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Abstract: Epstein–Barr virus (EBV) is an oncogenic herpes virus associated with several human
malignancies. Two main EBV genotypes (type 1 and type 2) distinguished by the differences in EBV
nuclear antigens are known. Geographic variability in these genetic differences has been observed
in the incidence of some EBV-related tumors. Here, we investigated the genetic variation of EBV
in lymphoma specimens collected in Ethiopia. A total of 207 DNA samples were used for EBV
detection and typing, and EBNA1 and EBNA3C genes were used to detect and subtype the EBV
genome, respectively. EBV genotype 1 was detected in 52.2% of lymphoma patients. EBV genotype
2 was detected in 38.2% of the lymphoma patients, and 9.7% were coinfected by both EBV genotypes.
Overall, 52.8% of the Hodgkin’s lymphoma (HL) patients and 51.8% of non-Hodgkin’s lymphoma
(NHL) patients showed the presence of genotype 1. Meanwhile, 42.8% and 2.3% of HL patients
and 35.8% and 12.4% of NHL patients showed EBV genotype 2 and both genotypes, respectively.
Significant associations between the age groups and EBV genotypes were observed (p = 0.027).
However, no significant association was seen between EBV genotypes and other sociodemographic
and clinical characteristics. This study showed that the distribution of EBV genotype 1 was higher in
Ethiopian lymphoma patients.

Keywords: Epstein–Barr virus; genotypes; lymphoma; EBNA1; EBNA3C; Ethiopia

1. Introduction

Epstein–Barr virus (EBV), also called human herpesvirus 4, was first identified in 1964
by Epstein’s group in a cell line derived from Burkitt lymphoma [1]. EBV infects both
lymphoid and epithelial cells and causes different EBV-associated cancers. The origins of
all of these tumors are arising from specific stages in the EBV life cycle and appear to be
associated with disturbances of the immune system [2].

EBV is associated with the development of several malignancies. These malignancies
are known as those in which viral Deoxyribonucleic acid (DNA) or Ribonuclease acid (RNA)
and/or viral gene expression can be demonstrated in the tumor tissues [3]. Associated
diseases include Hodgkin’s disease (HD), Burkitt’s lymphoma (BL), diffuse large B cell
lymphoma (DLBCL) and post-transplant lymphoproliferative disorders (PTLDs), Oral
hairy leukoplakia (OHL), Nasopharyngeal carcinoma (NPC), and Undifferentiated gastric
carcinoma [4].
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These EBV-associated malignancies are mainly associated with latent viral infections,
and this latency is controlled by various viral genetic and epigenetic regulatory mecha-
nisms [5]. EBV expresses several of its genes during latency. EBV nuclear antigens (EBNAs)
are encoded during latency from several alternatively spliced primary transcripts to form
EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA leader protein (EBNA-LP). The
latent membrane proteins (LMPs), LMP1, LMP2A, and LMP2B, are expressed from individ-
ual promoters. EBV also expresses non-coding RNAs such as EBV-encoded small RNAs
(EBER)1 and EBER2, respectively, and many viral microRNAs (miRNAs) [6,7]. Currently, a
total of 44 EBV-encoded miRNAs are known [8].

Lytic EBV state has also been shown to contribute toward EBV-associated lymphoma-
genesis in preclinical in vivo models, virus strains with increased lytic EBV replication are
enriched in EBV-associated malignancies, and plasma viral loads correlate with some of
these diseases [9]. Lytic infection contributes to EBV oncogenicity by raising the number of
latently infected B cells, which increases the burden of latently infected B cells and potential
immortalization/transformation. Lytic phase can also contribute toward oncogenesis by
promoting the expression of pro-inflammatory cytokines, growth factors, and distinct
cellular signaling pathways that promote cell proliferation and genomic instability [10,11].
This has been observed in EBV associated BL occurring due to the coinfection of EBV with
malaria infections [12].

