3−/−

mice (p > 0.05).

2.5. Linear Discriminant Analysis Effect Size (LEfSe) of the Intestinal Microbiota

The microbiota in the Sham, CLP, and FX treatment groups were examined via an
LEfSe analysis (Figure 5a). Using linear discriminant analysis (LDA) and a score of >4 as
the screening condition, 42 species with significant differences in information were detected.
Lactobacillus was the predominant bacterial genus in the Sham group. Clostridia, Clostridiales,
and Escherichia were more abundant in the CLP group than in the Sham group. Bacteroides
and Muribaculum were more abundant in the FX group than in the CLP group.
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Figure 3. FX remodels the intestinal microbiota in mice with CLP-induced sepsis via IRF3. (a) Venn
diagram showing the OTUs of intestinal microorganisms in WT and Irf3−/− mice. (b–e) Alpha
diversity of the intestinal microbiota at the OTU level. (b) Chao1, (c) Shannon (d) Simpson, and
(e) Ace indices. (f,g) Beta diversity of the intestinal microbiota at the OTU level. (f) Beta diversity
PCoA plots based on weighted UniFrac Adonis analysis in distinct groups. (g) Beta diversity based on
weighted UniFrac ANOSIM in distinct groups. (h) Histogram showing the species distribution at the
genus level. (i) Heat map analysis of the relative abundance of intestinal microorganisms in distinct
groups at the genus level. (j) Relative abundance of Akkermansia spp. in distinct groups of WT and
Irf3−/− mice at the genus level. The heat map shows the Z-value obtained after the standardization of
the relative abundance of species in each row. The data were analyzed using ANOVA and Tukey’s post
hoc tests. Data are expressed as means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001;
ns, not significant. Results are representative of at least three independent experiments.
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Figure 4. Relative abundances of intestinal microorganisms in different groups of WT and Irf3−/−

mice at the genus level. (a) Relative abundances of Alloprevotella; (b) Clostridium sensu stricto 1;
(c) Bacteroides; (d) Desulfovibrio; (e) Dubosiella; (f) Escherichia; Shigella; (g) Helicobacter; (h) Lach-
nospiraceae NK4A136 group; (i) Lactobacillus; (j) Ligilactobacillus; (k) Limosilactobacillus; (l) Muribacu-
lum; (m) Parabacteroides; (n) Parasutterella; (o) unclassified Lachnospiraceae; (p) unclassified Murib-
aculaceae; (q) unclassified Oscillospiraceae; (r) Morganella. The data were analyzed using ANOVA
and Tukey’s post hoc tests; * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. ns, not significant.
Results are representative of at least three independent experiments.
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In total, 42 biomarkers differed significantly from the phylum to the species level
among the three groups of samples assessed and were mainly distributed in Bacteroidetes,
Firmicutes, Proteobacteria, and Verrucomicrobia (Figure 5b). At the genus level, the leading
bacterial genera in the Sham, CLP, and FX groups were Lactobacillus and Akkermansia;
Escherichia and Lachnospiraceae; and Bacteroides and Muribaculaceae. These results indicate
that FX alters the dominant intestinal microbial taxa and reshapes the structure of the
intestinal microbiota in mice with sepsis.

2.6. FX Affects the Function of Intestinal Flora in Mice with CLP Sepsis via IRF3

To investigate the effect of FX on the function of the intestinal flora in mice with CLP-
induced sepsis, we used PICRUSt2 to predict functional genes in the CLP and CLP + FX
groups and found seven metabolic pathways with significant differences between groups
(Figure 6). The top three significant differences were observed with respect to nucleotide
metabolism, environmental adaptation, and carbohydrate metabolism. The three most
abundant genes were involved in carbohydrate metabolism, nucleotide metabolism, and
the cellular community of prokaryotes. Nucleotide metabolism was observed in the CLP
group, while carbohydrate metabolism occurred in the CLP + FX group, which may be the
main mechanism by which FX affects the intestinal microflora in CLP sepsis.
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2.7. FX Promoted the CLP-Induced Production of SCFAs in the Intestinal Flora of Mice with Sepsis
via IRF3

