Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update
Abstract
:1. Introduction
2. Cells Useful in Therapy for Spinal Cord Injury
2.1. Schwann Cells
2.2. Olfactory Ensheathing Cells
2.3. NG2 Glia or Oligodendrocyte Precursor Cells
2.4. Bone-Marrow-Derived Mesenchymal Stem Cells
2.5. Neural Stem Cells
2.6. Neural Precursor Cells: Aldynoglia
3. Immunomodulatory Peptides after Spinal Cord Injury
3.1. Non-Myelin-Related Peptides
3.1.1. Glutathione Monoethyl Ester (GME)
3.1.2. Monocyte Locomotion Inhibitory Factor
3.2. Myelin-Related Peptides
3.2.1. Glatiramer Acetate
3.2.2. A91 Peptide
Synergistic Effects of A91 Immunization with Other Strategies
Use of A91 Immunization Combined with Cell Therapy
4. Supplements and Probiotics as Therapeutic Strategies after Spinal Cord Injury Inflammation
4.1. Supplements
4.1.1. Animal Studies
Vitamins
Minerals
Trace Elements
Omega-3 Fatty Acids
Antioxidants
Botanicals
4.1.2. Human Studies
Vitamins
Omega-3 Fatty Acids
4.2. Probiotics
4.2.1. Animal Studies
4.2.2. Studies in Humans
Interventions | Sample Sizes | Study Designs | Results/Findings | Medical Risks | References |
---|---|---|---|---|---|
Vitamin D | Total of 34 patients | Supplementation | About 62% of participants improved handgrip strength postsupplementation | No medical risks | [192] |
Omega-3 fatty acids | Total of 104 patients with SCI | Double-blinded randomized clinical trial | The data showed that omega-3 fatty acids may not affect plasma concentrations of leptin but adiponectin level was decreased in patients with SCI | No medical risks | [180] |
Polyunsaturated fatty acids | Total of 110 patients | Double-blinded randomized clinical trial | No changes were observed in either group with the consumption of ω-3 fatty acids | No medical risks | [181] |
n-3 fatty acids | Total of 75 patients | Double-blinded, placebo-controlled trial | Neither the supplemented nor control groups showed any difference in their baseline characteristics. There were no significant differences between both groups at the end of the study or in each group between the beginning and end of the study. | No medical risks | [180] |
Probiotics | 207 eligible participants with SCI and stable neurogenic bladder management | Multi-site randomized, double-blinded, double-dummy, placebo-controlled trial | There was no effect of RC14-GR1 or LGG-BB12 in preventing urinary tract infections in people with SCI. | No medical risks | [193] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullahi, D.; Annuar, A.A.; Sanusi, J. Improved Spinal Cord Gray Matter Morphology Induced by Spirulina Platensis Following Spinal Cord Injury in Rat Models. Ultrastruct. Pathol. 2020, 44, 359–371. [Google Scholar] [CrossRef]
- Oyinbo, C.A. Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiol. Exp. Wars 2011, 71, 281–299. [Google Scholar] [PubMed]
- Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current Status of Acute Spinal Cord Injury Pathophysiology and Emerging Therapies: Promise on the Horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.D.; Nguyen, H.X.; Galvan, M.D.; Salazar, D.L.; Woodruff, T.M.; Anderson, A.J. Quantitative Analysis of Cellular Inflammation after Traumatic Spinal Cord Injury: Evidence for a Multiphasic Inflammatory Response in the Acute to Chronic Environment. Brain 2010, 133, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, D.J.; Popovich, P.G. Inflammation and Its Role in Neuroprotection, Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Exp. Neurol. 2009, 209, 378–388. [Google Scholar] [CrossRef]
- Fitch, M.T.; Silver, J. CNS Injury, Glial Scars, and Inflammation: Inhibitory Extracellular Matrices and Regeneration Failure. Exp. Neurol. 2008, 209, 294–301. [Google Scholar] [CrossRef]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. J. Neuroinflamm. 2021, 18, 284. [Google Scholar] [CrossRef]
- Dietrich, W.D.; Chatzipanteli, K.; Vitarbo, E.; Wada, K.; Kinoshita, K. The Role of Inflammatory Processes in the Pathophysiology and Treatment of Brain and Spinal Cord Trauma; Acta Neurochirurgica Supplements; Springer: Vienna, Austria, 2004; pp. 69–74. [Google Scholar] [CrossRef]
- Schiwy, N.; Brazda, N.; Müller, H.W. Enhanced Regenerative Axon Growth of Multiple Fibre Populations in Traumatic Spinal Cord Injury Following Scar-Suppressing Treatment. Eur. J. Neurosci. 2009, 30, 1544–1553. [Google Scholar] [CrossRef]
- Trivedi, A.; Olivas, A.D.; Noble-Haeusslein, L.J. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. Clin. Neurosci. Res. 2006, 6, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Tator, C.H. Epidemiology and General Characteristics of the Spinal Cord Injury Patient. In Contemporary Management of Spinal Cord Injury; Benzel, E.C., Ed.; American Association of Neurological Surgeons: Park Ridge, IL, USA, 1995; pp. 9–13. [Google Scholar]
- Harvey, L.A. Physiotherapy Rehabilitation for People with Spinal Cord Injuries. J. Physiother. 2016, 62, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Rouanet, C.; Reges, D.; Rocha, E.; Gagliardi, V.; Silva, G.S. Traumatic Spinal Cord Injury: Current Concepts and Treatment Update. Arq. Neuropsiquiatr. 2017, 75, 387–393. [Google Scholar] [CrossRef]
- Watt, F.M.; Driskell, R.R. The Therapeutic Potential of Stem Cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Assinck, P.; Duncan, G.J.; Hilton, B.J.; Plemel, J.R.; Tetzlaff, W. Cell Transplantation Therapy for Spinal Cord Injury. Nat. Neurosci. 2017, 20, 637–647. [Google Scholar] [CrossRef]
- Pang, Q.M.; Chen, S.Y.; Xu, Q.J.; Fu, S.P.; Yang, Y.C.; Zou, W.H.; Zhang, M.; Liu, J.; Wan, W.H.; Peng, J.C.; et al. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front. Immunol. 2021, 12, 751021. [Google Scholar] [CrossRef] [PubMed]
- El Seblani, N.; Welleford, A.S.; Quintero, J.E.; van Horne, C.G.; Gerhardt, G.A. Invited Review: Utilizing Peripheral Nerve Regenerative Elements to Repair Damage in the CNS. J. Neurosci. Methods 2020, 335, 108623. [Google Scholar] [CrossRef]
- Tzekova, N.; Heinen, A.; Küry, P. Molecules Involved in the Crosstalk Between Immune- and Peripheral Nerve Schwann Cells. J. Clin. Immunol. 2014, 34, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Painter, M.W.; Brosius Lutz, A.; Cheng, Y.-C.; Latremoliere, A.; Duong, K.; Miller, C.M.; Posada, S.; Cobos, E.J.; Zhang, A.X.; Wagers, A.J.; et al. Diminished Schwann Cell Repair Responses Underlie Age-Associated Impaired Axonal Regeneration. Neuron 2014, 83, 331–343. [Google Scholar] [CrossRef]
- Stratton, J.; Shah, P. Macrophage Polarization in Nerve Injury: Do Schwann Cells Play a Role? Neural Regen. Res. 2016, 11, 53. [Google Scholar] [CrossRef]
- Zu Hörste, G.M.; Hu, W.; Hartung, H.-P.; Lehmann, H.C.; Kieseier, B.C. The Immunocompetence of Schwann Cells. Muscle Nerve 2008, 37, 3–13. [Google Scholar] [CrossRef]
- Li, R.; Li, D.; Wu, C.; Ye, L.; Wu, Y.; Yuan, Y.; Yang, S.; Xie, L.; Mao, Y.; Jiang, T.; et al. Nerve Growth Factor Activates Autophagy in Schwann Cells to Enhance Myelin Debris Clearance and to Expedite Nerve Regeneration. Theranostics 2020, 10, 1649–1677. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.B.; Gensel, J.C. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018, 15, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Hu, D.; Chen, J.; Wang, Q.; Zhang, Y.; Qi, C.; Yu, T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front. Neurosci. 2022, 16, 800513. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Funk, L.; Lee, J.; Bunge, M. Macrophage Depletion and Schwann Cell Transplantation Reduce Cyst Size after Rat Contusive Spinal Cord Injury. Neural Regen. Res. 2018, 13, 684. [Google Scholar] [CrossRef] [PubMed]