EBV is categorized into two types based on the genetic difference of EBNAs (EBNA2,
-3A, -3B, and -3C). These two genotypes are called EBV type 1 (e.g., B95-8) and EBV type 2
(e.g., AG876) or type A and B, respectively [13]. EBNA2 has only 70% homology at the gene
level and 54% at the protein level when comparing EBV type 1 vs. type 2 [14]. Differences
between EBV type 1 and type 2 genotypes were observed from EBV isolated from North
America and from central Africa from infectious mononucleosis and Burkitt Lymphoma
patients, respectively [15,16]. In addition to geographic variability, the two genotypes also
display differences in transforming capacity, where EBV genotype 1 has higher efficiency
in immortalizing B cells than genotype 1 [17,18]. However, recent studies showed that EBV
type 2 were more effective in infecting T cells [19,20].

EBV detection among different EBV-associated malignancies varies depending on
geographic regions, age, and sex [21]. Geographically, EBV type 1 is prevalent in populations
from Europe, America, China, and South Asia. In contrast, type 2 is less prevalent in these
populations and is more often observed in African and Papua New Guinean populations,
where immunocompromised patients are more susceptible to acquiring both types [22].
These strains have different abilities in transforming B cells, and EBV type 1 transforms B
cells more efficiently than type 2 [23–25].

Sequence variations of the two genotypes are mainly performed by targeting EBNA2
or EBNA3 genes of the virus [16]. Different molecular techniques are used to differentiate
EBV genotypes across various geographic locations, study groups, and EBV-associated
diseases [26–28]. Detection of EBNA2 and EBNA3C using nested [29] and conventional
polymerase chain reactions (PCR) is widely used. Targeting the EBNA3C gene sequence
is the preferred method to characterize the EBV genotypes among different population
groups [30,31].

A recent advancement in sequencing technology has increased our understanding of
the genetic variations that exist across different populations globally [32]. Sanger sequenc-
ing techniques [33] and next-generation sequencing platforms are crucial in assessing the
genotype and strain variation of EBV [23,34,35]. The two genotypes have a higher degree
of nucleotide polymorphism within multiple viral genes. Of the nine latent EBV genes,
LMP1 has a greater degree of polymorphism. Variants in LMP-1 have been classified into
seven main groups: B95-8, Alaskan, China 1, China 2, Med+, Med−, and NC [36,37]. EBV
polymorphisms within different open reading frame (ORF) loci have also been shown to be
associated with various malignancies [38,39]. Polymorphisms in EBNA 3B is associated
with a variety of EBV associated malignancies [40], while polymorphisms in the EBER
locus are associated with NPC [41].
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Understanding genetic variation in different geographic locations is crucial for dis-
ease monitoring and evaluation. EBV type variation in different sites among different
malignancies has been reported [42,43]. However, studies showing the distribution of the
EBV genotypes in sub-Saharan Africa are very limited. Especially in Ethiopia, studies con-
cerning the burden of EBV and its genotype distribution among different EBV-associated
hematologic malignancies have never been performed. Therefore, this study aimed to
determine the genetic variability of EBV among lymphoma patients.

2. Results
2.1. Sociodemographic and Clinical Characteristics

A total of n = 207 DNA samples were collected from FFPE, PBMCs, and LMNCs for
EBV detection and subtyping. A total of 63 (30.4%) DNA samples were isolated from
FFPE lymphoma blocks, 118 (57%) from PBMCs, and 26 (12.6%) of the DNA samples
were extracted from LMNCs. The majority of the study participants were male patients
(n = 135, 65.2%). The study participants age ranged from 3 to 80 years, with a mean age
of 38.91 ± 16.94 SD years. The overall clinical and sociodemographic data of the study
participants are listed in Table 1.

Table 1. Clinical and sociodemographic profile of the study participants.

