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Abstract: The modular synthesis of the guanidine core by guanylation reactions using commercially
available ZnEt2 as a catalyst has been exploited as a tool for the rapid development of antitumoral
guanidine candidates. Therefore, a series of phenyl-guanidines were straightforwardly obtained in
very high yields. From the in vitro assessment of the antitumoral activity of such structurally diverse
guanidines, the guanidine termed ACB3 has been identified as the lead compound of the series.
Several biological assays, an estimation of AMDE values, and an uptake study using Fluorescence
Lifetime Imaging Microscopy were conducted to gain insight into the mechanism of action. Cell
death apoptosis, induction of cell cycle arrest, and reduction in cell adhesion and colony formation
have been demonstrated for the lead compound in the series. In this work, and as a proof of concept,
we discuss the potential of the catalytic guanylation reactions for high-throughput testing and the
rational design of guanidine-based cancer therapeutic agents.

Keywords: breast cancer; guanidines; guanylation reactions; high-throughput testing

1. Introduction

Guanidines are attractive motifs in medicinal chemistry [1]. For drug designers,
their easy-tunable physicochemical properties, protonatability in biological media, and
capacity to bind very different targets provide a valuable core to be explored for high-
throughput testing in the development of therapeutic agents [2,3]. In this regard, drugs
containing guanidine moieties already constitute remarkable pharmaceuticals: rosuvastatin,
an anti-inflammatory drug to prevent cardiovascular disease [4]; metformin, an antidiabetic
drug [5]; guanabenz, an antihypertensive drug [6]; cimetidine, a drug clinically used to
treat peptic ulcers [7]; methotrexate, an antirheumatic drug for rheumatoid arthritis [8]; and
antimicrobial drugs such as the antibiotics streptomycin [9], the antiviral drug zanamivir,
effective against influenza [10], and the antimalarial drug proguanil [11] (see molecular
structures in Figure 1).
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effective against influenza [10], and the antimalarial drug proguanil [11] (see molecular 
structures in Figure 1).  

In cancer research, some drugs containing the guanidine moiety have been approved 
for clinical use, including the tyrosine kinase inhibitors such as Imatinib, to treat chronic 
myelogenous leukemia and gastrointestinal stromal tumors [12]; Pazopanib, for renal cell 
carcinoma and soft tissue sarcoma [13]; Nilotinib, approved to treat Philadelphia chromo-
some-positive chronic myelogenous leukemia [13]; and Gefitinib [14], for the treatment of 
non-small cell lung cancers. Other guanidines are still in preclinical studies: MIBG and 
MGBG as mitochondrial function inhibitors [15,16], the antitumoral phenyl-guanidine de-
rivatives for the inhibition of Rac1 [17], other intercalative drugs [18], and minor groove 
binders [19–22].  

Figure 1. Molecular structures of drugs containing guanidine moieties. The colored nitrogen at-
oms highlight the guanidine cores present in each molecule. 

The conventional methods of obtaining guanidines rely on classical organic synthesis 
[23]. These methodologies are based on chemical transformations of electrophilic rea-
gents, such as thioureas, isothioureas, carbodiimides and cyanamides, pyrazole-1-car-
bodiimides, sulfonic acids, benzotriazoles, and activated imidazole compounds (Figure 
2). However, drawbacks such as the use of toxic solvents, costly reagents, poor availability 
of precursors, low yields, and production of undesirable substances highlight the need for 
more efficient syntheses. Even though the use of derivatives of pyrazole-1-carboximidam-
ide, and isothiourea and thiourea derivatives, is the most common methodology, the in-
troduction of a protecting group is required, which brings about synthetic difficulties as-
sociated with the optimization of the reaction conditions and purification of the desired 
guanidines. Likewise, the reaction of protected thioureas with primary and secondary 
amines demands the presence of a metal salt to accelerate the desulfurization. Thiourea-
derived sulfonic acids and carbodiimides for chemical transformation into guanidines 

Figure 1. Molecular structures of drugs containing guanidine moieties. The colored nitrogen atoms
highlight the guanidine cores present in each molecule.

In cancer research, some drugs containing the guanidine moiety have been approved
for clinical use, including the tyrosine kinase inhibitors such as Imatinib, to treat chronic
myelogenous leukemia and gastrointestinal stromal tumors [12]; Pazopanib, for renal
cell carcinoma and soft tissue sarcoma [13]; Nilotinib, approved to treat Philadelphia
chromosome-positive chronic myelogenous leukemia [13]; and Gefitinib [14], for the treat-
ment of non-small cell lung cancers. Other guanidines are still in preclinical studies: MIBG
and MGBG as mitochondrial function inhibitors [15,16], the antitumoral phenyl-guanidine
derivatives for the inhibition of Rac1 [17], other intercalative drugs [18], and minor groove
binders [19–22].