- Pearse, D.; Bastidas, J.; Izabel, S.; Ghosh, M. Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. Int. J. Mol. Sci. 2018, 19, 2550. [Google Scholar] [CrossRef]
- Mousavi, M.; Hedayatpour, A.; Mortezaee, K.; Mohamadi, Y.; Abolhassani, F.; Hassanzadeh, G. Schwann Cell Transplantation Exerts Neuroprotective Roles in Rat Model of Spinal Cord Injury by Combating Inflammasome Activation and Improving Motor Recovery and Remyelination. Metab. Brain Dis. 2019, 34, 1117–1130. [Google Scholar] [CrossRef]
- Monje, P.V.; Deng, L.; Xu, X.-M. Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Front. Cell. Neurosci. 2021, 15, 690894. [Google Scholar] [CrossRef]
- Niapour, A.; Karamali, F.; Nemati, S.; Taghipour, Z.; Mardani, M.; Nasr-Esfahani, M.H.; Baharvand, H. Cotransplantation of Human Embryonic Stem Cell-Derived Neural Progenitors and Schwann Cells in a Rat Spinal Cord Contusion Injury Model Elicits a Distinct Neurogenesis and Functional Recovery. Cell Transplant. 2012, 21, 827–843. [Google Scholar] [CrossRef]
- Barraud, P.; Seferiadis, A.A.; Tyson, L.D.; Zwart, M.F.; Szabo-Rogers, H.L.; Ruhrberg, C.; Liu, K.J.; Baker, C.V.H. Neural Crest Origin of Olfactory Ensheathing Glia. Proc. Natl. Acad. Sci. USA 2010, 107, 21040–21045. [Google Scholar] [CrossRef]
- Yang, H.; He, B.-R.; Hao, D.-J. Biological Roles of Olfactory Ensheathing Cells in Facilitating Neural Regeneration: A Systematic Review. Mol. Neurobiol. 2015, 51, 168–179. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, J.; Tang, X.; Wang, X.; Hao, D.; Yang, H. The Immunological Roles of Olfactory Ensheathing Cells in the Treatment of Spinal Cord Injury. Front. Immunol. 2022, 13, 881162. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.W.; Roskams, A.J. Olfactory Ensheathing Cell Transplantation Following Spinal Cord Injury: Hype or Hope? Exp. Neurol. 2008, 209, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Chuah, M.I.; Hale, D.M.; West, A.K. Interaction of Olfactory Ensheathing Cells with Other Cell Types in Vitro and after Transplantation: Glial Scars and Inflammation. Exp. Neurol. 2011, 229, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Khankan, R.R.; Griffis, K.G.; Haggerty-Skeans, J.R.; Zhong, H.; Roy, R.R.; Edgerton, V.R.; Phelps, P.E. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. J. Neurosci. 2016, 36, 6269–6286. [Google Scholar] [CrossRef]
- Pourkhodadad, S.; Oryan, S.; Kaka, G.; Sadraie, S.H. Neuroprotective Effects of Combined Treatment with Minocycline and Olfactory Ensheathing Cells Transplantation against Inflammation and Oxidative Stress after Spinal Cord Injury. Cell J. 2018, 21, 220. [Google Scholar] [CrossRef]
- He, B.-R.; Xie, S.-T.; Wu, M.-M.; Hao, D.-J.; Yang, H. Phagocytic Removal of Neuronal Debris by Olfactory Ensheathing Cells Enhances Neuronal Survival and Neurite Outgrowth via P38MAPK Activity. Mol. Neurobiol. 2014, 49, 1501–1512. [Google Scholar] [CrossRef]
- Fan, H.; Chen, Z.; Tang, H.B.; Shan, L.Q.; Chen, Z.Y.; Wang, X.H.; Huang, D.G.; Liu, S.C.; Chen, X.; Yang, H.; et al. Exosomes Derived from Olfactory Ensheathing Cells Provided Neuroprotection for Spinal Cord Injury by Switching the Phenotype of Macrophages/Microglia. Bioeng. Transl. Med. 2022, 7, e10287. [Google Scholar] [CrossRef]
- López-Vales, R.; García-Alías, G.; Forés, J.; Vela, J.M.; Navarro, X.; Verdú, E. Transplanted Olfactory Ensheathing Cells Modulate the Inflammatory Response in the Injured Spinal Cord. Neuron Glia Biol. 2004, 1, 201–209. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q.; Yang, Q.; Gu, H.; Yin, Y.; Li, Y.; Hou, J.; Chen, R.; Sun, Q.; Sun, Y.; et al. NG2 Glia Regulate Brain Innate Immunity via TGF-Β2/TGFBR2 Axis. BMC Med. 2019, 17, 204. [Google Scholar] [CrossRef]
- Hackett, A.R.; Lee, J.K. Understanding the NG2 Glial Scar after Spinal Cord Injury. Front. Neurol. 2016, 7, 199. [Google Scholar] [CrossRef]
- Li, N.; Leung, G.K.K. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BioMed Res. Int. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Levine, J. The Reactions and Role of NG2 Glia in Spinal Cord Injury. Brain Res. 2016, 1638, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Knerlich-Lukoschus, F.; von der Ropp-Brenner, B.; Lucius, R.; Mehdorn, H.M.; Held-Feindt, J. Chemokine Expression in the White Matter Spinal Cord Precursor Niche after Force-Defined Spinal Cord Contusion Injuries in Adult Rats. Glia 2010, 58, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L.; Patel, J.R.; Daniels, B.P.; Klein, R.S. Targeting CXCR7/ACKR3 as a Therapeutic Strategy to Promote Remyelination in the Adult Central Nervous System. J. Exp. Med. 2014, 211, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Wang, C.; Zepp, J.; Wu, L.; Sun, K.; Zhao, J.; Chandrasekharan, U.; DiCorleto, P.E.; Trapp, B.D.; Ransohoff, R.M.; et al. Act1 Mediates IL-17–Induced EAE Pathogenesis Selectively in NG2+ Glial Cells. Nat. Neurosci. 2013, 16, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.P.; Coulter, M.; Miotke, J.; Meyer, R.L.; Takemaru, K.-I.; Levine, J.M. Abrogation of -Catenin Signaling in Oligodendrocyte Precursor Cells Reduces Glial Scarring and Promotes Axon Regeneration after CNS Injury. J. Neurosci. 2014, 34, 10285–10297. [Google Scholar] [CrossRef]
- Liu, Y.; Aguzzi, A. NG2 Glia Are Required for Maintaining Microglia Homeostatic State. Glia 2020, 68, 345–355. [Google Scholar] [CrossRef]
- Wu, S.; Suzuki, Y.; Ejiri, Y.; Noda, T.; Bai, H.; Kitada, M.; Kataoka, K.; Ohta, M.; Chou, H.; Ide, C. Bone Marrow Stromal Cells Enhance Differentiation of Cocultured Neurosphere Cells and Promote Regeneration of Injured Spinal Cord. J. Neurosci. Res. 2003, 72, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Neuhuber, B.; Himes, B.T.; Shumsky, J.S.; Gallo, G.; Fischer, I. Axon Growth and Recovery of Function Supported by Human Bone Marrow Stromal Cells in the Injured Spinal Cord Exhibit Donor Variations. Brain Res. 2005, 1035, 73–85. [Google Scholar] [CrossRef]
- Ohta, M.; Suzuki, Y.; Noda, T.; Ejiri, Y.; Dezawa, M.; Kataoka, K.; Chou, H.; Ishikawa, N.; Matsumoto, N.; Iwashita, Y.; et al. Bone Marrow Stromal Cells Infused into the Cerebrospinal Fluid Promote Functional Recovery of the Injured Rat Spinal Cord with Reduced Cavity Formation. Exp. Neurol. 2004, 187, 266–278. [Google Scholar] [CrossRef]
- Lu, P.; Jones, L.L.; Tuszynski, M.H. BDNF-Expressing Marrow Stromal Cells Support Extensive Axonal Growth at Sites of Spinal Cord Injury. Exp. Neurol. 2005, 191, 344–360. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, C.P.; Schwarz, E.J.; Hess, D.; Widenfalk, J.; El Manira, A.; Prockop, D.J.; Olson, L. Marrow Stromal Cells Form Guiding Strands in the Injured Spinal Cord and Promote Recovery. Proc. Natl. Acad. Sci. USA 2002, 99, 2199–2204. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhang, F.; Xue, Q.; Ma, Z.; Lu, P.; Yu, B. Transplantation of Bone Marrow Mesenchymal Stem Cells Reduces Lesion Volume and Induces Axonal Regrowth of Injured Spinal Cord. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2010, 30, 205–217. [Google Scholar] [CrossRef]
- Li, Y.; Chopp, M. Marrow Stromal Cell Transplantation in Stroke and Traumatic Brain Injury. Neurosci. Lett. 2009, 456, 120–123. [Google Scholar] [CrossRef]