Characteristics Number Percent

Study participants (n = 207)

FFPE blocks 63 30.4

Lymphoma patients 144 69.6

Sex

Male 135 65.2

Female 72 34.8

Age

<20 years 32 15.5

21–40 years 79 38.2

41–60 years 75 36.2

>61 years 20 9.7

Not applicable 1 0.5

HIV status

Positive 28 13.5

Negative 98 47.3

Unknown 81 39.2

Lymphoma types

Hodgkin’s lymphoma 70 33.8

Non-Hodgkin’s lymphoma 137 66.2

Out of the 137 non-Hodgkin’s lymphoma (NHL) study participants, the majority
(n = 35, 25.5%) were small lymphocytic lymphoma (SLL) patients, followed by diffuse large
B cell lymphoma patients (n = 33, 24.1%). The distribution of the different lymphoma types
in the study participants showed in Figure 1. Male patients comprised 65.7% (n = 46) and
65% (n = 89) of HL and NHL patients, respectively. The predominant age group in HL
patients was the younger population. A total of 32 (45.7%) of HL patients were categorized
between the age of 20 and 40. However, in NHL patients, the majority (n = 63, 46.3%) of
patients were categorized under the age group between 40 and 60 years. Among NHL
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patients, HIV prevalence was higher (n = 9, 27.3%) in DLBCL patients than in the other
NHL types.
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Figure 1. Distribution of lymphoma types among the study participants (n = 207). Abbreviations:
DLBCL: diffuse large B cell lymphoma; BL: Burkitt lymphoma; HL: Hodgkin’s lymphoma; NHL: non-
Hodgkin’s lymphoma; SLL: small lymphocytic lymphoma; FL: follicular lymphoma, MCL: mantle
cell lymphoma, ENKTCL: extranodal natural killer/T-cell lymphoma. MALT: mucosa-associated
lymphoid tissue lymphoma.

2.2. EBV Detection

EBV detection and quantification were performed using EBNA1. All samples had a
detectable viral load ranging between 102 EBV copies/mL to 109 EBV copies/mL with a
mean count of 2.8 × 109 EBV copies/mL. The large majority (n = 147, 71%) of the lym-
phoma patients had a high EBV viral load (>10,000 EBV copy number/ml), whereas 20.8%
(n = 43) and 8.2% (n = 17) of them had a low (between 5000–10,000 EBV copy number/mL)
and very low (<5000 EBV copy number/mL) EBV viral load, respectively. Out of these
(n = 147) patients with higher EBV viral load, the majority were male (n = 97, 66%), NHL
(n = 97, 66%), and between the age of 20 and 40 (n = 60, 41%). Of the 207 study participants,
28 were HIV positive, and of these, 85% (n = 24) had a high EBV viral load (>10,000). Of
the NHL patients with a higher EBV viral load (n = 97), 25 patients (25.8%) were DLBCL
patients, followed by SLL (n = 24, 24.7%) (Figure 2). We did not observe any significant
association between sociodemographic and clinical variables with EBV viral load (high,
low, and very low).

2.3. EBNA3C Typing

EBV DNA was detected in all (n = 207) lymphoma cases, and then EBV type was
identified using EBNA3C. Out of the 207 lymphoma patients, 52.2% (n = 108) had EBV
genotype 1, while 79 (38.2%) had EBV genotype 2 and 20 (9.7%) were coinfected with both
genotypes (Figure 3).
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genotype I, Jijoy refers to positive control for EBV genotype 2, and Neg Ctl refers to EBV negative cell
line used as control.
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Next, we assessed if the type of EBV infection varied per sex, HIV status, and type of
lymphoma. Our results showed no difference between males and females in the type of
EBV genotype infection. However, a significant association between the age groups and
EBV genotypes was observed (p = 0.027). EBV genotype 1 was higher in age groups less
than 20 years (n = 20/32, 62.5%), while EBV genotype 2 was higher within the age group
of 21 to 40 (n = 37/79, 46.8%). Among HIV-positive and EBV-positive lymphoma patients
(n = 28), EBV genotype 1, genotype 2, and coinfection was detected in 13 (46.4%), 12 (42.8%),
and 3 (10.7%) of HIV-positive lymphoma patients, respectively (Table 2).