The conventional methods of obtaining guanidines rely on classical organic synthesis [23].
These methodologies are based on chemical transformations of electrophilic reagents, such as
thioureas, isothioureas, carbodiimides and cyanamides, pyrazole-1-carbodiimides, sulfonic
acids, benzotriazoles, and activated imidazole compounds (Figure 2). However, drawbacks
such as the use of toxic solvents, costly reagents, poor availability of precursors, low yields,
and production of undesirable substances highlight the need for more efficient syntheses.
Even though the use of derivatives of pyrazole-1-carboximidamide, and isothiourea and
thiourea derivatives, is the most common methodology, the introduction of a protecting
group is required, which brings about synthetic difficulties associated with the optimization
of the reaction conditions and purification of the desired guanidines. Likewise, the reaction
of protected thioureas with primary and secondary amines demands the presence of a metal
salt to accelerate the desulfurization. Thiourea-derived sulfonic acids and carbodiimides
for chemical transformation into guanidines currently demand improvements in yields and
one-pot procedures. The use of pyrazole carboximidamide transfer reagents results in poor
yields along with the requirement of multiple synthetic steps with costly reagents, and the
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sequential displacement of benzotriazole or imidazole by amines gives rise to moderate
yields. Due to the acute toxicity of cyanogen bromide, the use of cyanamide precursors is
unlikeable. Finally, the use of triflyl guanidine reagents is limited by the availability of the
starting guanidines.
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In this context, the catalytic guanylation of amines with carbodiimides provides an 
efficient and atom-economical way for the synthesis of these entities (Figure 3) [24]. There 
are numerous metal-based catalysts for the generation of guanidines [24,25]. Among 
them, the use of commercially available products for guanylation reactions, such as ZnEt2 
[26], might ease extending the scope of guanidine-based molecules.  
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starting reagents that will give rise to the guanidine core in the product, also colored. Those colored 
in blue refer to possible substituents of the starting amine. 

Cancer is one of the main causes of death worldwide and, particularly in solid tu-
mors, constitutes the most relevant group, as limited therapeutic options exist in the ad-
vanced setting. With the incorporation of novel chemotherapies, targeted agents, and im-
munomodulators, the outcome of cancer patients has improved in specific indications. 
However, for some solid tumors, such as triple-negative breast cancer, small-cell lung can-
cer, head and neck cancer and bladder cancer, there are unmet needs in their metastatic 

Figure 2. Guanidines obtained by chemical transformation from (1) thioureas, (2) isothioureas,
(3) pyrazole carboximidamides, (4) amidine sulfonic acids, (5) carbodiimides, (6) benzotriazoles,
(7) cyanamides, and (8) triflyl guanidines. The labeled nitrogen atoms highlight the parts of the
starting reagents that will give rise to a common guanidine core in the product, also colored.

In this context, the catalytic guanylation of amines with carbodiimides provides an
efficient and atom-economical way for the synthesis of these entities (Figure 3) [24]. There
are numerous metal-based catalysts for the generation of guanidines [24,25]. Among them,
the use of commercially available products for guanylation reactions, such as ZnEt2 [26],
might ease extending the scope of guanidine-based molecules.
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Figure 3. Guanidines obtained by catalysis. The nitrogen atoms in red highlight the parts of the
starting reagents that will give rise to the guanidine core in the product, also colored. Those colored
in blue refer to possible substituents of the starting amine.

Cancer is one of the main causes of death worldwide and, particularly in solid tumors,
constitutes the most relevant group, as limited therapeutic options exist in the advanced
setting. With the incorporation of novel chemotherapies, targeted agents, and immunomod-
ulators, the outcome of cancer patients has improved in specific indications. However, for
some solid tumors, such as triple-negative breast cancer, small-cell lung cancer, head and
neck cancer and bladder cancer, there are unmet needs in their metastatic settings. In this
context, even though some compounds seem promising due to their antitumoral efficacy
profile, relevant toxicity limits their clinical development [27].
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Classical treatments for cancer include chemotherapy, radiotherapy, and targeted
agents. However, many patients harbor an inherent resistance to drugs [28,29], and pro-
gression becomes frequent over time. In this regard, the identification of new agents with
higher efficacy and a safer toxicity profile is needed, and tools for the straightforward
synthesis of molecules with potential antitumoral activity are worth studying. To date,
phenyl-guanidine derivatives have been provided for the inhibition of Rac1 as agents
for the treatment of aggressive and resistant tumors [17]. The synthesis of such enti-
ties, based on classical organic synthesis, requires cyanamides as source materials and
intense purification to give rise to moderate yields. Some of us have reported a family of
phenyl-guanidines obtained from catalytic guanylation reactions as a potential therapy
for glioblastoma [30]. During testing, a lead compound (ACB0) was identified with IC50
values 16 times lower than temozolomide, the reference compound used for the treatment
of glioblastoma (Figure 4).
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new guanidine-core therapeutic agents (Figure 5). Due to the abundance of commercial 

Figure 4. Molecular structure of the previous lead compound ACB0. The colored nitrogen atoms
highlight the guanidine core.