- Woodbury, D.; Schwarz, E.J.; Prockop, D.J.; Black, I.B. Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons. J. Neurosci. Res. 2000, 61, 364–370. [Google Scholar] [CrossRef]
- Lindsay, S.L.; Barnett, S.C. Therapeutic Potential of Niche-specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells 2021, 10, 901. [Google Scholar] [CrossRef]
- Nakajima, H.; Uchida, K.; Guerrero, A.R.; Watanabe, S.; Sugita, D.; Takeura, N.; Yoshida, A.; Long, G.; Wright, K.T.; Johnson, W.E.B.; et al. Transplantation of Mesenchymal Stem Cells Promotes an Alternative Pathway of Macrophage Activation and Functional Recovery after Spinal Cord Injury. J. Neurotrauma 2012, 29, 1614–1625. [Google Scholar] [CrossRef]
- Urdzíková, L.; Růžička, J.; LaBagnara, M.; Kárová, K.; Kubinová, Š.; Jiráková, K.; Murali, R.; Syková, E.; Jhanwar-Uniyal, M.; Jendelová, P. Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat. Int. J. Mol. Sci. 2014, 15, 11275–11293. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, C. Mesenchymal Stem Cells Immunosuppressive Properties: Is It Specific to Bone Marrow-Derived Cells? Stem Cell Res. Ther. 2010, 1, 15. [Google Scholar] [CrossRef]
- Shao, A.; Tu, S.; Lu, J.; Zhang, J. Crosstalk between Stem Cell and Spinal Cord Injury: Pathophysiology and Treatment Strategies. Stem Cell Res. Ther. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhu, W.; Cao, K.; Wu, F.; Li, J.; Wang, G.; Li, H.; Lu, M.; Ren, Y.; He, X. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int. J. Mol. Sci. 2016, 17, 1380. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, W.; Wang, J.; Fan, J.; Luo, Y.; Li, L.; Kong, F.; Chen, J.; Tang, P.; Cai, W. Neural Stem Cell-Derived Small Extracellular Vesicles Attenuate Apoptosis and Neuroinflammation after Traumatic Spinal Cord Injury by Activating Autophagy. Cell Death Dis. 2019, 10, 340. [Google Scholar] [CrossRef]
- Buzoianu-Anguiano, V.; Torres-Llacsa, M.; Doncel-Pérez, E. Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells 2021, 10, 2783. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, M.; Zhao, X.Q.; Liu, M. Alternatively Polarized Macrophages Regulate the Growth and Differentiation of Ependymal Stem Cells through the SIRT2 Pathway. Exp. Neurobiol. 2020, 29, 150–163. [Google Scholar] [CrossRef]
- Saberi, H.; Firouzi, M.; Habibi, Z.; Moshayedi, P.; Aghayan, H.R.; Arjmand, B.; Hosseini, K.; Razavi, H.E.; Yekaninejad, M.S. Safety of Intramedullary Schwann Cell Transplantation for Postrehabilitation Spinal Cord Injuries: 2-Year Follow-up of 33 Cases—Clinical Article. J. Neurosurg. Spine 2011, 15, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Gant, K.L.; Guest, J.D.; Palermo, A.E.; Vedantam, A.; Jimsheleishvili, G.; Bunge, M.B.; Brooks, A.E.; Anderson, K.D.; Thomas, C.K.; Santamaria, A.J.; et al. Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J. Neurotrauma 2022, 39, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Tabakow, P.; Jarmundowicz, W.; Czapiga, B.; Fortuna, W.; Miedzybrodzki, R.; Czyz, M.; Huber, J.; Szarek, D.; Okurowski, S.; Szewczyk, P.; et al. Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. Cell Transplant. 2013, 22, 1591–1612. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, W.; Liu, H.; Jia, C.; Zhao, Q.; Wang, Y. Clinical Application of Olfactory Ensheathing Cells in the Treatment of Spinal Cord Injury. J. Int. Med. Res. 2013, 41, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Fessler, R.G.; Ehsanian, R.; Liu, C.Y.; Steinberg, G.K.; Jones, L.; Lebkowski, J.S.; Wirth, E.D.; McKenna, S.L. A Phase 1/2a Dose-Escalation Study of Oligodendrocyte Progenitor Cells in Individuals with Subacute Cervical Spinal Cord Injury. J. Neurosurg. Spine 2022, 37, 812–820. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kawabori, M.; Seki, T.; Houkin, K. Clinical Trials of Stem Cell Treatment for Spinal Cord Injury. Int. J. Mol. Sci. 2020, 21, 3994. [Google Scholar] [CrossRef]
- Saberi, H.; Moshayedi, P.; Aghayan, H.R.; Arjmand, B.; Hosseini, S.K.; Emami-Razavi, S.H.; Rahimi-Movaghar, V.; Raza, M.; Firouzi, M. Treatment of Chronic Thoracic Spinal Cord Injury Patients with Autologous Schwann Cell Transplantation: An Interim Report on Safety Considerations and Possible Outcomes. Neurosci. Lett. 2008, 443, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; Ning, G.Z.; Feng, S.Q.; Kong, X.H.; Chen, J.T.; Zheng, Y.F.; Ban, D.X.; Liu, T.; Li, H.; Wang, P. Transplantation of Autologous Activated Schwann Cells in the Treatment of Spinal Cord Injury: Six Cases, More than Five Years of Follow-Up. Cell Transplant. 2012, 21, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D.; Guest, J.D.; Dietrich, W.D.; Bunge, M.B.; Curiel, R.; Dididze, M.; Green, B.A.; Khan, A.; Pearse, D.D.; Saraf-Lavi, E.; et al. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J. Neurotrauma 2017, 34, 2950–2963. [Google Scholar] [CrossRef]
- Mackay-Sim, A.; Féron, F.; Cochrane, J.; Bassingthwaighte, L.; Bayliss, C.; Davies, W.; Fronek, P.; Gray, C.; Kerr, G.; Licina, P.; et al. Autologous Olfactory Ensheathing Cell Transplantation in Human Paraplegia: A 3-Year Clinical Trial. Brain 2008, 131, 2376–2386. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Pratas-Vital, J.; Escada, P.; Hasse-Ferreira, A.; Capucho, C.; Peduzzi, J.D. Olfactory Mucosa Autografts in Human Spinal Cord Injury: A Pilot Clinical Study. J. Spinal Cord Med. 2006, 29, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, T.; Ye, C.; Yao, J.; Zhu, B.; He, H. Clinical Observation of Fetal Olfactory Ensheathing Glia Transplantation (OEGT) in Patients with Complete Chronic Spinal Cord Injury. Cell Transplant. 2012, 21, 33–37. [Google Scholar] [CrossRef]
- Oraee-Yazdani, S.; Hafizi, M.; Atashi, A.; Ashrafi, F.; Seddighi, A.S.; Hashemi, S.M.; Seddighi, A.; Soleimani, M.; Zali, A. Co-Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells and Schwann Cells through Cerebral Spinal Fluid for the Treatment of Patients with Chronic Spinal Cord Injury: Safety and Possible Outcome. Spinal Cord 2016, 54, 102–109. [Google Scholar] [CrossRef]
- Mendonça, M.V.P.; Larocca, T.F.; Souza, B.S.D.F.; Villarreal, C.F.; Silva, L.F.M.; Matos, A.C.; Novaes, M.A.; Bahia, C.M.P.; Martinez, A.C.D.O.M.; Kaneto, C.M.; et al. Safety and Neurological Assessments after Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells in Subjects with Chronic Spinal Cord Injury. Stem Cell Res. Ther. 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Syková, E.; Homola, A.; Mazanec, R.; Lachmann, H.; Konrádová, Š.L.; Kobylka, P.; Pádr, R.; Neuwirth, J.; Komrska, V.; Vávra, V.; et al. Autologous Bone Marrow Transplantation in Patients with Subacute and Chronic Spinal Cord Injury. Cell Transplant. 2006, 15, 675–687. [Google Scholar] [CrossRef]
- Dai, G.; Liu, X.; Zhang, Z.; Yang, Z.; Dai, Y.; Xu, R. Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in the Treatment of Complete and Chronic Cervical Spinal Cord Injury. Brain Res. 2013, 1533, 73–79. [Google Scholar] [CrossRef]