Table 2. Distributions of EBV genotypes across sex, HIV status, and disease phenotype.

Characteristics EBV1 EBV2 Coinfections Total p-Value

Age
<20 years

21–40 years
41–60 years
>60 years

Not
applicable

20 (62.5%)
39 (49.4%)
36 (48%)
12 (60%)

1

11 (34.4%)
37 (46.8%)
25 (33.3%)

6 (30%)

1 (3.1%)
3 (3.8%)

14 (18.7%)
2 (10%)

32
79
75
20
1 0.027

Sex
Male

Female
70 (51.8%)
38 (52.8%)

52 (38.5%)
27 (37.5%)

13(9.6%)
7(9.7%)

135
72 0.99

HIV status
HIV positive
HIV negative

Not
applicable

13 (46.4%)
45 (45.9%)
50 (61.7%)

12 (42.9%)
42 (42.9%)
25 (30.9%)

3 (10.7%)
11 (11.2%)
6 (7.4%)

28
98
81 0.169

Lymphoma
type
HL

NHL

37 (52.9%)
71 (51.8%)

30 (42.6%)
49 (35.7%

3 (4.3%)
17 (12.4%)

70
137 0.15

Of the n = 137 NHL types, SLL (n = 35, 25.5%) and DLBCL (n = 33, 24.1%) comprise
most of the study population. From n = 35 SLL cases, EBV genotype 1 was detected in
n = 16 (45.7%), EBV genotype 2 was detected in n = 12 (34.3%), and n = 7 (20%) represented
coinfection with both genotypes. Of the n = 33 DLBCL cases, EBV genotype 1, EBV genotype
2, and both types were detected in n = 18 (54.5%), n = 11 (33.3%), and n = 4 (12%) patients,
respectively. There was no significant association between the different NHL types and the
distribution of EBV genotypes (p value = 0.92). The overall genotype distribution of EBV
among different NHL types is indicated in Figure 4a. Of the samples with high EBV viral
load (n = 147), EBV type 1 was detected in n = 73 (49.7%), EBV type 2 in n = 61 (41.5%), and
both types in n = 13 (8.8%). There was no significant association between EBV viral load
and EBV genotypes (p value = 0.57) (Figure 4b).
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Figure 4. The magnitude of EBV genotypes. (a) EBV genotype distribution within different non-
Hodgkin’s lymphoma types; (b) EBV viral load status vs. EBV genotypes. Abbreviations: DLBCL:
diffuse large B cell lymphoma; BL: Burkitt lymphoma; NHL: non-Hodgkin’s lymphoma; SLL: small
lymphocytic lymphoma; FL: follicular lymphoma, MCL: mantle cell lymphoma, ENKTCL: extranodal
natural killer/T-cell lymphoma. MALT L: mucosa-associated lymphoid tissue lymphoma.

3. Discussion

The analysis of the EBV genetic variability is essential to understand the disease
pathogenesis and the overall impact of the EBV in lymphoma. In our study, we pro-
vided the first evidence-based data that showed the genotype distribution of EBV among
lymphoma patients in Ethiopia. We characterized EBV genotypes based on the EBNA3C
gene sequences.

EBV genotyping can be made by targeting various genes such as EBNA2 and EBNA3C
genes. Variation in the EBV EBNA3C gene has been reported to classify EBV types [42].
Hence, we determined the EBV genotype based on the proposed suggestion by Sample
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et al. that determined the two genotypes had a significant divergence at four genetic loci
and maintained type-characteristic differences at each locus [16]. Based on EBNA3C gene
typing, we determined EBV genotype 1 in 52.2%, EBV type 2 in 38.2%, and type 1 and 2
coinfections in 9.7% of the lymphoma patients.