Herein, and to enhance the antitumoral activity of that lead compound, modifications
of the structure were accomplished through guanylation reactions utilizing a catalyst
and starting reagents commercially available. The synthesis using guanylation reactions
was straightforward, allowing us to obtain a family of potential antitumoral agents. The
compounds were evaluated against a panel of tumoral cells to identify the new lead
compound. Biochemical studies and fluorescence time-resolved microscopy were carried
out to explore the mechanism of action, and ADME parameters were estimated to propose
a structure–activity relationship. This work might set the basis for further improvements in
guanidine-based drugs for cancer research.

2. Results
2.1. Synthesis of Guanidine-Based Agents

Main group metal compounds available are a remarkable group of catalysts for guany-
lation reactions. Since the pioneering work of Richeson et al., in which lithium hexam-
ethyldisilazide, (LiN(SiMe3)2), was used as a catalyst precursor for the guanylation of
aromatic amines with carbodiimides [31], other simple and commercially available cata-
lysts have shown excellent yields even at room temperature [24]. In this sense, guanidines
ACB0-ACB10 were obtained by guanylation reactions using the cheap and commercially
available ZnEt2 as a catalyst. The synthesis involved the formation of a zinc alkyl-amido
species, which is formed by the insertion of a carbodiimide molecule into the Zn–N bond
of an amido complex that, in turn, is formed by the reaction between ZnEt2 and the amine
substrate, followed by posterior nucleophilic addition to the carbodiimide and amine
protonolysis of the guanydinate species. At the outset, guanidines ACB1-ACB10 were
obtained to expand the previously covered structure space [30], with the aim of generating
new guanidine-core therapeutic agents (Figure 5). Due to the abundance of commercial
amines and carbodiimides, this methodology is very versatile in expanding guanidine
sets for cancer screening. The guanidines ACB0–ACB10 were obtained in very high good
yields after 2 h of reaction. In the first step, the catalyst is activated by the addition of the
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corresponding amine at a mild temperature to give rise to the amide derivative. Later,
N,N′-dicyclohexylcarbodiimide was added to the above reaction mixture to provide the
solid guanidine products. Guanidines ACB0-ACB6 and ACB8-ACB9 were previously re-
ported [24]. The characterization of the novel guanidines ACB7 and ACB10 was carried out
by analytical methods, infrared (IR), mass spectroscopy and nuclear magnetic resonance
(NMR) spectroscopy. Structural elucidation is depicted in the experimental section and
illustrated in Figures S1 and S2 of the Supporting Information.
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2.2. Antiproliferative Activity of Guanidines ACB0-ACB9 in Cancer Cell Lines

We evaluated the antitumoral activity of guanidines ACB0-ACB9 in three different
cellular models, including MDA-MB-231, a classical model of triple-negative breast cancer,
OVCAR-8, an ovarian cancer model, and SW-620, a colorectal cancer cell line. As shown in
Figure 6A–C, some compounds needed high concentrations to induce 50% of cell death
with doses above 10 µM. On the other hand, the compound ACB3 demonstrated remarkable
activity inducing 50% of cell death in more than half of the cell population with doses
around 4 µM (Figure 6D). These data demonstrate that ACB3 has more effect and can be
selected for further evaluation. In all cases, the incorporation of cyclohexyl groups into
the guanidine core improved the cytotoxicity of the previously identified lead compound:
ACB0 (see antitumoral activity in Figure S3 of the Supporting Information).
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MDA-MB-231 (A), OVCAR-8 (B), and SW-620 (C) cell lines. Cells are treated with the nine tested
guanidines (ACB1-ACB9) at the five different doses indicated (72 h). The increased color intensity
in the grids of the HeatMaps is directly related to a higher % cell death, as indicated in the bar at
the top right in the legend. Therefore, as can be seen, ACB3 guanidine has the highest antitumor
activity in all three cancer cell lines and is thus the one we chose for in-depth study. The mean of three
experiments is plotted. (D) The antiproliferative effect induced by different concentrations of ACB3
in the indicated cell lines at 72 h was tested by MTT assay. The inhibitory concentration 50 (IC50) for
each cell line is shown. Calculation of the concentrations IC50 based on a nonlinear regression curve
fit (log(inhibitor) vs. response-variable slope). The mean of at least three independent experiments
(each in triplicate) is plotted together with the standard error (SEM).

