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Abstract: Parkinson’s disease (PD) is one of the large-scale health issues detrimental to human
quality of life, and current treatments are only focused on neuroprotection and easing symptoms.
This study evaluated in silico binding activity and estimated the stability of major metabolites in
the roots of R. palmatum (RP) with main protein targets in Parkinson’s disease and their ADMET
properties. The major metabolites of RP were subjected to molecular docking and QSAR with α-
synuclein, monoamine oxidase isoform B, catechol o-methyltransferase, and A2A adenosine receptor.
From this, emodin had the greatest binding activity with Parkinson’s disease targets. The chemical
stability of the selected compounds was estimated using density functional theory analyses. The
docked compounds showed good stability for inhibitory action compared to dopamine and levodopa.
According to their structure–activity relationship, aloe-emodin, chrysophanol, emodin, and rhein
exhibited good inhibitory activity to specific targets. Finally, mediocre pharmacokinetic properties
were observed due to unexceptional blood–brain barrier penetration and safety profile. It was
revealed that the major metabolites of RP may have good neuroprotective activity as an additional
hit for PD drug development. Also, an association between redox-mediating and activities with PD-
relevant protein targets was observed, potentially opening discussion on electrochemical mechanisms
with biological functions.

Keywords: Rheum palmatum; Parkinson’s disease; neuroprotection; in silico; molecular docking;
QSAR; ADMET properties

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease
after Alzheimer’s disease [1,2]. It has been considered the world’s fastest-growing neu-
rological disorder and an economic burden for older adults because of medication costs
and productivity losses [3]. This disease is characterized by bradykinesia, resting tremors,
muscle stiffness, speech and writing changes, postural instability, and a wide array of
motor and non-motor symptoms [4–6]. While the exact pathogenesis of PD is still unclear,
primary observations reveal that such progressive disease develops from the degradation
of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the basal ganglia,
and the development of intraneuronal proteinaceous cytoplasmic inclusions called Lewy
bodies [7]. Approximately four of five PD patients are idiopathic; the others are presumed
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of genetic origins [4]. Unfortunately, current treatments for PD are for neuroprotection and
symptomatic therapy due to a vague understanding of its exact pathogenesis [5,8].

Dopamine (a catecholamine) is a crucial target for treating symptoms of PD since
it is the primary neurotransmitter for movement coordination and control (in the motor
circuitry of the brain in the basal ganglia), as well as in the cognition and reward system [9].
The death of dopaminergic neurons in SNpc consequently decreases dopamine production
responsible for the motor symptoms of PD, such as its effect on the degradation of the
nigrostriatal pathway responsible for sensory stimuli and movement, causing bradykine-
sia [9,10]. Because of the altered motor circuitry in the basal ganglia, automatic postural
adjustments are disrupted, causing postural instability and immobility [11]. Also, thala-
mic activity from basal ganglia dysfunction was found to be promoted due to decreased
dopamine, which regulates the thalamocortical loop, and led to abnormal cortical oscilla-
tions that cause resting tremors [12,13]. While the death of dopaminergic neurons is vital in
PD indications, no complete conclusions on neuronal death have been reached. However,
prior studies hypothesized that neuroinflammation from oxidative stresses, metabolic alter-
ations, mitochondrial dysfunction, the impairment of autophagy functions, and intestinal
inflammation from gut dysbiosis affecting the enteric nervous system (ENS) are some of
the fundamental mechanisms of neuronal death [5,14–16].

Some specified mechanisms of neuronal death are the loss of mitochondrial complex
I functionality responsible for dopamine production and fragmented mitochondria from
mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) [17–19].
Also, dysregulations in the tryptophan (Trp)–kynurenine (KYN) metabolic system observed
in PD patients potentially led to further neuroinflammation due to the immunomodulatory
properties of the metabolites, as well as the accumulation of neuronal death-causing com-
pounds [17,20]. Indeed, imbalances in the Trp-KYN pathway were suspected of causing
neurodegeneration due to a heightened ratio of neurotoxic to neuroprotective metabo-
lites, such as the reported increase in quinolinic acid (QUIN) in blood plasma and 3-
hydroxykynurenine (3-HK) in the cerebrospinal fluid of PD patients, which was implicated
to increased oxidative stress, excitotoxicity, and neuroinflammation where dopaminergic
neurons were particularly vulnerable [17,21,22]. Since dopamine is a precursor of other
catecholamines, specifically epinephrine and norepinephrine, other non-motor functions—
such as peristalsis, heart rate, and blood pressure regulation—are diminished for PD
patients [10,23–25].