- Ra, J.C.; Shin, I.S.; Kim, S.H.; Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.; Jo, J.Y.; Yoon, E.J.; Choi, H.J.; et al. Safety of Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Animals and Humans. Stem Cells Dev. 2011, 20, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Bonilla, C.; Aguayo, C.; Fernández, C.; Tapiador, N.; Sevilla, M.; Morejón, C.; Montilla, J.; et al. Repeated Subarachnoid Administrations of Autologous Mesenchymal Stromal Cells Supported in Autologous Plasma Improve Quality of Life in Patients Suffering Incomplete Spinal Cord Injury. Cytotherapy 2017, 19, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.D.; Anderson, K.D.; Okonkwo, D.O.; Park, P.; Bryce, T.N.; Kurpad, S.N.; Aarabi, B.; Hsieh, J.; Gant, K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J. Neurotrauma 2019, 36, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.; Martin, J.R.; Gabel, B.; Sidhu, N.; Rzesiewicz, T.K.; Mandeville, R.; Van Gorp, S.; Leerink, M.; Tadokoro, T.; Marsala, S.; et al. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 2018, 22, 941–950.e6. [Google Scholar] [CrossRef]
- Shin, J.C.; Kim, K.N.; Yoo, J.; Kim, I.S.; Yun, S.; Lee, H.; Jung, K.; Hwang, K.; Kim, M.; Lee, I.S.; et al. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury. Neural Plast. 2015, 2015, 630932. [Google Scholar] [CrossRef]
- Kaspar, A.A.; Reichert, J.M. Future Directions for Peptide Therapeutics Development. Drug Discov. Today 2013, 18, 807–817. [Google Scholar] [CrossRef]
- Anderson, M.E.; Powrie, F.; Puri, R.N.; Meister, A. Glutathione Monoethyl Ester: Preparation, Uptake by Tissues, and Conversion to Glutathione. Arch. Biochem. Biophys. 1985, 239, 538–548. [Google Scholar] [CrossRef]
- Arosio, E.; De Marchi, S.; Zannoni, M.; Prior, M.; Lechi, A. Effect of Glutathione Infusion on Leg Arterial Circulation, Cutaneous Microcirculation, and Pain-Free Walking Distance in Patients With Peripheral Obstructive Arterial Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Mayo Clin. Proc. 2002, 77, 754–759. [Google Scholar] [CrossRef]
- Lucas, J.H.; Wheeler, D.G.; Guan, Z.; Suntres, Z.; Stokes, B.T. Effect of Glutathione Augmentation on Lipid Peroxidation after Spinal Cord Injury. J. Neurotrauma 2002, 19, 763–775. [Google Scholar] [CrossRef]
- Wernerman, J.; Hammarqvist, F. Modulation of Endogenous Glutathione Availability. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2, 487–492. [Google Scholar] [CrossRef]
- Santoscoy, C.; Ríos, C.; Franco-Bourland, R.E.; Hong, E.; Bravo, G.; Rojas, G.; Guízar-Sahagún, G. Lipid Peroxidation by Nitric Oxide Supplements after Spinal Cord Injury: Effect of Antioxidants in Rats. Neurosci. Lett. 2002, 330, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B. Steroids for Acute Spinal Cord Injury. Cochrane Database Syst. Rev. 2012, 2018. [Google Scholar] [CrossRef] [PubMed]
- Sultan, I.; Lamba, N.; Liew, A.; Doung, P.; Tewarie, I.; Amamoo, J.J.; Gannu, L.; Chawla, S.; Doucette, J.; Cerecedo-Lopez, C.D.; et al. The Safety and Efficacy of Steroid Treatment for Acute Spinal Cord Injury: A Systematic Review and Meta-Analysis. Heliyon 2020, 6, e03414. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.J.; Finck, T.L.K.; Pellkofer, H.L.; Reichardt, H.M.; Lühder, F. Glucocorticoid Therapy of Multiple Sclerosis Patients Induces Anti-Inflammatory Polarization and Increased Chemotaxis of Monocytes. Front. Immunol. 2019, 10, 1200. [Google Scholar] [CrossRef]
- Hanada, M.; Sugiura, Y.; Shinjo, R.; Masaki, N.; Imagama, S.; Ishiguro, N.; Matsuyama, Y.; Setou, M. Spatiotemporal Alteration of Phospholipids and Prostaglandins in a Rat Model of Spinal Cord Injury. Anal. Bioanal. Chem. 2012, 403, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Resnick, D.K.; Nguyen, P.; Cechvala, C.F. Regional and Temporal Changes in Prostaglandin E 2 and Thromboxane B 2 Concentrations after Spinal Cord Injury. Spine J. 2001, 1, 432–436. [Google Scholar] [CrossRef]
- GuÍzar-Sahagún, G.; Ibarra, A.; Espitia, A.; MartÍnez, A.; Madrazo, I.; Franco-Bourland, R.E. Glutathione Monoethyl Ester Improves Functional Recovery, Enhances Neuron Survival, and Stabilizes Spinal Cord Blood Flow after Spinal Cord Injury in Rats. Neuroscience 2005, 130, 639–649. [Google Scholar] [CrossRef]
- Silva-García, R.; Estrada-García, I.; Ramos-Payán, R.; Torres-Salazar, A.; Morales-Martínez, M.E.; Arenas-Aranda, D.; Giménez-Scherer, J.A.; Blanco-Favela, F.; Rico-Rosillo, M.G. The Effect of an Anti-Inflammatory Pentapeptide Produced by Entamoeba Histolytica on Gene Expression in the U-937 Monocytic Cell Line. Inflamm. Res. 2008, 57, 145–150. [Google Scholar] [CrossRef]
- Silva-García, R.; Rico-Rosillo, G. Anti-Inflammatory Defense Mechanisms of Entamoeba Histolytica. Inflamm. Res. 2011, 60, 111–117. [Google Scholar] [CrossRef]
- Galán-Salinas, A.; Corral-Ruíz, G.; Pérez-Vega, M.J.; Fabila-Castillo, L.; Silva-García, R.; Marquina-Castillo, B.; León-Contreras, J.C.; Barrios-Payán, J.; Francisco-Cruz, A.; Montecillo-Aguado, M.; et al. Monocyte Locomotion Inhibitory Factor Confers Neuroprotection and Prevents the Development of Murine Cerebral Malaria. Int. Immunopharmacol. 2021, 97, 107674. [Google Scholar] [CrossRef]
- Bermeo, G.; Ibarra, A.; García, E.; Flores-Romero, A.; Rico-Rosillo, G.; Marroquín, R.; Mestre, H.; Flores, C.; Blanco-Favela, F.; Silva-García, R. Monocyte Locomotion Inhibitory Factor Produced by E. Histolytica Improves Motor Recovery and Develops Neuroprotection after Traumatic Injury to the Spinal Cord. BioMed Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Yurlova, L.; Simons, M. Central Nervous System Myelin: Structure, Synthesis and Assembly. Trends Cell Biol. 2011, 21, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef] [PubMed]
- Stassart, R.M.; Möbius, W.; Nave, K.-A.; Edgar, J.M. The Axon-Myelin Unit in Development and Degenerative Disease. Front. Neurosci. 2018, 12, 467. [Google Scholar] [CrossRef]
- Monroy, G.R.; Pérez, R.M.; Ben Zión, E.W.; Alcántar-Garibay, O.V.; Loza-López, E.C.; Marion, E.T.; Hernández, E.B.; Navarro-Torres, L.; Ibarra, A. Immunization with Neural-Derived Peptides in Neurodegenerative Diseases: A Narrative Review. Biomedicines 2023, 11, 919. [Google Scholar] [CrossRef]
- Gaur, A.; Boehme, S.A.; Chalmers, D.; Crowe, P.D.; Pahuja, A.; Ling, N.; Brocke, S.; Steinman, L.; Conlon, P.J. Amelioration of Relapsing Experimental Autoimmune Encephalomyelitis with Altered Myelin Basic Protein Peptides Involves Different Cellular Mechanisms. J. Neuroimmunol. 1997, 74, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shiryaev, S.A.; Chernov, A.V.; Kim, Y.; Shubayev, I.; Remacle, A.G.; Baranovskaya, S.; Golubkov, V.S.; Strongin, A.Y.; Shubayev, V.I. Immunodominant Fragments of Myelin Basic Protein Initiate T Cell-Dependent Pain. J. Neuroinflamm. 2012, 9, 119. [Google Scholar] [CrossRef]
- Schwartz, M.; Kipnis, J. Protective Autoimmunity: Regulation and Prospects for Vaccination after Brain and Spinal Cord Injuries. Trends Mol. Med. 2001, 7, 252–258. [Google Scholar] [CrossRef]
- Schwartz, M.; London, A.; Shechter, R. Boosting T-Cell Immunity as a Therapeutic Approach for Neurodegenerative Conditions: The Role of Innate Immunity. Neuroscience 2009, 158, 1133–1142. [Google Scholar] [CrossRef]
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; et al. Copolymer 1 Reduces Relapse Rate and Improves Disability in Relapsing-Remitting Multiple Sclerosis: Results of a Phase III Multicenter, Double-Blind, Placebo-Controlled Trial. Neurology 1995, 45, 1268–1276. [Google Scholar] [CrossRef]
- Prod’homme, T.; Zamvil, S.S. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb. Perspect. Med. 2019, 9, a029249. [Google Scholar] [CrossRef] [PubMed]
- Angelov, D.N.; Waibel, S.; Guntinas-Lichius, O.; Lenzen, M.; Neiss, W.F.; Tomov, T.L.; Yoles, E.; Kipnis, J.; Schori, H.; Reuter, A.; et al. Therapeutic Vaccine for Acute and Chronic Motor Neuron Diseases: Implications for Amyotrophic Lateral Sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 4790–4795. [Google Scholar] [CrossRef] [PubMed]