Short-chain fatty acids (SCFAs) are the major metabolites of the intestinal flora and
are strongly associated with inflammatory and immune responses in the host. As shown
in Figure 7a,b, in WT mice, the levels of both acetic and propionic acids were remarkably
lower in the CLP group than in the Sham group (p < 0.0001), whereas the levels of both
acids were higher in the CLP + FX group than in the CLP group (p < 0.0001). In Irf3−/−



Int. J. Mol. Sci. 2023, 24, 13803 10 of 16

mice, compared with levels in the Sham group, the levels of both acids were remarkably
lower in the CLP and CLP + FX groups (p < 0·0001). These results revealed that the effect
of FX treatment in Irf3−/− mice differed significantly from that in WT mice.
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Figure 7. Intestinal flora and environmental factors in CLP-induced sepsis in WT and Irf3−/−

mice. (a,b) Effects of FX on acetic acid (a) and propionic acid (b) levels produced by intestinal
microorganisms in WT and Irf3−/− mice with CLP-induced sepsis (n = 5). (c) A Spearman’s rank
correlation heat map for differences between the bacterial genera in the levels of SCFAs, IL-6, IL-1β,
and TNF-α in WT mice with CLP-induced sepsis. (d) A Spearman’s rank correlation heat map
showing differences between the bacterial genera in the levels of SCFAs, IL-6, IL-1, and TNF in
Irf3−/− mice with CLP-induced sepsis. Spearman’s coefficients are represented in different colors.
(e) Analysis of redundant bacterial genera and SCFAs in WT and Irf3−/− mice with CLP-induced
sepsis. The data were analyzed using ANOVA and Tukey’s post hoc tests; * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001. ns, not significant. Results are representative of at least three
independent experiments.
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To further investigate the relationship between the changes in the intestinal flora and
pro-inflammatory factors, we searched for significant differences in species composition
between WT and Irf3−/− mice. As shown in Figure 7c,d, the mRNA and protein expression
of pro-inflammatory factors were positively correlated with Morganella spp. (p < 0.001)
in WT mice and were positively correlated with Bacteroides spp., Helicobacter spp., and
Lysinibacillus spp. in Irf3−/− mice (p < 0.05). Escherichia spp. and Klebsiella spp. were
positively correlated with the protein levels of TNF-β, IL-1β, and IL-6 in WT mice (p < 0.001)
and with Clostridium sensu stricto 1 and Bacillus spp. in Irf3−/− mice (p < 0.001). The serum
levels of IL-1β, IL-6, and TNF-α were negatively correlated with Parasutterella spp. and
Roseburia spp. in WT mice; and with Akkermansia spp., Ligilactobacillus spp., Turicibacter
spp., and uncultured Bacteroidales in Irf3−/− mice (p < 0.01).

In WT mice, Lachnoclostridium; Lachnospiraceae NK4A136 group; and Lactobacillus,
an uncultured bacterium from Muribaculaceae, Parasutterella, and Roseburia were signifi-
cantly positively correlated with acetic and propionic acids, whereas Morganella, Proteus,
Escherichia, and Klebsiella were significantly negatively correlated. In Irf3−/− mice, Lacto-
bacillus, Parasutterella, and Ligilactobacillus showed significant positive correlations with
acetic and propionic acids (p < 0.01), whereas Clostridium sensu stricto 1, unclassified
Lachnospiraceae, and unclassified Oscillospiraceae were significantly negatively correlated
(p < 0.01). Interestingly, these changes were opposite to the changes in inflammatory factor
levels observed in serum and lung tissues.

As shown in Figure 7e, redundancy analysis and canonical correspondence analysis
were used to analyze the correlations between SCFAs and bacterial populations at the genus
level. Acetic and propionic acids were positively correlated with the Lachnospiraceae
NK4A136 group, Lactobacillus, and Akkermansia and negatively correlated with Morganella,
Alloprevotella, Proteus, Klebsiella, Escherichia, and Bacteroides. A higher correlation was
observed between Morganella and CLP groups, Alloprevotella and CLP + FX groups, and
Lachnospiraceae NK4A136 and the Sham and Sham + FX groups.