Gnanaraj et al. [8] summarized the PD-relevant proteins of utmost concern for their
symptomatic treatment and neuroprotection. One of PD’s first genetic links is the over-
expression of SNCA, an α-synuclein (ASN) coding gene, causing the formation of Lewy
bodies from ASN aggregations [26]. On the other hand, in the standard treatment of PD,
monoamine oxidase isoform B (MAOB) and catechol o-methyltransferase (COMT) are most
considered for their function in dopamine metabolism [27]. Due to the impact of dopamine
on human movement and control, its excessive decrease promotes uncontrolled and non-
rigid movements. At the same time, the antagonism of the A2A adenosine receptor (A2AAR)
reduces the wear-off effect of dopaminergic therapies [28]. This receptor modulates motor
circuits through inhibition of the direct pathway (motion-induction) and promotion of the
indirect pathway (motion-arrest) [28,29]. Current treatments of PD include, but are not lim-
ited to, levodopa and its combination drug (such as carbidopa); dopamine agonists (such as
apomorphine, ropinirole, cabergoline); MAOB inhibitors (such as rasagiline and selegiline);
COMT inhibitors (such as entacapone and tolcapone); anticholinergics; anti-inflammatory
agents; and vitamins A, E, and C [5,30].

Natural products have always been an abundant and diverse source of hit and lead
compounds with good pharmacokinetic properties, including for treating neurological
diseases [31,32]. Interestingly, complex mixtures of these medicines could provide curative
potential to PD because of its multiple targeted approach from several potentially bioactive
compounds. In traditional Chinese medicine, the roots of Rheum palmatum (RP) or Chi-
nese rhubarb are used for various therapeutic uses, including PD symptom treatment [33].
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Previously, it has been revealed that anthraquinones (specifically chrysophanol, rhein,
aloe-emodin, emodin, and physcion as shown in Figure 1) are abundant in RP [34]. Conse-
quently, neurotransmitters such as dopamine, epinephrine, norepinephrine, and levodopa
show redox-mediating activity for microbial fuel cells (MFCs) and quasi-reversible redox
ability in cyclic voltammetry measurements [35]. Also, PD medications were observed
as quasi-reversible redox mediators where the electrochemical mechanism for biologi-
cal function is still open for follow-up investigations [36]. Since RP extracts show good
electron-shuttling characteristics, the major metabolites of RP may have similar activity
as the treatment mentioned [34]. Indeed, prior studies have explored that emodin and
chrysophanol exhibited neuroprotective properties in vitro and in vivo for PD [37].
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Figure 1. Chemical structures of RP major metabolites.

A molecular simulation study was conducted for RP’s major metabolites, revealing
the potential alternative therapeutic compounds or conjunctive use of RP extracts with
conventional medicines for PD. In silico investigations of major compounds of RP were
performed, considering neurotransmitters, and PD medicines have good MFC bioenergy
amplification. This investigation evaluated their potencies to relevant PD targets and safety
profiles with their binding affinity, pharmacokinetic properties, expected reactivity, and
quantitative structure–activity relationship for the prediction of their inhibitory action.

2. Results and Discussion
2.1. Molecular Docking

Primary metabolites from RP were subjected to the ligand preparation protocol in
Discovery Studio, which generated the 31 ligands presented in Table S1. Two standard
drugs used for PD treatment (dopamine and levodopa) were used as positive controls and
were prepared similarly to the mentioned metabolites. Validation of the protein structures of
protein targets for PD revealed that the root-mean-square-difference (RMSD) of minimized
structures compared to experimentally elucidated structures were no more than 2.0 Å,
which indicated valid structures for docking studies (see Table S2) [38,39]. Each ligand
form was screened using hotspots-based docking, using the LibDock protocol available in
Discovery Studio reported in Table 1. The ligand conformers for each metabolite with the
highest LibDock score were selected for further analysis to CDOCKER, a CHARMm-based
docking protocol.

Table 1. LibDock scores of RP major metabolites to PD targets.

Ligand Form No. ASN
(PDB: 1XQ8)

MAOB
(PDB: 2C65)

COMT
(PDB: 3BWM)

A2AAR
(PDB: 3EML)

Aloe-emodin

1 83.2529 121.666 102.147 103.938
2 88.0637 125.89 122.628 119.698
3 86.1153 122.002 108.446 106.68
4 81.5402 121.551 101.605 103.695
5 85.6552 121.304 115.675 107.195
6 81.7519 122.844 101.408 104.847
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Table 1. Cont.

Ligand Form No. ASN
(PDB: 1XQ8)

MAOB
(PDB: 2C65)

COMT
(PDB: 3BWM)

A2AAR
(PDB: 3EML)

Chrysophanol

1 78.9452 114.483 92.5595 98.8463
2 79.5134 115.194 102.129 101.463
3 77.4547 114.957 95.9588 100.238
4 72.7176 115.208 93.4339 96.1831
5 72.0571 114.407 93.139 98.3591
6 64.9091 115.13 93.61 96.686

Emodin

1 81.1783 120.25 96.7097 97.0337
2 84.4642 119.622 101.456 100.972
3 83.4505 121.64 104.623 101.864
4 82.0401 119.959 89.9023 95.9239
5 83.5858 119.78 101.984 99.3968

Physcion

1 84.0608 124.603 98.9597 102.614
2 88.5065 128.092 116.342 114.673
3 86.15 128.415 118.163 105.413
4 83.3815 125.267 97.6397 100.39
5 88.3428 124.502 113.259 118.168
6 83.8676 125.486 89.3911 99.4669

Rhein

1 86.5327 123.458 106.972 106.412
2 84.0283 124.371 119.125 108.289
3 87.7195 125.19 107.756 109.683
4 84.7186 123.958 94.2238 106.914
5 86.7861 124.038 98.3459 108.707
6 82.2617 124.203 96.3977 106.131

Dopamine 1 65.7182 85.4606 89.5598 77.5231

Levodopa 1 75.4623 103.043 110.127 91.2493
1 Standard drugs.