- Benner, E.J.; Mosley, R.L.; Destache, C.J.; Lewis, T.B.; Jackson-Lewis, V.; Gorantla, S.; Nemachek, C.; Green, S.R.; Przedborski, S.; Gendelman, H.E. Therapeutic Immunization Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease. Proc. Natl. Acad. Sci. USA 2004, 101, 9435–9440. [Google Scholar] [CrossRef] [PubMed]
- Butovsky, O.; Koronyo-Hamaoui, M.; Kunis, G.; Ophir, E.; Landa, G.; Cohen, H.; Schwartz, M. Glatiramer Acetate Fights against Alzheimer’s Disease by Inducing Dendritic-like Microglia Expressing Insulin-like Growth Factor 1. Proc. Natl. Acad. Sci. USA 2006, 103, 11784–11789. [Google Scholar] [CrossRef]
- Incontri-Abraham, D.; Esparza-Salazar, F.J.; Ibarra, A. Copolymer-1 as a Potential Therapy for Mild Cognitive Impairment. Brain Cogn. 2022, 162, 105892. [Google Scholar] [CrossRef]
- Martiñón, S.; García, E.; Gutierrez-Ospina, G.; Mestre, H.; Ibarra, A. Development of Protective Autoimmunity by Immunization with a Neural-Derived Peptide Is Ineffective in Severe Spinal Cord Injury. PLoS ONE 2012, 7, e32027. [Google Scholar] [CrossRef]
- Ibarra, A.; Mendieta-Arbesú, E.; Suarez-Meade, P.; García-Vences, E.; Martiñón, S.; Rodriguez-Barrera, R.; Lomelí, J.; Flores-Romero, A.; Silva-García, R.; Buzoianu-Anguiano, V.; et al. Motor Recovery after Chronic Spinal Cord Transection in Rats: A Proof-of-Concept Study Evaluating a Combined Strategy. CNS Neurol. Disord. Drug Targets 2018, 18, 52–62. [Google Scholar] [CrossRef]
- Walsh, J.T.; Hendrix, S.; Boato, F.; Smirnov, I.; Zheng, J.; Lukens, J.R.; Gadani, S.; Hechler, D.; Gölz, G.; Rosenberger, K.; et al. MHCII-Independent CD4+ T Cells Protect Injured CNS Neurons via IL-4. J. Clin. Investig. 2015, 125, 699–714. [Google Scholar] [CrossRef]
- Zhou, Z.; Peng, X.; Insolera, R.; Fink, D.J.; Mata, M. IL-10 Promotes Neuronal Survival Following Spinal Cord Injury. Exp. Neurol. 2009, 220, 183–190. [Google Scholar] [CrossRef]
- Esposito, E.; Cuzzocrea, S. TNF-Alpha as a Therapeutic Target in Inflammatory Diseases, Ischemia- Reperfusion Injury and Trauma. Curr. Med. Chem. 2009, 16, 3152–3167. [Google Scholar] [CrossRef]
- Esposito, E.; Cuzzocrea, S. Anti-TNF Therapy in the Injured Spinal Cord. Trends Pharmacol. Sci. 2011, 32, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Tang, H.B.; Chen, Z.; Wang, H.Q.; Zhang, L.; Jiang, Y.; Li, T.; Yang, C.F.; Wang, X.Y.; Li, X.; et al. Inhibiting HMGB1-RAGE Axis Prevents pro-Inflammatory Macrophages/Microglia Polarization and Affords Neuroprotection after Spinal Cord Injury. J. Neuroinflamm. 2020, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Parra-Villamar, D.; Blancas-Espinoza, L.; Garcia-Vences, E.; Herrera-García, J.; Flores-Romero, A.; Toscano-Zapien, A.; Villa, J.; Barrera-Roxana, R.; Karla, S.; Ibarra, A.; et al. Neuroprotective Effect of Immunomodulatory Peptides in Rats with Traumatic Spinal Cord Injury. Neural Regen. Res. 2021, 16, 1273. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, A.; Sosa, M.; García, E.; Flores, A.; Cruz, Y.; Mestre, H.; Martiñón, S.; Pineda-Rodríguez, B.A.; Gutiérrez-Ospina, G. Prophylactic Neuroprotection with A91 Improves the Outcome of Spinal Cord Injured Rats. Neurosci. Lett. 2013, 554, 59–63. [Google Scholar] [CrossRef]
- Rodríguez-Barrera, R.; Fernández-Presas, A.M.; García, E.; Flores-Romero, A.; Martiñón, S.; González-Puertos, V.Y.; Mestre, H.; Flores-Dominguez, C.; Rodriguez-Mata, V.; Königsberg, M.; et al. Immunization with a Neural-Derived Peptide Protects the Spinal Cord from Apoptosis after Traumatic Injury. BioMed Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Hendrix, S.; Nitsch, R. The Role of T Helper Cells in Neuroprotection and Regeneration. J. Neuroimmunol. 2007, 184, 100–112. [Google Scholar] [CrossRef]
- Cohn, L.; Delamarre, L. Dendritic Cell-Targeted Vaccines. Front. Immunol. 2014, 5, 255. [Google Scholar] [CrossRef]
- Trumpfheller, C.; Longhi, M.P.; Caskey, M.; Idoyaga, J.; Bozzacco, L.; Keler, T.; Schlesinger, S.J.; Steinman, R.M. Dendritic Cell-Targeted Protein Vaccines: A Novel Approach to Induce T-Cell Immunity. J. Intern. Med. 2012, 271, 183–192. [Google Scholar] [CrossRef]
- Wang, K.; Chao, R.; Guo, Q.-N.; Liu, M.-Y.; Liang, H.-P.; Liu, P.; Zhao, J.-H. Expressions of Some Neurotrophins and Neurotrophic Cytokines at Site of Spinal Cord Injury in Mice after Vaccination with Dendritic Cells Pulsed with Homogenate Proteins. Neuroimmunomodulation 2013, 20, 87–98. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, J.; Liang, H.; Bian, X. Vaccination with Dendritic Cells Pulsed with Homogenate Protein of Spinal Cord Promotes Functional Recovery from Spinal Cord Injury in Mice. Spinal Cord 2009, 47, 360–366. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Kong, P.; Zhao, S.; Yang, H.; Chen, C.; Yan, J. Enhanced Expression of Neurotrophic Factors in the Injured Spinal Cord Through Vaccination With Myelin Basic Protein-Derived Peptide Pulsed Dendritic Cells. Spine 2015, 40, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.H.; Rosenzweig, E.S.; Blesch, A.; Moseanko, R.; Havton, L.A.; Edgerton, V.R.; Tuszynski, M.H. Local and Remote Growth Factor Effects after Primate Spinal Cord Injury. J. Neurosci. 2010, 30, 9728–9737. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Ciatipis, M.; Pfeifer, K.; Kierdorf, B.; Sandner, B.; Bogdahn, U.; Blesch, A.; Winner, B.; Weidner, N. Thoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain. PLoS ONE 2014, 9, e102896. [Google Scholar] [CrossRef] [PubMed]
- Moalem, G.; Gdalyahu, A.; Shani, Y.; Otten, U.; Lazarovici, P.; Cohen, I.R.; Schwartz, M. Production of Neurotrophins by Activated T Cells: Implications for Neuroprotective Autoimmunity. J. Autoimmun. 2000, 15, 331–345. [Google Scholar] [CrossRef]
- Kerschensteiner, M.; Gallmeier, E.; Behrens, L.; Leal, V.V.; Misgeld, T.; Klinkert, W.E.F.; Kolbeck, R.; Hoppe, E.; Oropeza-Wekerle, R.-L.; Bartke, I.; et al. Activated Human T Cells, B Cells, and Monocytes Produce Brain-Derived Neurotrophic Factor In Vitro and in Inflammatory Brain Lesions: A Neuroprotective Role of Inflammation? J. Exp. Med. 1999, 189, 865–870. [Google Scholar] [CrossRef]
- Silver, J.; Miller, J.H. Regeneration beyond the Glial Scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef]
- Coulson-Thomas, V.J.; Lauer, M.E.; Soleman, S.; Zhao, C.; Hascall, V.C.; Day, A.J.; Fawcett, J.W. Tumor Necrosis Factor-Stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-Mediated Glial Scar Formation Following Spinal Cord Injury. J. Biol. Chem. 2016, 291, 19939–19952. [Google Scholar] [CrossRef]
- Niclou, S.P.; Ehlert, E.M.E.; Verhaagen, J. Chemorepellent Axon Guidance Molecules in Spinal Cord Injury. J. Neurotrauma 2006, 23, 409–421. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, J.; Luo, C.; Lin, J.; Wang, X.; Li, X.; Bian, X.; Li, Y.; Wan, Q.; Yu, Y.; et al. Glial Scar and Neuroregeneration: Histological, Functional, and Magnetic Resonance Imaging Analysis in Chronic Spinal Cord Injury. J. Neurosurg. Spine 2010, 13, 169–180. [Google Scholar] [CrossRef]
- Bradbury, E.J.; Burnside, E.R. Moving beyond the Glial Scar for Spinal Cord Repair. Nat. Commun. 2019, 10, 3879. [Google Scholar] [CrossRef]