The majority of studies from other parts of the world showed a higher predominance
of EBV type 1, while EBV genotype 2 was predominant in sub-Saharan Africa and Papua
New Guinea [22,44]. EBV type 1 was isolated from 71.1% of the study populations in Brazil
by Monteiro TAF et al. [45]. In addition, EBV type 1 was detected in other studies conducted
on different lymphoma types in Pakistan by Salahuddin S et al. (90.7%) [29], 91.2% from
Iran on hematologic malignancies by Tabibzadeh et al. [46], 76.3% from China on NPC by
Cui Y et al. [47], and 72.5% from Qatar on healthy individuals by Smatti M et al. [48]. All
these findings indicated a higher EBV type 1 prevalence compared to our study (52.2%),
which is also seen in other countries. This difference could account for different factors in
our study, where we used the EBNA3C gene to determine EBV genotypes. In their review,
Smatti et al. [49] showed that EBNA3 shows less difference than EBNA2. Besides, we are
reporting data from only 207 patients, which may not represent the lymphoma patients in
Ethiopia or the population in sub–Saharan Africa.

Comparable findings with our result were also observed from some studies conducted
in the USA from samples collected from healthy individuals by Sixbey JW et al., who
identified EBV type 1, type 2, and both genotypes in 50%, 41%, and 9% of the study
participants, respectively [50]. Another study on lymphoma patients revealed a 56%
prevalence of EBV type 1, 13% with type 2, and 31% with dual viral infections [51]. A study
conducted in Brazil on HIV patients showed a 47.37% EBV type 1 prevalence [52].

Our study revealed that EBV type 2 infection was 38.2%, and such high EBV genotype
2 predominance was observed in some sub-Saharan African countries. A study conducted
in Ghana showed a 52% EBV type 2 prevalence [53]. Other studies in other regions also
revealed a high predominance of EBV type 2. A study conducted in China on lymphoma
patients assessed a 98.6% EBV type 2 prevalence [27]. In HL patients in Mexico, EBV type
2 was discovered in 47.6% of children and 69.2% of adults [28]. Another study in Turkey
showed a 44.4% EBV type 2 prevalence [54]. These disparities in the prevalence of the EBV
genotypes could be attributed to the differences in their oncogenic property, the immune
status of the different study populations, and geographic and strain variations [55–57].

Comparable genotype prevalence was observed in HL and NHL patients from our
study, and this was similar to a study conducted in Zambia on HL patients that identified
EBV type 1 in 55.6% of cases. In comparison, 33.3% were EBV type 2, and 11.1% were type
1 and 2 coinfected cases [31]. On the contrary, the prevalence of EBV genotype 1 in our
study in both HL patients was lower compared to other European studies, such as those
conducted in Belgium [58] and Croatia [30]. These disparities could be mainly due to the
geographic variations and immune status of the populations within each country.

There were no significant associations between the EBV genotypes and the different
lymphoma types. Similar reports were revealed in other studies where lymphoma type
did not affect the distribution of EBV genotypes [29,46]. However, we found significant
differences in EBV types with age groups, similar to a study conducted in Brazil [28,59]. In
our study, despite the age groups, a significant association between EBV genotypes with
other sociodemographic and clinical data like sex, HIV status, lymphoma types, and EBV
viral load was not observed.

Some reports suggest that coinfection with EBV type 1 and type 2 is possible in
immunocompromised patients, indicating infection with EBV type 2 may be acquired
during the patient’s immunocompromised state [52,60]. Higher coinfection rates with
both EBV types were determined on HIV patients from studies conducted in Argentina
(32.6%) [61], China (12.96%) [62], and Brazil (26.32%) [52] compared to our coinfection
report (9.7%).
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4. Materials and Methods
4.1. Study Design and Setting

A hospital-based cross-sectional study was conducted at Tikur Anbessa specialized
hospital, Addis Ababa, Ethiopia from June 2020 to March 2022. The hospital is one of the top
referral hospitals serving the entire nation in providing all forms of medical service. It is the
largest of the public teaching hospitals, having more than 26 departments. Both prospective
and retrospective study designs were applied to recruit the study participants. Lymphoma
patients who were under follow-up at hematology clinics and willing to participate were
enrolled in the study.