Furthermore, 35 protein–ligand complexes were refined through CDOCKER with the
top hits presented in Table 2, where CDOCKER energy combined protein–ligand binding
interaction energy and ligand conformational energy. Compounds above or within the
dopamine and levodopa standard range were analyzed for their molecular interaction and
properties. While binding these metabolites rendered them inferior to levodopa, multi-
ple ligands inhibited many targets. In this condition, emodin exhibited the best binding
activity among all protein targets. Specifically, ASN (PDB ID: 1XQ8) interacted the best
with emodin (−34.4961 kcal/mol), surpassing dopamine (−31.0394 kcal/mol). There are
only functional assumptions of ASN on dopamine regulation from its ability for synaptic
vessel provision in presynaptic terminals and cytoskeletal dynamics from microtubular
interaction [40,41]. Interestingly, one symptomatic progression of PD concerns alternate
folding of ASN forming insoluble fibrils, which further aggregates leading to neurodegen-
eration, and they are postulated as causative to prion-like cell-to-cell transmission of ASN
misfolding [42]. Nevertheless, the aggregation of ASN is widespread in numerous brain
regions of the central nervous system (CNS) for PD patients. These aggregations impair
numerous neural functions, such as proteasomal and lysosomal functions, potentially
hindering protein clearance and promoting neuronal death [26,43]. Additionally, there are
preliminary investigations on ASN aggregation due to CHCHD2 mutations and interaction
with 3-HK. Hence, it was suspected that interactions with ASN could inhibit the formation
of Lewy bodies for decreased neurotoxicity.
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Table 2. CDOCKER energy (in kcal/mol) of RP major metabolites to PD targets.

Ligand ASN
(PDB: 1XQ8)

MAOB
(PDB: 2C65)

COMT
(PDB: 3BWM)

A2AAR
(PDB: 3EML)

Aloe-emodin −10.9777 −3.33321 −12.2531 —
Chrysophanol −9.65713 −39.7554 −10.606 −15.9783

Emodin −34.4961 −44.9155 −32.431 −57.5427
Physcion −10.5583 −30.3292 −15.7917 —

Rhein −29.9042 −22.7501 −14.9567 −39.4557
Dopamine 1 −31.0394 −30.2512 −36.1948 −39.3845
Levodopa 1 −49.7879 −53.7193 −46.8662 −61.8193

1 Standard drugs.

Nevertheless, chrysophanol (−39.7554 kcal/mol) and physcion (−30.3292 kcal/mol)
may have a good interaction with MAOB (PDB ID: 2C65). At the same time, the best-
interacting compound for COMT (PDB ID: 3BWM) is emodin (−32.431 kcal/mol). Nor-
mally, MAOB catalyzes the oxidative deamination of xenobiotic and biogenic amines,
including dopamine [44]. In contrast, COMT normally regulates levels of catecholamines
in the brain and peripheral tissues, especially levodopa, by its inactivation through methyl
group transfer from the S-adenosylmethionine to the catechol structure [27,44]. For this
reason, their inhibition ameliorates the motor dysfunction and fluctuations observed in
PD patients and offsets the deterioration of dopaminergic neurons. Also, emodin has
superior binding activity (−57.5427 kcal/mol) to A2AAR (PDB ID: 3EML), comparable
to levodopa (−61.8193 kcal/mol). At the same time, rhein (−39.4557 kcal/mol) has a
similarity in binding affinity with dopamine (−39.3845 kcal/mol) to A2AAR (PDB ID:
3EML). Due to the inhibitory interaction of A2AAR with the dopamine D2 receptor, reduced
availability of dopamine in specific periods exacerbates motor fluctuations [28,29]. Hence,
inhibition of A2AAR lessens the worsening of PD symptoms, such as dyskinesia, making it
a non-dopaminergic treatment, usually in combination with dopaminergic treatments [28].