3. Discussion

The composition of intestinal microbes in mice with CLP-induced sepsis was altered
by treatment with FX, and the OTU quantity of the intestinal flora in mice with CLP sepsis
was altered by IRF3. FX changed the species diversity and species distribution of intesti-
nal microbes in mice with sepsis, and the similarity in intestinal microbial communities
among all groups was low. In the gut of mice with CLP sepsis, FX treatment significantly
increased the abundance of beneficial bacteria, such as Verrucomicrobiota and Akkermansia.
Simultaneously, following FX treatment, the dominant intestinal bacteria in mice with CLP
sepsis shifted from Akkermansia, Escherichia, and Morganella to Akkermansia and Escherichia.
According to PICRUSt2, FX affects the intestinal flora of mice with CLP-induced sepsis by
altering glucose metabolism. Further analyses of the correlations between the intestinal
flora, inflammatory factors, and SCFAs can reveal the marker florae that affect the inflam-
matory response. This analysis indicated that, following FX treatment, the intestinal flora of
mice with sepsis exhibited interactions with inflammatory factors and SCFAs. Notably, the
levels of acetic acid and propionic acid showed negative correlations with the expression
levels of inflammatory factors IL-6, IL-1β, and TNF-α. Conversely, the abundances of Mor-
ganella, Proteus, Escherichia, and Klebsiella exhibited positive correlations with the expression
levels of IL-6, IL-1β, and TNF-α that were induced by CLP and negative correlations with
the production of acetic acid and propionic acid.

The intestinal lumen contains many intestinal microbiota that regulate intestinal im-
mune homeostasis and affect the development and function of host immune cells [19]. The
destruction of the intestinal microbiota integrity may increase susceptibility to sepsis [20].
The apoptosis of midgut epithelial cells has been observed in patients with sepsis and
mouse models. This weakens the gut barrier, which in turn affects inflammation [21,22].

In the present study, the alteration of the intestinal microbial composition in mice with
CLP sepsis was observed after FX treatment, and this change was linked to the expression
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of inflammatory factors. Consequently, we further evaluated the relationship between
inflammatory factors and the intestinal microbiota. Following FX treatment, the dominant
intestinal flora of mice with CLP-induced sepsis changed from Akkermansia, Escherichia,
and Morganella to Akkermansia and Escherichia. Based on a Spearman correlation analysis,
Morganella was positively correlated with IL-6, IL-1a, and TNFα expression after CLP and
negatively correlated with the production of acetic and propionic acids.

The abundance of Akkermansia, a common anaerobic organism in the human and
rodent intestinal microbiome, is negatively correlated with inflammation in inflammatory
bowel disease [23]. FX increased the abundance of Akkermansia, suggesting that FX has
a positive effect on the structure and function of the intestinal flora in mice with sepsis.
Morganella morganii is a Gram-negative bacterium that causes various infections, including
sepsis, leading to high mortality rates [24]. The results of this study suggested that FX
alleviates the CLP-induced dysregulation of the intestinal microflora and inhibits the
expression of IL-1β, IL-6, and TNF-β.

SCFAs are produced by fermenting indigestible polysaccharides (e.g., dietary fibers).
Approximately 10% of SCFAs are excreted in the stool after they are produced in the
gastrointestinal tract, while the remaining SCFAs are absorbed to provide energy to the host
epithelium. Via the portal vein and circulation, SCFAs are transported to other organs and
play a systemic role [25–27]. In humans, acetate, propionate, and butyrate make up more
than 95% of intestinal SCFAs [28–30]. FX facilitated an increase in acetic and propionic acids,
thus attenuating inflammation by regulating SCFA production. FX may have effects against
inflammatory and bacterial processes. However, the sequential relationship between the
anti-inflammatory and anti-bacterial effects of FX warrants further investigation, especially
in the context of intestinal microflora transplants in mice. The relationship between IRF3
and intestinal microbes was not within the scope of this study. Subsequent studies should
focus on the impact of FX on molecular signal transduction mechanisms.