4.2. Lymphoma Samples and Clinical Data

We have collected samples from formalin-fixed paraffin-embedded (FFPE) lymphoma
tissue blocks retrospectively and blood and fresh lymph node tissue samples from lym-
phoma patients prospectively at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia.
A total of 207 samples were collected, and out of these, 63 of them were FFPE lymphoma
blocks, 118 were blood samples from lymphoma patients, and the rest 26 were lymph
node biopsies. An amount of 20 mL of venous blood was collected using ACD tubes, and
a block (approximately 5 mm3) was removed from fresh lymph node biopsy tissue. Pe-
ripheral blood mononuclear cells (PBMCs) were extracted from blood fusing Ficoll-Paque
techniques, and lymphomononuclear cells (LMNCs) were isolated immediately from fresh
lymph node biopsy. The isolated cells were counted, and the viability of the cells was
determined using the trypan blue staining method. The study participants’ medical records
were reviewed, and questionnaires were also used for prospective study participants. So-
ciodemographic data including age, sex, lymphoma status, and other clinical data were
collected. Ethical approval was obtained from the departmental ethical approval commit-
tee, the College of Health Sciences Institutional Review Board, Addis Ababa University
(CHS-IRB), and the National Research Ethical Review Committee (NRERC). The study
participants gave their consent before sample collection.

4.3. Extraction of Genomic DNA

Two 5 µm FFPE tissue samples were deparaffinized using the deparaffinization so-
lution, which was ready to use (QIAGEN, Hilden, Germany). After adding the deparaf-
finization solution, extraction of FFPE DNA was performed using the QIAamp DSP DNA
FFPE tissue kit (QIAGEN, Hilden, Germany). Extraction of genomic DNA from PBMCs
and LMNCs was performed using a QIAamp mini-DNA kit according to the manufac-
turer’s instructions (QIAGEN, Hilden, Germany). The final elusion volume of the extracted
DNA was 40 µL for FFPE DNA and 100 µL for DNA extracted from PBMCs and LM-
NCs. The extracted DNA’s concentration and quality were measured using both Qubit
(Invitrogen, Waltham, MA, USA) and Nanodrop (Thermo Scientific, Waltham, MA, USA)
spectrophotometers. The concentration of the DNA using qubit ranged from 8.6 ng/µL up
to 908.4 ng/µL, and the quality of the DNA using nanodrop by measuring the absorbance
at 260/280 nm value was between 1.7 and 2.2. The volume of elution to determine the
quality and quantity of the extracted DNA was 2 µL.

4.4. EBV EBNA1 Gene Detection

EBV detection was performed using real-time quantitative PCR. An amount of 10 ng
of DNA was used as starting material for qPCR, and the assay was carried out using a Viia7
qPCR machine (Applied Biosystems, Waltham, MA, USA). The reaction was performed
using a 5 µL of 2× Fast SYBR green master mix (Applied Biosystems), 0.25 µL of forward
(10 µM) and 0.25 µL of reverse (10 µM) primers, 2.5 µL of distilled water, and 2 µL of
5 ng/µL DNA concentration with a total reaction volume of 10 µL. qPCR consisted of
40 reaction cycles with denaturation at 95 ◦C for 1 s, annealing at 60 ◦C for 20 s, and exten-
sion at 70 ◦C for 30 s. Raji cell line was used as positive control, and K562 were used as a
negative control. These cell lines were obtained from the American Type Culture Collection
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(ATCC) and have been stored in the laboratory for a long time (ATCC number CCL-86
and CCL-243, respectively). Twelve standards for EBNA1 and ACTB PCR products with
different concentrations were also used to quantify the EBV viral load. The EBNA1 gene
standard was obtained from EBNA1 amplicon with accession number EBNA1-NC_007605.1.
The stock concentration of the standard was 1.98 ng/µL, and the different concentration
of the standards were obtained through a twofold dilution. The range of the EBNA1 gene
standards in copy number spanned from 2.6 × 106 copies/µL to 1.2 × 103 copies/µL,
starting from the highest dilution factor to the lowest.