2.3. ACB3 Induces Cell Cycle Arrest and Reduces Cell Adhesion and Survival

ACB3 was selected for further evaluation of the mechanism of action given its promis-
ing antitumoral activity. In the first step, we evaluated the effect of this guanidine on the
cell cycle, by treating MDA-MB-231 and SW-620 with ACB3 at 10 µM for 24 h. As shown
in Figure 7A, ACB3 was able to induce cell cycle arrest at G0/G1 in all three evaluated
cell lines.
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and SW-620 (right) cancer cell lines. Bar graphs show the percentage of cells in G0/G1, S, or G2/M
cell cycle phases of treated (10 µM, for 24 h) and non-treated cells to compare them. (B) To evaluate
the effect of the guanidine ACB3 on cell adhesion, MDA-MB-231 and OVCAR-8 cell lines were treated
with this molecule (10 µM) for 24 h. Bar graphs (left) show the percentage of treated cells that
have adhered to the plate relative to the control (untreated cells). Microscope images (right) show
representative examples of the adhesion experiment. (C) These images show colony formation ability
after 24 h exposure to ACB3 (10 µM) in MDA-MB-231 and OVCAR-8 cell lines. The bar diagram (left)
represents the percentage of colony numbers of guanidine-exposed cells concerning the control. The
images taken by the microscope (right) depict the clonogenic experiment in a representative way.
All three replicates for each sample are represented as mean +/− standard deviation (SD). * p <0.05;
** p < 0.01; *** p < 0.001.

ACB3 was also able to demonstrate a reduction in cell adhesion in MDA-MB-231
and OVCAR-8 (Figure 7B). This effect could not be evaluated in SW-620, as this cell line
does not adhere to the petri dish [32]. Finally, the action of the compound on long-term
viability was evaluated with the help of clonogenic assays. Treatment with ACB3 reduced
the number of colonies in a statistically significant manner in both MDA-MB-231 and
OVCAR-8 (Figure 7C).

2.4. Treatment with ACB3 Leads to a Strong Induction of Apoptosis

Next, we explored the effect of ACB3 on the induction of cell death. To do so, we
treated MDA-MB-231, OVCAR-8, and SW-620 at 10 µM for 72 h, observing a profound
induction of apoptosis in all three evaluated cell lines (Figure 8A–C for MDA-MB-231,
OVCAR-8, and SW-620, respectively). The major effect was identified with MDA-MB-231,
where the activity was mainly mediated by the induction of early apoptosis (Figure 8A).
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percentage of cells in four different stages of cell death after 72 h of ACB3 treatment (10 µM), compared
with the untreated cells of the control. All three replicates for each sample are represented as mean
+/− standard deviation (SD). Living cells in purple (AV−/7AAD−), early apoptosis in orange
(AV+/7AAD−), late apoptosis in gray (AV+/7AAD+) and necrosis in blue (AV−/7AAD+) are the
differentiated stages of apoptosis displayed in the picture. Flow cytometry dot-plots (right) provide
a more visually representative diagram of the stages of apoptosis for each cell line (Q1 (living), Q2
(early apoptosis), Q3 (late apoptosis), Q4 (necrosis)). * p <0.05; *** p < 0.001.

2.5. ADME Analysis for Providing Activity–Structure Relationships

In silico prediction of absorption, distribution, metabolism, and excretion (ADME)
properties was estimated for ACB1-ACB9 to support the high-throughput screening of
guanidines and to provide insights into the structure–activity relations of the obtained
guanidines (see Figure S4 in the Supporting Information). Two correlation coefficients
were used to estimate how well the different ADME properties correlate with the obtained
cell viability (Figure 9A). Pearson and Spearman coefficients are typically used for feature
selection/dimensionality reduction in datasets with small n. Pearson tends to identify
linear patterns, while Spearman tests for the monotonicity of the relation. Both methods
return values in the range of [−1, 1], where 0 is a random noise, while −1 and 1 represent
a perfect negative or positive pattern. Pearson, being more restrictive, tends to be more
resistant to false positives, especially in low n datasets. The data were analyzed using the
Python scipy.stats.
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Figure 9A shows very strong (absolute values > 0.7) correlations for parameters related
to solubility and size of the molecules. The negative correlation with log P means that the
higher log p values are correlated with the reduction in cell viability (Figure 9B). This could
be the result of the compounds’ better ability to penetrate cellular membranes or a property
specific to this family of compounds where their affinity happens to be related to lipophilia.

2.6. Uptake Studies for a Luminescent Guanidine Derivative

ACB10 was synthesized by guanylation reaction using ZnEt2, as performed before for
ACB0-ACB9. The novel derivative was fully characterized by IR and NMR spectroscopy and
elemental analysis (see experimental section and Figure S2 in the Supporting Information).
Its antitumor activity was assessed in MDA-MB231 cell lines, and its IC50 value was also
measured (see experimental section and Figure S5 in the Supporting Information).