- García, E.; Rodríguez-Barrera, R.; Buzoianu-Anguiano, V.; Flores-Romero, A.; Malagón-Axotla, E.; Guerrero-Godinez, M.; De La Cruz-Castillo, E.; Castillo-Carvajal, L.; Rivas-Gonzalez, M.; Santiago-Tovar, P.; et al. Use of a Combination Strategy to Improve Neuroprotection and Neuroregeneration in a Rat Model of Acute Spinal Cord Injury. Neural Regen. Res. 2019, 14, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, A.; García, E.; Flores, N.; Martiñón, S.; Reyes, R.; Campos, M.G.; Maciel, M.; Mestre, H. Immunization with Neural-Derived Antigens Inhibits Lipid Peroxidation after Spinal Cord Injury. Neurosci. Lett. 2010, 476, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Martiñón, S.; García-Vences, E.; Toscano-Tejeida, D.; Flores-Romero, A.; Rodriguez-Barrera, R.; Ferrusquia, M.; Hernández-Muñoz, R.E.; Ibarra, A. Long-Term Production of BDNF and NT-3 Induced by A91-Immunization after Spinal Cord Injury. BMC Neurosci. 2016, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- García, E.; Silva-García, R.; Flores-Romero, A.; Blancas-Espinoza, L.; Rodríguez-Barrera, R.; Ibarra, A. The Severity of Spinal Cord Injury Determines the Inflammatory Gene Expression Pattern after Immunization with Neural-Derived Peptides. J. Mol. Neurosci. 2018, 65, 190–195. [Google Scholar] [CrossRef]
- Martiñon, S.; García, E.; Flores, N.; Gonzalez, I.; Ortega, T.; Buenrostro, M.; Reyes, R.; Fernandez-Presas, A.M.; Guizar-Sahagún, G.; Correa, D.; et al. Vaccination with a Neural-Derived Peptide plus Administration of Glutathione Improves the Performance of Paraplegic Rats. Eur. J. Neurosci. 2007, 26, 403–412. [Google Scholar] [CrossRef]
- Del Rayo Garrido, M.; Silva-García, R.; García, E.; Martiñón, S.; Morales, M.; Mestre, H.; Flores-Domínguez, C.; Flores, A.; Ibarra, A. Therapeutic Window for Combination Therapy of A91 Peptide and Glutathione Allows Delayed Treatment After Spinal Cord Injury. Basic Clin. Pharmacol. Toxicol. 2013, 112, 314–318. [Google Scholar] [CrossRef]
- Rodríguez-Barrera, R.; Flores-Romero, A.; Fernández-Presas, A.M.; García-Vences, E.; Silva-García, R.; Konigsberg, M.; Blancas-Espinoza, L.; Buzoianu-Anguiano, V.; Soria-Zavala, K.; Suárez-Meade, P.; et al. Immunization with Neural Derived Peptides plus Scar Removal Induces a Permissive Microenvironment, and Improves Locomotor Recovery after Chronic Spinal Cord Injury. BMC Neurosci. 2017, 18, 1–13. [Google Scholar] [CrossRef]
- Rodríguez-Barrera, R.; Flores-Romero, A.; Buzoianu-Anguiano, V.; Garcia, E.; Soria-Zavala, K.; Incontri-Abraham, D.; Garibay-López, M.; Whaley, J.J.J.-V.; Ibarra, A. Use of a Combination Strategy to Improve Morphological and Functional Recovery in Rats With Chronic Spinal Cord Injury. Front. Neurol. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Ciulla, M.; Marinelli, L.; Cacciatore, I.; Stefano, A. Di Role of Dietary Supplements in the Management of Parkinson’s Disease. Biomolecules 2019, 9, 271. [Google Scholar] [CrossRef]
- Opperman, E.A.; Buchholz, A.C.; Darlington, G.A.; Ginis, K.A.M. Dietary Supplement Use in the Spinal Cord Injury Population. Spinal Cord 2010, 48, 60–64. [Google Scholar] [CrossRef]
- Hong, J.Y.; Davaa, G.; Yoo, H.; Hong, K.; Hyun, J.K. Ascorbic Acid Promotes Functional Restoration after Spinal Cord Injury Partly by Epigenetic Modulation. Cells 2020, 9, 1310. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C. Adv. Nutr. 2014, 5, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front. Neurosci. 2021, 15, 726457. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, Q.; Ma, X. Synergistic Effect of Ascorbic Acid and Taurine in the Treatment of a Spinal Cord Injury-Induced Model in Rats. 3 Biotech 2020, 10, 50. [Google Scholar] [CrossRef]
- Herrera, E.; Barbas, C. Vitamin E: Action, Metabolism and Perspectives. J. Physiol. Biochem. 2001, 57, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Cordero, K.; Coronel, G.; Serrano-Illán, M.; Cruz-Bracero, J.; Figueroa, J.; De León, M. Effects of Dietary Vitamin E Supplementation in Bladder Function and Spasticity during Spinal Cord Injury. Brain Sci. 2018, 8, 38. [Google Scholar] [CrossRef]
- Hosseini, M.; Sarveazad, A.; Babahajian, A.; Baikpour, M.; Vaccaro, A.R.; Chapman, J.R.; Yousefifard, M.; Rahimi-Movaghar, V. Effect of Vitamins C and E on Recovery of Motor Function after Spinal Cord Injury: Systematic Review and Meta-Analysis of Animal Studies. Nutr. Rev. 2020, 78, 465–473. [Google Scholar] [CrossRef]
- Garcia, E.; Hernández-Ayvar, F.; Rodríguez-Barrera, R.; Flores-Romero, A.; Borlongan, C.; Ibarra, A. Supplementation With Vitamin E, Zinc, Selenium, and Copper Re-Establishes T-Cell Function and Improves Motor Recovery in a Rat Model of Spinal Cord Injury. Cell Transplant. 2022, 31, 096368972211098. [Google Scholar] [CrossRef]
- Heller, R.A.; Seelig, J.; Bock, T.; Haubruck, P.; Grützner, P.A.; Schomburg, L.; Moghaddam, A.; Biglari, B. Relation of Selenium Status to Neuro-Regeneration after Traumatic Spinal Cord Injury. J. Trace Elem. Med. Biol. 2019, 51, 141–149. [Google Scholar] [CrossRef]
- Wen, S.; Li, Y.; Shen, X.; Wang, Z.; Zhang, K.; Zhang, J.; Mei, X. Protective Effects of Zinc on Spinal Cord Injury. J. Mol. Neurosci. 2021, 71, 2433–2440. [Google Scholar] [CrossRef]
- Li, D.; Tian, H.; Li, X.; Mao, L.; Zhao, X.; Lin, J.; Lin, S.; Xu, C.; Liu, Y.; Guo, Y.; et al. Zinc Promotes Functional Recovery after Spinal Cord Injury by Activating Nrf2/HO-1 Defense Pathway and Inhibiting Inflammation of NLRP3 in Nerve Cells. Life Sci. 2020, 245, 117351. [Google Scholar] [CrossRef] [PubMed]
- Neve, J.; Vertongen, F.; Molle, L. 6 Selenium Deficiency. Clin. Endocrinol. Metab. 1985, 14, 629–656. [Google Scholar] [CrossRef] [PubMed]
- Javdani, M.; Habibi, A.; Shirian, S.; Kojouri, G.A.; Hosseini, F. Effect of Selenium Nanoparticle Supplementation on Tissue Inflammation, Blood Cell Count, and IGF-1 Levels in Spinal Cord Injury-Induced Rats. Biol. Trace Elem. Res. 2019, 187, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Santesmasses, D.; Gladyshev, V.N. Selenocysteine Machinery Primarily Supports TXNRD1 and GPX4 Functions and Together They Are Functionally Linked with SCD and PRDX6. Biomolecules 2022, 12, 1049. [Google Scholar] [CrossRef]
- Barceloux, D.G.; Barceloux, D. Copper. J. Toxicol. Clin. Toxicol. 1999, 37, 217–230. [Google Scholar] [CrossRef]
- Seelig, J.; Heller, R.A.; Hackler, J.; Haubruck, P.; Moghaddam, A.; Biglari, B.; Schomburg, L. Selenium and Copper Status—Potential Signposts for Neurological Remission after Traumatic Spinal Cord Injury. J. Trace Elem. Med. Biol. 2020, 57, 126415. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Bi, J.; Chen, C.; Sun, P.; Tan, H.; Feng, F.; Shen, J. Neuroprotective Effect of Omega-3 Fatty Acids on Spinal Cord Injury Induced Rats. Brain Behav. 2019, 9, e01339. [Google Scholar] [CrossRef]
- Marinelli, S.; Vacca, V.; De Angelis, F.; Pieroni, L.; Orsini, T.; Parisi, C.; Soligo, M.; Protto, V.; Manni, L.; Guerrieri, R.; et al. Publisher Correction: Innovative Mouse Model Mimicking Human-like Features of Spinal Cord Injury: Efficacy of Docosahexaenoic Acid on Acute and Chronic Phases. Sci. Rep. 2019, 9, 17043. [Google Scholar] [CrossRef]
- Mori, M.A.; Delattre, A.M.; Carabelli, B.; Pudell, C.; Bortolanza, M.; Staziaki, P.V.; Visentainer, J.V.; Montanher, P.F.; Del Bel, E.A.; Ferraz, A.C. Neuroprotective Effect of Omega-3 Polyunsaturated Fatty Acids in the 6-OHDA Model of Parkinson’s Disease Is Mediated by a Reduction of Inducible Nitric Oxide Synthase. Nutr. Neurosci. 2018, 21, 341–351. [Google Scholar] [CrossRef]