The ACTB gene is a housekeeping gene for normalizing the host genome DNA, and we
have used actin beta obtained from Homo Sapiens with the accession number NM_001101.5.
The stock concentration of the ACTB standard was 4.3 ng/µL, and different concentrations
of the standards were obtained through a twofold serial dilution. The standards for the
ACTB gene in copy number ranged from 8.2 × 105 copies/µL to 4 × 102 copies/µL, starting
from the highest dilution factor to the lowest. Standard curve was determined based on
the CT values of each twelve standards.

The nucleotide position for the ACTB gene locus on the forward primer was at the
nucleotide position from 707 to 726, and for the reverse primer nucleotide position, it
was from 814 to 794. The size of the amplicon fragment length was 108 bp. The qPCR
was performed using a total reaction volume of 10 µL consisting of 5 µL of 2× Fast SYBR
green master mix (Applied Biosystems), 0.25 µL of forward (10 µM) and 0.25 µL of reverse
(10 µM) primers, and 2.5 µL of distilled water and 2 µL of the standards. The thermal
profile of the reaction was as follows: denaturation at 95 ◦C for 1 s, annealing at 60 ◦C for
20 s, and extension at 70 ◦C for 30 s, which consists of 40 cycles. All the standards, samples
and controls were run in triplicate. Each CT value was calculated and converted into EBV
copies/mL to obtain the EBV viral load using the ∆∆Ct method.

4.5. EBV Typing Using EBNA3C Gene

EBV typing was determined by using the EBNA3C gene with a specific primer (Ta-
ble 3) designed for targeting the region of divergence between EBV type 1 (B95 coordinate
87,651–87,669) and EBV type 2 (B95-8 coordinate 87,803–87,783) [31]. These coordinates
are nucleotide sequences at the reference genome that have an accession number of
NC_007605.1. PCR was performed in 20 µL of total solution using 10 µL of NEBNext
Q5 Hot Start HiFi PCR Master Mix (New England Biolabs, Ipswich, MA, United States),
1 µL of forward (10 µM) and 1 µL of reverse primers (10 µM), 3 µL of distilled water, and
5 µL of DNA sample with a total concentration of 50 ng. The reaction mixture was initially
denatured at 98 ◦C for 30 s, followed by 50 cycles of denaturation at 98 ◦C for 10 s, annealing
at 68 ◦C for 30 s, and extension at 72 ◦C for 10 s. Then, 2% agarose gel electrophoresis was
performed after the PCR, and B95-8 (ATCC VR-1492) and Jijoye (ATCC CCL-87) cell lines
were used as a reference for EBV type 1 and 2 genotypes, respectively. These cell lines
were also purchased from ATCC and stored in the laboratory. EBV type 1 and 2 genotypes
were differentiated through the amplification product of 153 bp for EBV-1 and a product of
246 bp for EBV-2.

Table 3. DNA primers used for PCR reaction.

PCR Reactions Forward Reverse

EBNA1 TCATCATCATCCGGGTCTCC CCTACAGGGTGGAAAAATGGC

ACTB TCGTGCGTGACATTAAGGAG CAGGCAGCTCGTAGCTCTTC

EBNA3C AGAAGGGGAGCGTGTGTTG GGCTCGTTTTTGACGTCGG
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4.6. Statistical Analysis

SPSS version 26.0 was used to calculate descriptive statistics and Chi-square tests to
study the association between the presence of EBV with lymphoma type as well as other
sociodemographic and clinical data. p-values < 0.05 were considered statistically significant.

5. Conclusions

Wide-ranging characterization of EBV provides new insights into understanding the
role of EBV in different EBV-associated malignancies. Knowing the molecular diversity of
EBV in various malignancies from different populations is crucial for understanding the
viral effects on host immunobiology, developing new preventive strategies, and finding
new approaches for innovative vaccine development. With this study, we provide baseline
information for future studies in the country on this field.
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