The luminescent properties of ACB10 allow us to monitor the cellular uptake of
such entities, as a proof of concept, by fluorescence microscopy to gain insight into their
mechanism of action. To do so, fluorescence lifetime imaging microscopy (FLIM) was
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used to monitor the population distribution of ACB10 in human breast cancer MDA-
MB231 cell lines (Figure 10A). The use of FLIM microscopy presents advantages over
conventional fluorescence [33]. For instance, the high sensitivity of the fluorescence lifetime
to both the intracellular environment and possible changes in the chemical structure of
the fluorescent molecule makes it possible to easily monitor chemical transformations that
the drug or prodrug may undergo within each compartment and/or cellular organelle.
The FLIM images collected in Figure 8A show that ACB10 is easily internalized in the
cell. Thus, at 1 h, it is found and distributed homogeneously within the cytoplasm, with a
narrow overall average lifetime distribution spanning 9–19 ns and centered at ~13.5 ns and
mapped to color green (Figure 10B). At longer incubation times, no changes in the overall
distribution of lifetimes in the cytoplasm are observed suggesting no chemical modification.
Although several aggregates of one micron are formed in the cytoplasm, probably related to
accumulation in lipid droplets, endosome formation, or interactions with the endoplasmic
reticulum. ACB10 is not observed in the cell nucleus at any time. At 48 h, cell damage is
observed and the overall average lifetime distribution is shifted to lower lifetime values
(color blue). These findings, together with the previously described results, suggest that the
mechanism of action of the guanidine derivatives studied herein is not at the cell nucleus
level, as suggested by other works on guanidine derivatives [18,20], but rather is probably
more complex and related to inhibitory pathways at the level of the endoplasmic reticulum.
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3. Discussion

Cancer is a global problem due to the high prevalence and limited therapeutic curative
options in most clinical situations. Several indications and clinical scenarios are considered
unmet needs due to the lack of therapies; among them, advanced ovarian cancer, breast
cancer, and colorectal tumors can be included in this category. Therefore, the improvement
of existing therapies and the generation of novel ones are mandatory. To tackle this
challenge, screening compound libraries still supports drug discovery. In the field of
antitumoral agents, the rapid development of pharmaceuticals requires high-throughput
synthesis and rational design. To do so, easy synthetic approaches for the generation of
novel structures are mandatory.

Guanidine structures have been the cornerstone of many pharmaceuticals [1]. The de-
votion to such structures has allowed drug designers to find successful therapies to prevent
cardiovascular diseases, treat diabetes, hypertense, peptic ulcers, and even rheumatoid
arthritis [2,9,24]. In cancer, the structure of many drugs relies on a guanidine core, such as
Imatinib [12], Gefitinib [14], or Nilotinib [13]. The classical synthesis of guanidines is based
on approaches that require toxic, poorly available, and costly reagents to give rise to low
yields for a comprehensive array of substrates and produce undesirable substances [24,25].
In this regard, guanylation reactions might offer efficient alternatives for synthesizing these
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systems. Therefore, phenyl-guanidine derivatives ACB1-ACB9 were obtained in excellent
yields using a catalytic guanylation reaction with 100% atom economy in a waste-free pro-
cess from relatively cheap and widely available starting materials. The design of these small
molecules is supported by a first screening of guanidines reported for our research group,
in which a lead compound was identified (the guanidine named ACB0 in this work) [30].
In our previous work, we observed that a phenyl ring in the guanidine core was essential
to display significant antitumoral activity, as demonstrated by Lorenzano Menna et al. [17].
In our first work, the commercially available N,N′-Diisopropylcarbodiimide was used as a
scaffold for the generation of guanidine derivatives. Since a general trend was observed for
those derivatives in which a high level of cytotoxicity correlated with higher lipophilicity
values, the commercially available N,N′-Dicyclohexylcarbodiimide was selected for the
design of the entities in this study. Numerous factors could be involved in the antitumor
activity of such compounds, not only in terms of the physical and chemical properties
of the drugs but also their affinity for the drug target or any plausible interaction with
other biomacromolecules. However, we hypothesized that the higher lipophilicity of the
cyclohexyl rings on the guanidine core might be a plausible starting point to work with
and aim to improve the pharmacological profile of the proposed structures. Since we
previously identified a lead mono-substituted guanidine-derivate compound, in which
the substitution on the phenyl ring took place in the para position, in this work, other
guanidines (ACB1-ACB10) with the same substitution pattern in the phenyl ring but with
cyclohexyl groups were proposed.