- Ibarra, A.; Martinon, S. Pharmacological Neuroprotective Therapy for Acute Spinal Cord Injury: State of the Art. Mini-Rev. Med. Chem. 2008, 8, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Senturk, S.; Yaman, M.E.; Aydin, H.E.; Guney, G.; Bozkurt, I.; Paksoy, K.; Abdioglu, A.A. Effects of Resveratrol on Inflammation and Apoptosis after Experimental Spinal Cord Injury. Turk. Neurosurg. 2017, 28. [Google Scholar] [CrossRef]
- Zhao, H.; Mei, X.; Yang, D.; Tu, G. Resveratrol Inhibits Inflammation after Spinal Cord Injury via SIRT-1/NF-ΚB Signaling Pathway. Neurosci. Lett. 2021, 762, 136151. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Desmarchelier, C.; El, S.N.; Keijer, J.; van Schothorst, E.; Rühl, R.; Borel, P. β-Carotene in the Human Body: Metabolic Bioactivation Pathways—From Digestion to Tissue Distribution and Excretion. Proc. Nutr. Soc. 2019, 78, 68–87. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ouyang, L.; Lin, S.; Chen, S.; Liu, Y.; Zhou, W.; Wang, X. Protective Role of β-Carotene against Oxidative Stress and Neuroinflammation in a Rat Model of Spinal Cord Injury. Int. Immunopharmacol. 2018, 61, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Seyidoğlu, N.; Köşeli, E.; Gurbanlı, R.; Aydın, C. The Preventive Role of Spirulina Platensis ( Arthrospira Platensis ) in Immune and Oxidative Insults in a Stress-Induced Rat Model. J. Vet. Res. 2021, 65, 193–200. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- Lamarche, J.; Mailhot, G. Vitamin D and Spinal Cord Injury: Should We Care? Spinal Cord 2016, 54, 1060–1075. [Google Scholar] [CrossRef]
- Sabour⁎, H.; Norouzi, A.; Shidfar, F.; Vafa, M.R. The Effects of N-3 Fatty Acids on Inflammatory Cytokines in Osteoporotic Spinal Cord Injured Patients: A Randomized Clinical Trial. Bone 2012, 50, S156–S157. [Google Scholar] [CrossRef]
- Javidan, A.N.; Sabour, H.; Latifi, S.; Abrishamkar, M.; Soltani, Z.; Shidfar, F.; Razavi, H.E. Does Consumption of Polyunsaturated Fatty Acids Influence on Neurorehabilitation in Traumatic Spinal Cord-Injured Individuals? A Double-Blinded Clinical Trial. Spinal Cord 2014, 52, 378–382. [Google Scholar] [CrossRef]
- Glisic, M.; Flueck, J.L.; Ruettimann, B.; Hertig-Godeschalk, A.; Valido, E.; Bertolo, A.; Stucki, G.; Stoyanov, J. The Feasibility of a Crossover, Randomized Controlled Trial Design to Assess the Effect of Probiotics and Prebiotics on Health of Elite Swiss Para-Athletes: A Study Protocol. Pilot Feasibility Stud. 2022, 8, 94. [Google Scholar] [CrossRef]
- Williams, N.T. Probiotics. Am. J. Health Pharm. 2010, 67, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; Hall, J.C.E.; Wang, L.; Mo, X.; Yu, Z.; Popovich, P.G. Gut Dysbiosis Impairs Recovery after Spinal Cord Injury. J. Exp. Med. 2016, 213, 2603–2620. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Bai, F.; Yu, Y. Spinal Cord Injury and Gut Microbiota: A Review. Life Sci. 2021, 266, 118865. [Google Scholar] [CrossRef] [PubMed]
- Panther, E.J.; Dodd, W.; Clark, A.; Lucke-Wold, B. Gastrointestinal Microbiome and Neurologic Injury. Biomedicines 2022, 10, 500. [Google Scholar] [CrossRef]
- Wong, S.; Jamous, A.; O’Driscoll, J.; Sekhar, R.; Weldon, M.; Yau, C.Y.; Hirani, S.P.; Grimble, G.; Forbes, A. A Lactobacillus Casei Shirota Probiotic Drink Reduces Antibiotic-Associated Diarrhoea in Patients with Spinal Cord Injuries: A Randomised Controlled Trial. Br. J. Nutr. 2014, 111, 672–678. [Google Scholar] [CrossRef]
- Bannerman, C.A.; Douchant, K.; Sheth, P.M.; Ghasemlou, N. The Gut-Brain Axis and beyond: Microbiome Control of Spinal Cord Injury Pain in Humans and Rodents. Neurobiol. Pain 2021, 9, 100059. [Google Scholar] [CrossRef]
- Liu, X.; Cao, S.; Zhang, X. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. J. Agric. Food Chem. 2015, 63, 7885–7895. [Google Scholar] [CrossRef]
- Gungor, B.; Adiguzel, E.; Gursel, I.; Yilmaz, B.; Gursel, M. Intestinal Microbiota in Patients with Spinal Cord Injury. PLoS ONE 2016, 11, e0145878. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Zhang, J.; Jing, Y.; Yang, M.; Du, L.; Gao, F.; Gong, H.; Chen, L.; Li, J.; et al. Gut Microbiota Dysbiosis in Male Patients with Chronic Traumatic Complete Spinal Cord Injury. J. Transl. Med. 2018, 16, 1–16. [Google Scholar] [CrossRef]
- Pritchett, K.; Pritchett, R.C.; Stark, L.; Broad, E.; LaCroix, M. Effect of Vitamin D Supplementation on 25(OH)D Status in Elite Athletes with Spinal Cord Injury. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.L.; Lee, B.B.; Ryan, S.; Simpson, J.M.; Clezy, K.; Bossa, L.; Rice, S.A.; Marial, O.; Weber, G.H.; Kaur, J.; et al. Probiotics [LGG-BB12 or RC14-GR1] versus Placebo as Prophylaxis for Urinary Tract Infection in Persons with Spinal Cord Injury [ProSCIUTTU]: A Randomised Controlled Trial. Spinal Cord 2019, 57, 550–561. [Google Scholar] [CrossRef] [PubMed]
Cells | Immune Responses | Effect of SCI | References |
---|---|---|---|
SCs |
| Neuroprotection and neuroregeneration | [18,19,21,28,29] |
OECS |
| Neuroprotection | [32,35,39,40] |
NG2/OPCs |
| Neuroprotection | [44,46] |
BMSCs |
| Neuroprotection and neuroregeneration | [16,57,58,59,60] |
NSCs |
| Neuroprotection | [61,62,63] |
Aldynoglia |
| Neuroprotection and neuroregeneration | [64,65] |
Cell Type | SCI Level | Dose | Outcomes | Adverse Events Post-Transplant | References |
---|---|---|---|---|---|
SCs | Chronic; T6-T9 ASIA A or C | 3 × 106 or 4.5 × 106 cells in 300 µL | No motor or sensory improvement | No adverse effects | [72] |
SCs | Thoracic or cervical ASIA A or B | 3 × 106 cells in 300 µL | They showed improvement in touch; some of the patients showed improvement in sphincter and had an increase in FIM and FAM scores. | No adverse effects | [66] |
SCs | C5-T12; ASIA A-C | 4 × 106 or 6 × 106 cells in 200 µL | They showed an increase in ASIA and FIM scores and an increase in period latencies and wave amplitude in SSEPs and MEPs. | No adverse effects | [73] |
SCs | Sub-acute; ASIA A | 5 × 106, 10 × 106, and 15 × 106 cells | The patients showed an improvement in FIM. | No adverse effects | [74] |
Autologous Olfactory Ensheathing Cells | Chronic; thoracic paraplegia ASIA A | 3 × 104 and 2 × 105 cells | Transplantation was safe and feasible. The first two operated patients improved from ASIA A to ASIA C and ASIA B. | No adverse effects | [68] |
Autologous Olfactory Ensheathing Cells | Chronic; cervical paraplegia A, B, and C | 1 × 106 cells in 1 mL | Return of substantial sensation and motor activity in various muscles below the injury level was observed in three patients. In addition, bladder function was restored in two patients. | No adverse effects | [69] |
Autologous Olfactory Ensheathing Cells | Chronic thoracic paraplegia ASIA A | 12 × 106, 24 × 106, and 28 × 106 cells | There were no significant functional changes in any patients and no neuropathic pain. In one patient, improvement in three segments in light touch and pin prick sensitivity bilaterally, anteriorly, and posteriorly. | No adverse effects | [75] |
Olfactory mucosa autografts | Chronic; C4-T6 ASIA A | Two patients reported return of sensation in their bladders, and one of these patients regained voluntary contraction of anal sphincter. Two of the seven ASIA A patients became ASIA C. | No adverse effects | [76] | |
Fetal olfactory ensheathing glia cells | Complete injury; thoracic and cervical level | 5 × 10 5 cells in 0.05 mL | There were no significant functional changes in any patients and no neuropathic pain. In one patient, improvement in three segments in light touch and pin prick sensitivity bilaterally, anteriorly, and posteriorly. | No adverse effects | [77] |