4. Materials and Methods
4.1. Chemicals and Reagents

AbMole (Shanghai, China) provided FX with over 98.5% purity, as determined using
high-performance liquid chromatography. Other reagents were of domestic analytical pu-
rity. For the animal experiments, FX powder was dissolved in DMSO to prepare a working
solution with a concentration of 1.0 mg/mL. The FX suspension was then administered
intraperitoneally (i.p.) to subjects at a daily dosage of 1.0 mg/kg. The Control group
received an equivalent volume of the vehicle.

4.2. Animals

For the animal experiments, pathogen-free C57BL/6 mice (8–10 weeks old) were used
with an equal distribution of males and females. Wild-type (WT) mice were obtained
from Shanghai SLAC Laboratory Animal Co., Ltd. (Shanghai, China), and Irf3−/− mice
were sourced from the RIKEN BioResource Research Center (BRC-No:00858, Tokyo, Japan).
The mice had unrestricted access to food and water. Experimental conditions included a
temperature range of 23–25 ◦C, humidity levels of 40–60%, and a 12 h light/dark cycle.
Male mice weighing 20–22 g and female mice weighing 18–20 g were randomly assigned to
groups. All animal experiments were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals. The study protocol was approved by the Institutional Animal
Care and Use Committee of the Fujian Normal University (approval no. 201800013).

4.3. Model of CLP-Induced Sepsis

Sepsis was induced using a previously described CLP model [17]. In the Control
group, laparotomies were performed without ligation or puncture.
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4.4. Experimental Protocol

Eighty mice (female, n = 40; male, n = 40) were randomly allocated to four groups:
Control, Control + FX, CLP-induced sepsis (CLP), and CLP + FX.

To effectively assess the efficacy of sepsis treatment, a mortality rate of 50% was
required in mice with CLP-induced sepsis. Mice were administered FX (1.0 mg/kg/day)
2 h after the establishment of the sepsis model. Mice were injected with pentobarbital
sodium salt intraperitoneally, and tissue, feces, and ascites samples were collected [18,30].

4.5. Quantitative Reverse Transcription PCR (RT-qPCR)

TRIzol reagent (Takara, Tokyo, Japan) was used to isolate total RNA from serum and
lung tissues. RT-qPCR was conducted following previously described methods [16] and
using primers listed in Table 1 for mRNA amplification.

Table 1. Sequences of primers used in RT-qPCR.

Primer Sequence (5′–3′)

TNF-α F: GCCTCCCTCTCATCAGTTCTA
TNF-α R: GGCAGCCTTGTCCCTTGA

IL-6 F: CTTGGGACTGATGCTGGTG
IL-6 R: TCATTTCCACGATTTCCCA

IL-1β F: TCATTGTGGCTGTGGAGAAG
IL-1β R: TCATCTCGGAGCCTGTAGTG

IL: interleukin; TNF: tumour necrosis factor; F: forward, R: reverse.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

Cytokines IL-1β, IL-6, and TNF-β were quantified using ELISA kits (IL-6: SM6000B;
IL-1β: SMLB00C; TNF-β: SMTA00B; R&D Systems, Minneapolis, MN, USA) as per the
manufacturer’s protocols.

4.7. Acquisition of Ascites in Mice

Two hours after CLP modeling, mice were subjected to the intraperitoneal injection
of FX solutions at a dosage of 1.0 mg/kg/day or a control solvent lacking any active
ingredient. After a 24 h treatment period, the mice were anesthetized, euthanized, and
securely positioned on the operating table. Within a biosafety cabinet, 1 mL of sterile
saline solution was injected into the abdominal cavities of the mice. Subsequently, the
abdomen was gently massaged, and saline was extracted using a syringe, with caution not
to puncture the organs or intestines. The collected saline was then transferred to a sterile
EP tube for further processing.