ACB1-ACB9 were tested in several tumor cell lines with the aim of identifying the lead
compound. ACB3 proved to be among the most active guanidine of the series. The structure
of the lead compound identified, ACB3, correlates with the structure of the previous lead
compound with a tertbutyl group in the para position of the phenyl ring (ACB0 guanidine).
ACB3 showed more than 4 times the cytotoxicity displayed by the isopropyl-guanidine lead
compound ACB0 against the different cell lines used in the current survey (see Figure S3
in the Supporting Information). Indeed, our results suggest that slight modifications in
the guanidine core are decisive for tuning antitumoral activity. An interesting finding
was that ACB3 displayed considerable antitumoral efficacy in ovarian cancer, TNBC, and
colon cancer, indicating that these agents could address a wide spectrum of therapeutic
needs. Biological assays showed that the mechanism of action was mainly mediated by
apoptotic cell death and an increase in G0/G1 was detected, supporting ACB3 as a cytotoxic
rather than a cytostatic entity. ACB3 was also able to reduce cell adhesion in MDA-MB-231
and OVCAR-8 and in the number of colonies, indicative of a long-term effect. These data
confirm the antitumoral activity of ACB3 in three different cell line models describing the
profound induction of apoptosis.

To gain insight into the mechanism of action of these guanidine molecules, a fluo-
rescent guanidine ACB10 was designed and obtained by guanylation reaction. ACB10
displayed equipotent cytotoxicity than the lead compound of the series (see Figure S5
in the Supporting Information). Such entity was used as a dye to monitor the cellular
uptake and population distribution in MDA-MB231 cell lines, as a proof of concept, by
Fluorescence lifetime imaging confocal microscopy (FLIM). FLIM results show that ACB10
reaches the cytoplasm easily at 1 h and remains there after 24 h of treatment, showing cell
damage at 48 h. Finally, there are novel options to improve drug discovery associated with
the current capabilities of integrating massive information using bioinformatic tools and
big data. Recently, the rapid growth of computational tools for drug discovery, including
anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug
design and has also provided fruitful insights into the area of cancer therapy [34]. In this
work, in silico tools were used for the estimation of the ADME parameters of the candidates.
A correlation between the experimental cytotoxicity obtained values and lipophilia was
found. This finding, based on the chemical structure of active small molecules assisted
by in silico tools, might pave the way for the rational therapeutic agent design using the
guanidine core.
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4. Materials and Methods
4.1. General Procedure

Synthesis reactions were performed using standard Schlenk and glove-box techniques
under an atmosphere of dry nitrogen. After using the solvents, they were degassed and
distilled from appropriate drying agents. CDCl3 was stored over activated 4 Å molecular
sieves and degassed by several freeze-thaw cycles. All NMR experiments were conducted in
deuterated solvents at 297 K in a Varian FT-400 spectrometer (VARIAN Inc., Palo Alto City,
CA, USA) equipped with a 4 nucleus ASW PFG 1H/19F/13C/{15N-31P}. The 1H π/2 pulse
length was adjusted for each sample. 1H- and 13C{1H}-NMR chemical shifts (δ) are given
in ppm relative to TMS. Coupling constants (J) are documented in Hz. The solvent signals
were used as references and chemical shifts were converted to the TMS scale. IR experiments
were conducted on an FT/IR-4000 Series Jasco Instruments (Jasco Analytics, Madrid,
Spain). The UV-Vis absorption spectra were recorded at room temperature using a Cary
100 spectrophotometer (Agilent, Madrid, Spain) using a slit width of 0.4 nm and a scan rate
of 600 nm/min. Microanalyses were performed with a PerkinElmer 2400 CHN analyzer.

4.2. Synthesis of Guanidine Derivatives ACB1-ACB9

ACB0-ACB10 compounds were obtained following the procedure previously re-
ported [30]. Briefly, 0.03 mmol of ZnEt2 (1 M in hexanes) was added over a solution
in THF containing 2.00 mmol of the amine under continuous stirring. After 1 h of reaction,
2 mmol of N,N′-dicyclohexylcarbodiimide was added to the reaction mixture and left at
50 ◦C for 2 h. Then, the solvent was removed under a vacuum and the product was washed
with hexane. ACB0-ACB10 compounds were obtained in very high yields as powered
yellowish solids. ACB0-ACB6 and ACB8-ACB9 were previously reported [24].

Structural characterization of 1,3-dicyclohexyl-2-(4-(dimethylamino)phenyl)guanidine
(ACB7). Yield: 130 mg, 0.38 mmol, 95%. 1H NMR (400 MHz, CDCl3): δ 6.76 (m, 4H,
CH-Ar), 3.61, (bs, 2H, NH), 3.40 (bs, 2H, CH-cyclohexyl), 2.87 (s, 6H, CH3-N-Ar), 2.00, 1.69,
1.66, 1.33, 1.10 (5 m, 20 H, CH2-cyclohexyl). 13C{1H}-NMR (101 MHz, CDCl3): δ 150.8 (1C,
quaternary-guanidine core), 146.3, 110.1 (1C each, quaternary carbons aromatic ring), 124.2
(2C, CH-Ar), 114.8 (2C, CH-Ar), (1C, quaternary carbon), 50.3 (2C, CH-cyclohexyl), 41.7
(2C, CH3-NH-Ar), 34.0, 25.8, 25.1 (10C, CH2-cyclohexyl). UV-vis: maximum absorbance at
268.40 nm. IR: 2919 cm−1 (C-H sp2 stretching), 2792 cm−1 (C-H sp3 stretching), 1614 cm−1