Frequent drug–receptor interactions of known drugs, such as hydrophobic contact,
hydrogen bonding (HB), and π-stacked interactions [45], were observed in the selected
protein–ligand complexes shown in Figure 2. The ASN-emodin complex formed a salt
bridge between LYS45 and the alkoxide of the o-dihydroxy aromatic moiety in emodin.
Alkyl and π-alkyl interactions were also a contributor to the stability of this complex. For
the MAOB-chrysophanol complex, an attractive charge between LYS296 and the alkoxide
of the phenolic structure, as well as HB with SER59 and TYR60, caused stabilization of the
formed complex. This complex is further stabilized with stacked π-π, π-alkyl, and alkyl
interactions. The superior binding of the MAOB-emodin complex formed an attractive
charge between LYS296 and the alkoxide and is further stabilized with π-sulfur, stacked π-π,
π-alkyl, and alkyl interactions. At the same time, the MAOB-physcion complex formed HB
between CYS172 and TYR435 with π-sulfur, stacked π-π, T-shaped π-π, π-alkyl, and alkyl
interactions, suggesting excellent molecular orbital alignment. The COMT-emodin complex
formed HB between ASP141 and ASN170 and an attractive charge further supported by an
attractive charge, π-cation, π-sulfur, π-alkyl, and alkyl interactions. For the A2AAR-emodin
complex, salt bridges and attractive charges (ARG107, ARG206, LYS1060, ARG1008), as
well as HB (ARG107, ARG199, ARG206, and GLU1005), were formed; however, there was
an unfavorable donor–donor interaction (ARG1008) which could potentially destabilize
the complex structure. Finally, the A2AAR-rhein complex formed HB (ARG199, LEU202,
ALA203, ARG206, and ARG1008), attractive charge (ARG107), and π-alkyl (LEU202 and
ALA203). These interactions reveal considerable effects on the PD targets; however, this
static simulation could not fully uncover the protein conformation changes that could affect
protein–ligand interactions. Hence, further analysis with molecular dynamics simulations
could uncover these details.
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2.2. Density Functional Theory (DFT) Analysis

The energies of frontier molecular orbitals (FMO) can provide helpful quantum me-
chanical calculations describing compounds’ chemical reactivity and stability. According
to Koopmans’ theorem, the energy of the highest occupied molecular orbital (εHOMO) can
be approximated to the required first ionization energy, and the energy of the lowest unoc-
cupied molecular orbital (εLUMO) approximates the electron affinity in the last occupied
orbital. In contrast, the energy gap (∆ε) relates to the reactivity of the compound [46–49].
Global reactivity descriptors from approximated ionization energies and electron affinity
revealed beneficial molecular properties. In a chemical process, the hardness,

η =
1
2
(εLUMO − εHOMO), (1)
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of molecules describes the resistance of electron cloud deformation to trivial perturbations.
In contrast, the chemical potential,

µ =
1
2
(εLUMO + εHOMO), (2)

shows the stability of the compounds through their electron transfer capability, where
negative values indicate the compound for less propensity for decomposition [46,49,50].
The electrophilic index,

ω =
µ2

2η
, (3)

is one of the significant descriptors, since it describes potential affinity to a receptor for drug–
receptor interactions. This descriptor assesses the inclination of the compound to acquire
additional charge and its resistance to electronic charge exchange with the surroundings,
indicative of electrophilicity [50]. A large energy band gap between the HOMO and LUMO
is classified as hard molecules and is consequently less reactive. Conversely, soft molecules
are more reactive for smaller energy band gaps [50,51]. From this, excellent inhibitors are
characterized by their heightened stability.

Compared to the minimized structures (in Table S7), all protein–ligand complexes
except rhein in complex with A2AAR (PDB ID: 3EML) exhibited an increased energy band
gap, revealing increased reactivity. Emodin (2.4536 eV) with ASN (PDB ID: 1XQ8) in-
creased from 2.2949 eV. At the same time, chrysophanol (2.6025 eV), emodin (2.3333 eV),
and physcion (3.0351 eV) with MAOB (PDB ID: 2C65) increased from 2.5902, 2.1354, and
2.9551 eV. At the same time, emodin (2.3313 eV and 2.3155 eV) with COMT (PDB ID: 3BWM)
and A2AAR (PDB ID: 3EML) increased from 2.1354 eV. However, rhein (2.7222 eV) with
A2AAR (PDB ID: 3EML) indicated a decrease from 2.8997 eV. Compared to the standards,
MAOB-physcion and A2AAR-rhein exhibited better protein–ligand interaction than lev-
odopa. Similarly, ASN-emodin and MAOB-chrysophanol have potentially more stable
protein–ligand interactions. The chemical hardness of the ligands shown in Table 3 indi-
cated less polarizability, where the mentioned are again superior in stability. Moreover,
chemical potentials reveal chemical stability from decomposition and electron escaping
tendency. All ligands were considered to have superior stability compared to the standards.
The electrophilicity indices show rhein and physcion as least nucleophilic.

Table 3. Electronic properties of standards and docked conformations of ligands (in eV).

Protein Ligand εHOMO εLUMO ∆ε η µ ω

ASN Emodin −5.2390 −2.7854 2.4536 1.2268 −4.0122 6.5608

MAOB
Chrysophanol −5.0907 −2.4882 2.6025 1.3013 −3.7895 5.5178

Emodin −5.1769 −2.8436 2.3333 1.1667 −4.0102 6.8924
Physcion −6.3604 −3.3253 3.0351 1.5175 −4.8429 7.7275

COMT Emodin −5.1784 −2.8472 2.3313 1.1656 −4.0128 6.9073

A2AAR Emodin −5.1753 −2.8598 2.3155 1.1578 −4.0175 6.9706
Rhein −6.0684 −3.3462 2.7222 1.3611 −4.7073 8.1400

Dopamine 1 −5.1946 −2.7709 2.4237 1.2119 −3.9828 6.5447
Levodopa 1 −4.5353 −1.8210 2.7143 1.3571 −3.1782 3.7213