OPCs | Sub-acute; C4-7 ASIA A or B | 2 × 106, 1 × 107, Or 2 × 107 cells | Thirty-two percent of patients recovered two or more points in neurological functions on at least one side of the body, and 96% improved one or more points. | No adverse effects | [70] |
BMSCs | C7-T11; ASIA A | 10 × 106 cells in 2 µL | Increase in ASIA scores; no motor score improvement. | No adverse effects | [78] |
BMSCs | Chronic; ASIA A | 4 × 106 cells | Patients had a 58% recovery rate in ASIA. | No adverse effects | [79] |
BMMNC | Sub-acute; ASIA A: 4 or B: 1 | 1 × 1010 cells | The patients showed 40% improvement based on the ASIA scale. | No adverse effects | [80] |
BMSCs | Chronic; ASIA A | 2 × 107 cells | Showed 45% improvement in ASIA of A and B. | No adverse effects | [81] |
AMSCs | Chronic; ASIA A and B | 4 × 108 cells | They had 12.5% improvement in ASIA. | No adverse effects | [82] |
BMMNCs | Chronic; ASIA C | 1 × 1010 cells | Showed 0% improvement in the ASIA; only showed improvement in SEP/MEP. | No adverse effects | [80] |
BMSCs | Chronic; complete injury | 120 × 106 cells | They showed an improvement in clinical aspects and in the quality of life of the patients. | No adverse effects | [83] |
Hu-NSCs | Chronic; ASIA A and B | 2 × 108 and 4 × 108 cells | They showed improvement in motor function. | No adverse effects | [84] |
NSCs | Sub-acute; ASIA A | 1.2 × 106 cells | Showed improvement in EMG electromyography. | No adverse effects | [85] |
hNSCs | ASIA A or B cervical injuries were sensorimotor complete | 1 × 105 cells in 1 mL | Patients showed moderate improvement based on the ASIA scale. | No adverse effects | [86] |
A91 Immunization Alone | Injury Models | Doses | References |
Compared with methylprednisolone, showed improved motor recovery and increase in number of rubrospinal neurons | MC | Methylprednisolone (30 mg/kg, IV) and A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [98] |
A91 immunization reduced lipid peroxidation levels in contusion model | MC | A91 (150µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [143] |
In MC or IT, showed significant anti-A91 T cell proliferation and increased IL-4 and BDNF production, which were different in SC or CT | MC, SC, IT, and CT | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [117] |
Immunization with A91 or Cop-1 reduced NO production and iNOS gene expression in rat and mouse SCI models | MC and C | A91 (150 µg, ID) and Cop-1 emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [117] |
The induction of immunological tolerance to A91 at birth resulted in substantial motor recovery and enhanced survival of rubrospinal and ventral horn neurons | MC | A91 (75 µg, ID) alone at 45 years old and another group with a booster dose (75 μg, ID) 24 h after the first dose emulsified with complete Freund’s adjuvant (0.25 mg/mL) | [125] |
Reduced apoptosis caused by SCI by decreasing Casp3 activity and TNF-α levels | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [126] |
Induced a long-term production of BDNF and NT-3, leading to improvements in motor recovery during the chronic stages | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [144] |
A91 or Cop-1 significantly reduced IL6, IL1β, and TNFα and increased IL10, IL4, and IGF-1 gene expressions in MC in contrast to SC | MC and SC | A91 (150 µg, ID) and Cop-1 (150 μg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [145] |
A91 Immunization with Other Strategies | Injury Models | Doses | References |
A91 plus GSHE induced better motor recovery and increased numbers of myelinated axons and rubrospinal neurons compared to A91 alone | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) | [146] |
A91 plus GSHE induced better motor recovery and an increase in the number of rubrospinal and ventral horn neurons when GSHE was applied immediately after or within the first 72 h after the injury | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) GSHE total dose (12 mg/kg, IP) divided into four injections (20 min and 4, 10, and 20 h) post-injury | [147] |
A91 combined with MLIF and GSHE induced a better preservation of parenchyma and axonal fibers, increased the number of motor neurons, and reduced the amount of collagen | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) GSHE total dose (12 mg/kg, IP) divided into four injections (20 min and 4, 10, and 20 h) post-injury. MLIF (4 µg) divided into four injections, immediately on injury site and then IP every 24 h | [124] |
A91 Immunization with Other Regeneration Strategies | Injury Models | Doses | References |
DCs stimulated with A91 enhanced the expression levels of BDNF and NT-3, exerting a neuroprotective effect and potentially promoting regeneration in a mouse model. | C | DCs (2 × 10 6 cells/mL) stimulated with A91 (100 mg/mL) in the medium were collected and injected IP (1 × 10 6 cells/0.3 mL) 24 h after SCI | [132] |
Compared with A91 alone, A91 in combination with SGR made it possible to modify the non-permissive microenvironment during the chronic phase, thereby offering an opportunity to enhance the motor recovery. | MC | A91 (200 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) two months after injury and SGR | [148] |
The combination of SGR, fibrin matrix, MSCs, and A91 was demonstrated to be the most effective approach for enhancing motor and sensory recoveries, preserving tissue, and increasing axonal density in acute phases | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) A mixture of MSCs (2.5 × 106 cells in 5 µL) and FG (10 µL) was grafted at the site of the injury. | [142] |
The combination of SGR, fibrin matrix, MSCs, and A91 promoted motor and electrophysiological recoveries in the chronic phase | CT | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) A mixture of MSCs (2.5 × 106 cells in 5 µL) and FG (10 µL) was grafted at the site of the injury two months after the injury. | [145] |
The combination of SGR, fibrin matrix, MSCs, and A91 modified the non-permissive microenvironment post SCI, but it was not capable of inducing an appropriate axonal regeneration or neurogenesis compared to the treatment with A91 alone | MC | A91 (150 µg, ID) emulsified with complete Freund’s adjuvant (0.5 mg/mL) A mixture of MSCs (2.5 × 106 cells in 5 µL) and FG (10 µL) was grafted at the site of the injury, two months after the injury. | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, E.; Buzoianu-Anguiano, V.; Silva-Garcia, R.; Esparza-Salazar, F.; Arriero-Cabañero, A.; Escandon, A.; Doncel-Pérez, E.; Ibarra, A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int. J. Mol. Sci. 2023, 24, 13946. https://doi.org/10.3390/ijms241813946
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. International Journal of Molecular Sciences. 2023; 24(18):13946. https://doi.org/10.3390/ijms241813946
Chicago/Turabian StyleGarcia, Elisa, Vinnitsa Buzoianu-Anguiano, Raúl Silva-Garcia, Felipe Esparza-Salazar, Alejandro Arriero-Cabañero, Adela Escandon, Ernesto Doncel-Pérez, and Antonio Ibarra. 2023. "Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update" International Journal of Molecular Sciences 24, no. 18: 13946. https://doi.org/10.3390/ijms241813946
APA StyleGarcia, E., Buzoianu-Anguiano, V., Silva-Garcia, R., Esparza-Salazar, F., Arriero-Cabañero, A., Escandon, A., Doncel-Pérez, E., & Ibarra, A. (2023). Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. International Journal of Molecular Sciences, 24(18), 13946. https://doi.org/10.3390/ijms241813946