(C=N stretching), 1506–1442 cm−1 (two bands C=C aromatic stretching), 1269–1163 cm−1

(two bands C-N aril stretching). MS (ESI) (m/z): 343.2846 (M+ H+, 100%). Elemental
analysis calculated (%) for C21H34N4: C, 73.64; H, 10.01; N, 16.36; found C, 73.70; H, 10.22;
N, 10.48.

Structural characterization of 2-(anthracene-2-yl)-1,3-dicyclohexylguanidine (ACB10).
Yield: 364.5 mg, 0.91 mmol, 50%. 1H NMR (400 MHz, CDCl3): δ 8.32, 8.20 (s, H10, H7), 7.95
(m, 3H, CH-anthracene), 7.35 (m, 3H, CH-anthracene), 7.12 (dd, JHH = 8.9, 2.0 Hz, H13),
3.79 (bs, 2H, NH), 3.48 (bs, 2H, CH-cyclohexyl), 2.05, 1.69, 1.60, 1.35, 1.14 (5m, 20H, CH2-
cyclohexyl). 13C{1H}-NMR (101 MHz, CDCl3): δ 150.4 (1C, quaternary-guanidine core), (1C,
quaternary-1-anthracene), 147.7, 133.8, 132.00, 130.5 (1C, quaternary-anthracene), 129.3 (1C,
CH-anthracene), 129.0 (1C, quaternary-anthracene), 128.3, 127.8, 126.6, 126.0, 125.3, 124.3,
124.0, 117.6 (1C, CH-anthracene), 50.4 (2C, CH-cyclohexyl), 34.00 (4C, CH2-cyclohexyl),
25.78 (2C, CH2-cyclohexyl), 25.06 (4C, CH2-cyclohexyl). UV-vis: maximum absorbance
at 257.96 nm, 342.27 nm, 359.8 nm, and 379.45 nm. IR: 2921 cm−1 (C-H sp2 stretching),
1606 cm−1 (C=N stretching), 1487–1446 cm−1 (two bands C=C aromatic stretching),
1306–1164 cm−1 (two bands C-N aril stretching). Elemental analysis calculated (%) for
C27H33N31: C, 81.16; H, 8.32; N, 10.52; found C, 81.51; H, 8.21; N, 10.99.

4.3. Biological Assays

Cell lines culture and drugs. Triple-negative breast cancer and ovarian cell lines,
MDA-MB-231 and OVCAR-8, respectively, were cultured in DMEM, whereas colon cancer
cell line SW-620 was cultured in RPMI medium, both supplemented with 10% inactivated
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fetal bovine serum (FBS) (Gibco, Waltham, MA, USA) and antibiotics (100 U/mL penicillin
and 100 µg/mL streptomycin) (Sigma-Aldrich, St. Louis, MO, USA). The cell lines were
maintained at 37 ◦C in a 5% CO2 atmosphere. Cells authenticity was confirmed by STR
analysis. The drugs used for the cell treatments were the previously synthesized guanidines.
These molecules were dissolved in dimethyl sulfoxide (DMSO) to a concentration of 10 mM
each and kept in the −80 ◦C chamber.

Cell proliferation, adhesion, and colony-formation experiments. Cells were seeded
in 48-well plates (10,000 cells per dish) and were treated 24 h later with different doses.
After 72 h of treatment, the cell proliferation assay was evaluated through MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) (Sigma Aldrich). Cell medium
was replaced with red phenol-free DMEM containing MTT (0.5 mg/mL) and incubated
for 45 min at 37 ◦C. DMSO was then added to solubilize the samples, removing the
MTT solution beforehand. Absorbance values were recorded in a multi-well plate reader
(AMR-100, Allsheng) (A570 nm).

To assess the effect of treatment on colony formation, 150,000 cells were cultured per
dish. The following day, cells were treated for 24 h and were then collected, counted,
and reseeded in triplicates (500 cells per well) for each condition. After 9 days, cells were
stained with crystal violet (0.05%, 10 min). Colonies were quantified using Image J software
(1.8.0 version number, National Institutes of Health and the Laboratory for Optical and
Computational Instrumentation (LOCI, University of Wisconsin)).