1 Minimized structures of standard drugs.

2.3. Predicted Inhibitory Activity from 3D QSAR Models

Quantitative structure–activity relationship models were established in this study
for the prediction of the inhibitory activity of RP major metabolites on PD targets. Steric
(from van der Waals potential of carbon atom probe) and electrostatic (from H+ point
charge probe) contributions were considered in the 3D grid space of aligned and minimized
ligands with known half-maximal inhibitory concentrations. A dataset of 45 known ASN
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inhibitors, 140 known MAOB inhibitors, 105 known COMT inhibitors, and 120 known
A2AAR inhibitors was considered in the 3D QSAR model building. As shown in Table 4,
all models are considered robust and reliable from set significance based on their internal
validity. For a further assessment of their accuracy, cross-validation of the models reveals
the most accuracy from MAOB (0.488) > A2AAR (0.400) > COMT (0.303) > ASN (0.225). On
the other hand, external validation reveals the most accuracy from MAOB (0.458) > COMT
(0.433) > ASN (0.387) > A2AAR (0.175). Figures S1–S4 indicate predicted and experimental
pIC50 values in the training and test datasets, including their residuals.

Table 4. 3D QSAR model parameters.

Parameter ASN MAOB COMT A2AAR

N 36 112 84 96
pIC50 range 3.897–6.721 4.311–9.511 3.886–8.700 4.26–11.721

IC50 range (µM) 0.190–126.77 0.0003–48.87 0.002–130.02 1.9 × 10−6–75.86

Internal validation
r 0.971 0.974 0.975 0.969
r2 0.942 0.948 0.951 0.939

r2
adj 0.941 0.946 0.950 0.938

RMS residual
error 0.183 0.249 0.243 0.245

Cross-validation
q2 0.225 0.488 0.303 0.400

RMS residual
error 0.674 0.781 0.927 0.772

External validation
q2 0.387 0.458 0.433 0.175

RMS error 0.925 1.073 0.787 0.917
Mean absolute

error 0.821 0.901 0.620 0.805

All predicted values of IC50 to each protein target are within the dataset range as
shown in Table 5. Consistently, emodin (15.957 µM) and rhein (18.457 µM) had the best
inhibition of ASN among all metabolites. Compared to epigallocatechin-3-gallate with
fibrillogenic inhibitory activity (9.8 µM), the best RP metabolites had 1.63 and 1.88-fold less
inhibitory activity [52]. This inhibitory activity on ASN could decrease fibril formation and
aggregation, thereby decreasing the toxicity of the oligomeric Lewy bodies to the neurons.
Similarly, chrysophanol (0.088 µM) and emodin (0.128 µM) had similar outcomes as their
binding affinity with MAOB, which are comparable with selegiline (0.0013 µM), a known
MAOB inhibitor [53]. For this, the inhibition of MAOB slows down dopamine degradation,
which restores the motor functions of PD patients. Compared to entacapone (0.386 µM)
for COMT inhibition [54] and istradefylline (5.25 µM) for A2AAR antagonism [55], the
comparable inhibition from aloe-emodin (0.330 µM) and good inhibition with A2AAR of
1.503 µM was revealed, based on its structural features. This interaction could potentially
decrease the metabolic activity of levodopa for its increased therapeutic effect and sustained
dopamine levels. Also, the decreased blocking activity of A2A receptors to dopamine
D2 receptors could potentially restore the balance of the motor circuitry. Nevertheless,
chrysophanol (0.816 µM) was shown to have good inhibitory activity with A2AAR. Previous
literature experimentally measured the inhibitory concentrations of the major metabolite
on MAOB, where only emodin was observed to have appreciable inhibitory activity [56].
However, these results are open to further validations, specifically from immunochemical
assays, protein–ligand binding assays, mutagenesis studies, functional assays, and X-ray
crystallographic analyses.
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Table 5. Predicted IC50 (in µM) of standards and RP metabolites on PD targets.

Ligand ASN MAOB COMT A2AAR

Aloe-emodin 26.1921 0.2404 0.3297 1.5034
Chrysophanol 21.4724 0.0880 0.7712 0.8162

Emodin 15.9566 0.1277 0.7888 2.8790
Physcion 20.8521 1.2842 0.8107 23.0096

Rhein 18.4570 0.4140 0.7221 4.1237

2.4. ADMET Properties

Predicted pharmacokinetics and toxicity profiles from structure–activity relationships
were performed in ADMETboost and pkCSM, as summarized in Table 6. All major metabo-
lites of RP appeared to satisfy Lipinski’s rule of five. Only chrysophanol did not follow the
Pfizer rule, which could potentially have a toxic profile. At the same time, both chryso-
phanol and physcion do not follow the GSK rule, which may provide subpar ADMET
properties. Nevertheless, the physicochemical properties of these metabolites follow drug-
like soft rules related to their ease of metabolism without substantially producing bioactive
metabolites or intermediates [57]. For this reason, undesired or toxic side effects from
metabolic products and drug–drug interactions are minimized. All compounds have de-
sirable n-octanol/water partition coefficients; however, the metabolites are significantly
hydrophobic compared to the standards.