4.8. Detection of Bacteria in Mouse Abdominal Cavity

Ascites samples were diluted at a specific ratio; subsequently, 100 µL was inoculated
into the agar medium. The culture was incubated at 37 ◦C for 24 h, during which the
growth of colonies was observed and quantified.

4.9. Quantification of Fecal Short-Chain Fatty Acids (SCFAs)

To quantify fecal SCFAs, 50 ± 1 mg of feces was added to 1 mL of deionized water.
The mixture was homogenized for 4 min at 40 Hz and centrifuged at 16,000× g for 30 min
at 4 ◦C. In total, 0.8 mL of the supernatant was mixed with 0.1 mL 50% H2SO4 and 0.8 mL
of 2-methylvaleric acid (25 mg/L stock in methyl tertbutyl ether) as an internal standard
and stored at −20 ◦C after ultrasonication and centrifugation at 12,000× g for 10 min.
The supernatant was used for gas chromatography–mass spectrometry (GC-MS) analysis
(Shimadzu, Japan) using an autosampler with an injection volume of 1.0 µL in accordance
with a previously described method [27].
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4.10. DNA Extraction and Barcoded Sequencing of the 16S rRNA Gene

Fecal samples were collected from each mouse at 24 h after FX treatment and sent to
Biomarker Technologies Co., Ltd. (Beijing, China) for DNA extraction and 16S rRNA gene
sequencing. Library construction, sequencing, and data analysis were performed using the
PacBio Sequel II platform (Biomarker Technologies Co., Ltd.).

4.11. Bioinformatic Analysis

Bioinformatics analyses were performed using BMK Cloud (Biomarker Technologies
Co., Ltd.). Sequences with ≥97% similarity were clustered into operational taxonomic
units (OTUs) using USEARCH (v10 ≥ 0), and OTUs with an abundance of <0.005% were
filtered [28]. Alpha and beta diversities were analyzed at the OTU level using QIIME.
Alpha diversity was characterized using Shannon, Acer, Chao1, and Simpson metrics.
The differences in microbial composition were further characterized by calculating beta
diversity and analyzed based on weighted UniFrac distances. Group differences were
compared using Adonis, and the results of the analysis of similarity (ANOSIM) were
visualized using principal coordinate analysis (PCoA). For different species, the heat map
reflects the similarities and differences in composition between multiple samples based on
colors. Using a threshold linear discriminant analysis score of ≥4, the effect size of linear
discriminant analyses can identify biomarkers with significant differences between groups
and analyze the evolutionary relationships between species. In the plot, dots with different
colors represent microbiomes with significant differences in the corresponding groups;
ossia indicates significant differences between groups, while light yellow dots indicate
a lack of significant influence. Finally, the sequences were compared with data from the
Kyoto Encyclopedia of Genes and Genomes, and functional predictions were made using
the phylogenetic investigation of communities via the reconstruction of unobserved state 2
(PICRUSt2).

4.12. Statistical Analysis

Data are expressed as the mean ± standard deviation. All results were analyzed using
Tukey’s post hoc tests and one-way analysis of variance (ANOVA). Images were processed
using Photoshop (Illustrator 2020; Adobe, San Jose, CA, USA) and ImageJ v1.8.0 (National
Institutes of Health, Bethesda, MD, USA). GraphPad Prism (v8.0; GraphPad Software,
San Diego, CA, USA) was used to perform statistical analyses. p < 0.05 was set as the
significance level.

5. Conclusions

In this study, FX elevated the levels of acetic acid and propionic acid in the intestinal
tract of mice with sepsis. Additionally, FX modulated the intricate interplay between the
intestinal flora, inflammatory factors, and SCFAs, thereby contributing to the therapeutic
effect of FX in mice with sepsis. Nevertheless, further exploration is warranted to discern
the chronological sequence of the effects of FX on the intestinal flora, inflammatory factors,
and SCFAs in the context of sepsis treatment.
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