For the adhesion assay, 150,000 cells were cultured on 6-well plates and were treated
24 h later. Simultaneously, fibronectin (10 ug/mL, PBS) was added to 24-well plates for 1 h
at 37 ◦C. Fibronectin was then removed and plates were blocked with PBS + 0.5% BSA for
45 min. Finally, the plates were washed (PBS + 1% BSA) and exposed to a cold shock. After
24 h of treatment, cells were trypsinized, counted, and reseeded in fibronectin-coated plates
(100,000 cells per dish). The cells were incubated for 30 min at 37 ◦C. The medium was then
removed, and adhered cells were washed three times (PBS + 0.5% BSA) and stained with
crystal violet (0.05%, 10 min on orbital shaker). To solubilize the samples, 10% acetic acid
was used, and absorbance was measured at A570 nm using a spectrophotometer multi-well
plate reader (AMR-100, Allsheng).

Flow cytometry experiments. To determine the effect on the cell cycle, 250,000 cells
were cultured per well. The following day, cells were treated for 24 h and were then washed
with PBS by a previous centrifugation. The samples were fixed with 70% ethanol in PBS
(30 min, 4 ◦C). Cell pellets were washed in PBS + 2% BSA and stained each with 300 ul of
the staining solution in PBS containing 7-amino-actinomycin D (7AAD) (5 µL per sample)
and RNAse (0.05 µg/mL) (1 h, 4 ◦C, in the dark).

For cell death and apoptosis studies, cells were seeded at a density of 250,000 cells per
dish. After 72 h of treatment, adherent and floating cells were trypsinized and collected.
Following a wash with PBS, each condition was stained with 300 ul of Annexin Binding
Buffer containing Annexin V-DT-634 (5 ul per each sample), 7AAD (5 ul per each sample),
and RNAse (0.05 ug/mL) (1 h, in darkness).

All the samples were analyzed by a CytoFLEX flow cytometer using the CytExpert
software (2.3.0.84 version number. Beckman Coulter Inc., Brea California, United States)

4.4. Fluorescence Lifetime Imaging of Cells

MDA-MB-231 cell lines were grown in Dulbecco’s modified Eagle medium (DMEM).
Cells were seeded onto 20 mm square glass cover slides into 6-well plates and cultured
(2.5 × 105 cells per plate) at 37 ◦C in a 5% CO2 humidified atmosphere with their respective
medium. The cells were incubated with 5 µM of ACB10 in DMEM medium without phenol
red for 1, 4, 24, and 48 h. After incubation, the cells were washed three times with PBS.

Fluorescence lifetime images were recorded with a MicroTime 200 microscope (Pi-
coQuant) equipped with a TCSPC card and two TAU-SPAD-100 avalanche photodiode
detectors. A 375 nm pulsed diode laser (LDH-D-C-375, PicoQuant) was used as an ex-
citation source, at a 10 MHz repetition rate and a power of ~0.7 µW. The emission was



Int. J. Mol. Sci. 2023, 24, 13820 13 of 15

recorded with a long-pass filter (−519/19 LP). The regions of 80 × 80 µm were scanned
with 156 nm/pixel spatial resolution and 2 ms of dwell time. FLIM images were processed
using SymphoTime64 software (PicoQuant, Berlin, Germany). The lifetime distribution
histograms were obtained from FLIM images and were fitted to the Gaussian curve. The
FLIM images were smoothed over 200 nm for clarity of presentation. The emission spectra
and the histograms were averaged over 3 independent measurements.

4.5. Estimation of ADME Parameters

ADME properties were predicted based on 2D structural models, drawn in ChemBio-
Draw Ultra version 12.0 software (Cambridge Software) and using the SwissADME online
tool [35]. The data were analyzed using the Python scipy.stats library. Statistical validity of
the established mathematical models was determined by using two correlation coefficients,
Pearson and Spearman.

4.6. Statistical Analysis

The in vitro experimental data represent the average of three independent experiments,
each performed in triplicate, with error bars showing the standard deviation or error
of the triplicates. To determine significant statistical differences, we used the student’s
t-test or Mann–Whitney. p-values lower than 0.05 were considered statistically significant,
while p-values above 0.05 were considered non-significant: * p ≤ 0.05; ** p ≤ 0.01; and
*** p ≤ 0.001. Therefore, 95% was set as the level of significance. The analysis was carried
out using the software GraphPad Prism 8.0. The results are presented as means ± SD or
SEM of at least three independent experiments, each of them performed in triplicate.

5. Conclusions

In conclusion, the structure of ACB3 might serve as the basis for the design of more
active guanidine-based antitumoral compounds and pave the way for further chemical
optimization and preclinical characterization. In line with this, the readily accessible
synthesis of such compounds via guanylation reactions makes ACB3 a good starting point
for improving the pharmacological profile of phenyl-guanidine derivatives for further
in vivo evaluation of guanidines as potential chemotherapeutic agents against cancer.
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