Table 6. ADMET properties in silico with ADMETboost and pkCSM webserver.

ALO CHR EMO PHY RHE DOP LDP

Physicochemical Properties
Molecular weight 270.24 254.24 270.24 284.27 284.22 153.18 197.19

Hydrogen bond acceptors 5 4 5 5 5 3 4
Hydrogen bond donors 3 2 3 2 3 3 4

Rotational bonds 1 0 0 1 1 2 3
TPSA (Å2) 94.83 74.6 94.83 83.83 111.9 66.48 103.78
log KO/W 1.37 2.18 1.89 2.19 1.57 0.60 0.05

Lipinski rule (+) (+) (+) (+) (+) (+) (+)
Pfizer rule (+) (−) (+) (+) (+) (+) (+)
GSK rule (+) (−) (+) (−) (+) (+) (+)

Golden triangle (+) (+) (+) (+) (+) (−) (−)

Absorption
C2P (log cm/s) −5.30 −5.06 −5.25 −5.11 −5.37 −5.33 −5.34

HIA (%) 73.81 73.93 73.93 73.93 73.81 73.58 73.99
log D7.4 1.77 1.93 1.86 1.98 1.89 1.51 1.43

log S (log mol/L) −4.79 −5.00 −4.79 −5.09 −4.72 −4.24 −4.35
Oral bioavailability (%) 42.60 42.67 41.87 45.12 43.18 41.13 48.56

Distribution
BBB penetration (%) 29.99 33.86 29.47 31.65 33.29 29.16 30.49

PPBR (%) 42.67 48.22 45.28 45.46 54.58 39.48 50.56

Metabolism
CYP2C9 inhibitor (%) 56.55 58.07 63.77 58.02 54.56 47.99 47.19

CYP2C9 substrate * (%) 35.14 34.41 34.33 36.50 37.90 28.59 36.27
CYP2D6 inhibitor (%) 83.88 92.34 91.24 88.36 86.22 89.63 91.19

CYP2D6 substrate * (%) 56.44 56.88 57.39 58.14 55.49 51.70 59.00
CYP3A4 inhibitor (%) 31.48 32.59 33.51 40.29 30.01 33.23 34.31

CYP3A4 substrate * (%) 34.94 33.79 36.14 37.18 35.42 40.46 38.97
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Table 6. Cont.

ALO CHR EMO PHY RHE DOP LDP

Excretion
Half-life * (h) 68.11 67.24 67.41 67.56 67.78 39.82 54.73

HPC * (uL/min/106 cells) 36.10 32.75 36.66 36.18 35.07 45.91 48.32
MSC * (mL/min/g−1) 36.05 34.16 35.58 41.62 35.93 30.30 27.97

Toxicity
hERG blockers (%) 35.28 35.97 37.25 37.52 36.65 32.27 32.43
AMES toxicity (%) 43.30 44.46 43.93 42.63 42.30 41.60 40.60

DILI (%) 46.46 42.09 51.68 46.05 50.41 43.00 40.09
ROALD50 (mmol/kg) 2.82 2.34 6.92 5.75 4.90 29.51 15.14
hMTD (mg/kg/day) 1.23 1.80 0.70 1.80 0.19 0.19 0.12

Abbreviations: ALO, aloe-emodin; CHR, chrysophanol; EMO, emodin; PHY, physcion; RHE, rhein; DOP,
dopamine; LDP, levodopa; TPSA, topological polar surface area; (+), accepted; (−), rejected; C2P, Caco-2 per-
meability; HIA, human intestinal absorption; BBB, blood–brain barrier; PPBR, plasma protein, binding rate;
HPC, hepatocyte clearance; MSC, microsome clearance; hERG, human ether-a-go-go-related gene; DILI, drug-
induced liver toxicity; ROALD50, rat oral acute half-maximal lethal dose; hMTD, human maximum tolerated
dose. * Parameter models have low confidence prediction [58].

Chrysophanol and physcion had good Caco-2 permeability with more than−5.15 log cm/s
compared to the standards. On the other hand, all major RP metabolites, including the
standards, have excellent human intestinal absorption (with more than 70% probable),
which indicates a decreased requirement for parenteral administration. Since traditional
medicines commonly use the oral route of administration and aqueous solvent, the good
n-octanol/water distribution (1–3 log mol/L) observed for all metabolites and standards
and poor aqueous solubility (−4–0.5 log mol/L) could potentially lead to decreased potency
of RP but with optimum lipophilicity preferred for medicines for optimal lipid bilayer
penetration [59,60]. Nevertheless, the oral bioavailability of the metabolites and standards
are comparable with all compounds possessing a good plasma protein binding rate, since
they have less than a 90% probability of combining completely with blood serum proteins.
This result means that major RP metabolites could potentially have quick onset action, and
they can reach the target site rapidly [61,62]. Chrysophanol, physcion, and rhein may cross
the blood–brain barrier lightly (between 30–70%) compared to other metabolites and better
than levodopa, potentially not requiring advanced drug delivery techniques for therapeutic
effect. For these reasons, the metabolites may have good absorption and distribution to
affect the required targets appreciably.

The compounds were found to have mediocre CYP2C9 and CYP2D6 inhibitory activi-
ties. However, all compounds were revealed to have an excellent probability of CYP2D6
inhibition. The CYP2D6 enzyme has mediocre metabolic activity in these compounds. This
enzyme is highly expressed in the SN region of the CNS and is discouraged as a main
metabolic route for CNS drugs due to their polymorphic nature [63]. While the half-life of
the metabolites was superior to the standards, corresponding to a lengthier action, the hep-
atocyte clearance was faster than the standards, and the microsome clearance was slower.
For this, a cumulative effect may be observed, potentially leading to accumulative ability,
and their lipophilicity could have a toxic effect. At the same time, the metabolites reveal
a toxicity profile akin to the standards. There is an observed small probability for hERG
blocking potential, which could lead to cardiotoxicity. However, this probability could
be assumed negligible since the RP metabolites were approximately like the standards.
Further investigations into the interaction of the metabolites to hERG with immunochem-
ical assays, molecular simulations, and electrophysiological studies could validate the
predicted cardiotoxicity profile. However, mediocre mutagenicity and hepatotoxicity were
observed for all metabolites. On the other hand, aloe-emodin, chrysophanol, and physcion
were observed to have significantly higher tolerable doses than the other metabolites and
the standards, and all metabolites had significantly low lethal doses for oral application. In
fact, in vitro and in vivo investigations showed that excessive use of emodin manifested
hepatotoxicity, renal toxicity, and reproductive toxicity with chrysophanol [64]. For this
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reason, the dosage of these compounds requires careful consideration since accumulation
could be lethal.

All in silico pharmacokinetics and toxicity property results were consistent with other
tools like pkCSM and ADMETlab 2.0. These findings indicate that RP metabolites may
have a favorable therapeutic effect as a neuroprotective agent.

3. Materials and Methods
3.1. Preparation of Ligands

This study employed the molecular modeling and visualization software BIOVIA
Discovery Studio 2022 (Dassault Systèmes, Vélizy-Villacoublay, France) for molecular
simulations. Two-dimensional (2D) structure-data files (SDFs) of the identified ligand
molecules were collected from the PubChem database (chem.ncbi.nlm.nih.gov, accessed
on 10 May 2023) and prepared with the Prepare Ligands protocol in Discovery Studio (see
Table S1). Numerous ionization states were generated under pH 7.5 ± 1.0. A structure
visualization of the ligands was generated from ChemDraw v.19.

3.2. Preparation of Proteins

Experimentally elucidated structures of protein targets available from the Protein Data
Bank (PDB, www.rcsb.org, accessed on 10 May 2023) in May 2023 were collected in PDB
file format. Afterwards, water molecules and irrelevant heteroatoms for the simulation
were removed, and polar hydrogens were added to the protein structure. Minimization of
the protein structure with co-crystal ligands with the CHARMm forcefield was performed
to verify the accuracy of the results. The protein was prepared with the Prepare Protein
protocol in Discovery Studio, which automatically repaired and protonated the protein
structure under a pH of 7.4 and 0.145 M of ionic strength with 0.9 kcal/mol cutoff energy.
Missing loops were built in the protocol using PDB SEQRES loop definition, limited to 20
residues, with loop refinement through CHARMm forcefield minimization.

3.3. Molecular Docking

The initial docking runs were performed using the LibDock algorithm in Discovery
Studio to screen ligand forms. Numerous conformations were generated with conjugate-
gradient and quasi-newton minimization with an energy threshold between isomers set
to 20.0 kcal/mol. A maximum fraction of steric clashes of 10% and a final clustering
radius of 0.5 Å were set for the docking. The fractions of acceptable solvent accessible
surface area (SASA) cutoffs were set to 15% for apolar SASA and 5% for polar SASA
with 18 grid points. The binding sites were determined from the literature and PDB
site records (see Table S2) [8,65–69]. Docking optimization was performed using a grid-
based CDOCKER algorithm in Discovery Studio for the evaluation of the best ligand
for each protein target. Random conformations were generated from 1000 dynamics
steps at 1000 K target temperature or with consideration of electrostatic interactions. The
docked conformations were refined with 800 maximum bad orientations and a vdW energy
threshold of 300 kcal/mol. This complex was annealed for 2000 heating steps until 700 K
and subsequently cooled for 5000 steps to 300 K. Final minimizations of the refined ligand
pose were set to full potential. The docking analysis results were further evaluated through
a comparison to standard drugs of Parkinson’s disease, i.e., dopamine and levodopa [5,30].

3.4. 3D QSAR Modeling and Activity Prediction

The QSAR model for each protein target was modeled after IC50 values of known
interacting compounds collected in the ChEMBL database ((ebi.ac.uk/chembl, accessed
on 10 May 2023) and enumerated in Tables S3–S6. These compounds were prepared us-
ing the Prepare Ligands for QSAR protocol in Discovery Studio, where duplicate data
were removed, compound structure and charge were repaired, and numerous ionization
states were generated under pH 7.4. The compounds were subjected to CHARMm mini-
mization with Momany–Rone ligand partial charge estimation until no energy gradient

chem.ncbi.nlm.nih.gov
www.rcsb.org
ebi.ac.uk/chembl
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was reached. Outlier compounds were removed through software-predefined parameters
(atomic logarithmic 1-octanol/water partition coefficient, molecular weight, number of H
donors, H acceptors, rotatable bonds, rings, aromatic rings, and fractional polar surface
area). Outliers were classified under Poisson distribution considering short-ranged pa-
rameters with a p-value of 0.01. Rigid molecular overlay for compound alignment was
performed under consensus-based, 50% steric, and 50% electrostatic field fit. The IC50
values of the compound data were converted into pIC50 values. These data are separated
by diverse split through the predefined parameters into 80% training set and others for the
test set. Three-dimensional QSAR models based on shape (steric) and charge (electrostatic)
complementarity were generated for each protein target with pIC50 values as the activity
variable, grid spacing of 1.5 Å, and 5-fold cross-validation. The 3D QSAR model correlates
the relationship between the activity variable and molecular fields following Equation (4):

A =
nEP

∑
i=1

kEP,iVEP,i +
nvdW

∑
i=1

kvdW,iVvdW,i (4)

Variables in this model are n, the number of descriptors which are each grid point; k,
the model coefficient for the descriptor; and, V, the descriptor value at the grid point
corresponding to the compound. These models are built with partial least squares (PLS)
regression.

3.5. Density Functional Theory (DFT) Analysis

Molecular properties of ligand structures in the form of frontier molecular orbitals,
band gap (∆ε), and electrostatic potential maps were evaluated with the DMol3 package
in Discovery Studio for the structure stability analysis. Reference ligands were optimized
with CHARMm forcefield minimization. Single-point energy calculation of the reference
and docked ligands was performed with Becke’s three-parameter, Lee–Yang–Parr (B3LYP)
exchange-correlation functional and aqueous environment using the COSMO continuum
solvent models. A double-numeric quality basis set with polarization functions (DNP) and
a self-consistent field (SCF) density convergence of 1.0 × 10−6 was used for the analysis.

3.6. ADMET Properties Prediction

SMILES notation records of the prepared ligands were collected from the PubChem
database (chem.ncbi.nlm.nih.gov, accessed on 10 May 2023). ADMETboost (ai-druglab.
smu.edu/admet, accessed on 10 May 2023) was used for ADMET properties prediction for
further analysis. This predictive model utilized MACCS, extended connectivity circular,
Mol2Vec, and PubChem fingerprints, as well as Mordred and RDKit descriptors through
the extreme gradient boosting machine learning modeling model [58]. Parameters include
blood–brain barrier (BBB) permeability, metabolism (inhibition and substrate activity on
human cytochrome P450 family), half-life, human ether-a-go-go-related gene (hERG) for
cardiotoxicity, human hepatotoxicity, and AMES test for mutagenicity. The human maxi-
mum tolerable dose was determined from pkCSM (biosig.lab.uq.edu.au/pkcsm, accessed
on 10 May 2023) [70]. Data visualization was generated from GraphPad Prism v.9.5.0.

4. Conclusions

With increased patient cases, limited treatment diversity, and the complex and unclear
pathogenesis of PD, the current state of research is far beyond a firm and near-complete
understanding of the disease and, consequently, remains complicated with regards drug
development. Current efforts for PD treatment continue to be symptomatic treatment
and neuroprotection to delay its progression. Traditional medicines have been an excel-
lent source of diverse compounds, and because of the complex mechanisms involved in
PD, a multiple-targeted approach could potentially uncover interesting mechanisms and
interactions. This study initially addressed the interaction of major RP metabolites for
neuroprotective activities to Parkinson’s disease in silico, and emodin could be attributed as

chem.ncbi.nlm.nih.gov
ai-druglab.smu.edu/admet
ai-druglab.smu.edu/admet
biosig.lab.uq.edu.au/pkcsm
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the main effect compound in the extracts. These metabolites inhibited Parkinson’s disease
targets on par with controls and known inhibitors from its binding activity, and predicted
the inhibition activity from structure–activity relationships with good chemical stability.

5. Future Directions

While there is an interesting outlook on the multi-targeted effect of RP metabolites on
key PD targets, experimental analyses are required to validate the computational results
from this study. A more thorough computational analysis (such as network pharmacology
and molecular dynamics simulations) could be initially performed for the prediction of the
mechanism of action. In addition to previously mentioned validation studies, the activity
of RP extracts or decoctions, including such extracts with in vitro and in vivo models
of PD, may provide additional insights into its treatment. Gene expression studies and
protein–ligand interaction experiments are recommended for further interpretation of their
mechanism of action. Following this, structure isolation and comparative explorations of
these extracts should provide the structural moiety and molecular interactions necessary for
PD treatment. Before advanced investigation and clinical trials, these compounds should
be subjected to experimental pharmacokinetics and toxicity studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241813929/s1.
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