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Abstract: This paper explores the photochemical synthesis of noble metal nanoparticles, specifically
gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis
process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2.
The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance
(ESR) spectroscopy. The main objective of this study was to investigate how the concentration of
metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the
photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic
voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size
of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations,
while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles
to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of
gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between
1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on
the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically
favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately −3.51 and
−2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to
Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately −3.459
and −2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new
photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored
using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis
of transmission electron microscopy (TEM) images.

Keywords: noble metals; gold nanoparticles; silver nanoparticles; benzophenone; photoinitiator;
photoreduction; photosynthesis

1. Introduction

Colloidal silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have garnered
significant attention in recent years due to their utilization in various fields, such as ma-
terials science, biotechnology, and organic chemistry, for their ability to act as molecular
markers in diagnostic imaging, catalysis, and other applications [1–5]. These noble metals
exhibit unique absorption properties and optical characteristics when their size is less
than 100 nm. Metal nanoparticles possess more distinct and intriguing properties than
atoms, surfaces, or macromolecular materials [6–8]. Because of their strong light scattering
capabilities, AgNPs and AuNPs can be used in optical, imaging, and sensing applications.
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Given the advantages that nanostructured metals have over their molecular counterparts, it
is logical to make use of the benefits of metal colloids produced through different synthesis
methods [9,10].

Au and Ag NPs are widely used due to their stability and superior quality factor of
localized surface plasmon resonance (LSPR) compared to other metal NPs [11,12]. The
prospect of tuning the optical properties of NPs makes them versatile for use in various
applications [13,14]. This can be achieved by changing the size, shape, or composition of
the NPs. Changing the size and shape allows the LSPR to be positioned in a narrow spectral
range, while changing the composition allows the LSPR to be positioned throughout a
broad spectral range. For example, spherical Ag and Au NPs of various sizes cover the
400–450 nm and 520–570 nm spectral ranges [15], respectively. Various synthesis meth-
ods, including physical, chemical, and photochemical, have been developed to produce
metal NPs with various sizes, shapes, compositions, and structures, with photochemical
synthesis being a particularly preferred method [16–21]. Photochemical synthesis offers
several advantages, including fewer byproducts, clean synthesis, strict irradiation con-
trol, simple and inexpensive equipment, a lower temperature, a lower overall energy
requirement to drive the reaction, and spatiotemporal control over the rate and degree of
reduction [22–28]. This method mainly depends on photoinitiators, which have a major
impact on the NPs properties.

The development of new, efficient, and safer photoinitiators is a promising avenue
for advancing the field of nanoparticle synthesis. The photoreduction of metallic salts to
metallic nanoparticles is primarily caused by the radicals produced when light interacts
with the chemical constituents of the solution. In addition to the radicals produced by
the photoinitiator, the type of photoinitiator plays a significant role in determining the
nanoparticles’ final size, shape, and distribution. Photoinitiators have been classified into
two types based on their optical behavior: (i) Type I, also known as α-cleavage, which
provides the scope for initiating radicals via bond cleavage processes upon light absorption.
(ii) Type II, which undergoes photoexcitation followed by electron or hydrogen transfer
processes and, as a result, the formation of initiating species [29–31].

One of the most common types of photoinitiators, benzoin and its derivatives are
capable of unimolecular bond cleavage upon light irradiation [29]. Ketone components are
critically important as Type II photoinitiators. For instance, benzophenone [32], thioxan-
thone [33], camphorquinone [34], etc. all show bimolecular photo-behavior in the formation
of initiating species. The photoexcitation of the photoinitiator and its excited state inter-
action with other components, called co-initiators, through various transfer processes are
crucial to the observable behavior. When compared to Type I photoinitiators, which require
high-energy, short-wavelength light to undergo bond cleavage, Type II photoinitiators are
preferable due to their lower energy requirements. Type II photoinitiators, on the other
hand, exhibit absorption characteristics at higher wavelengths and can be designed and
decorated to manipulate their optical behavior, thereby increasing their spectral sensitivity
to the visible ranges of the electromagnetic spectrum. It is cost-effective because it makes
use of low-energy lighting sources [35]. Photoinitiators have many uses beyond nanoparti-
cle production. Photoinitiators have also found applications in the biomedical field, where
they are used in various approaches such as photodynamic therapy and drug delivery
systems [36,37]. The process of polymerization in 3D printing is initiated by photoinitia-
tors [38]. Photoinitiators also polymerize monomers on surfaces in photo-induced graft
polymerization [39].

Several researchers have used Type I and Type II initiators to photochemically produce
Ag, Au, and Cu nanoparticles [26,28,40–43]. The excellent light absorption characteristics
of benzophenone (BP) and its derivatives make them one of the most widely used Type
II photoinitiators in many technologically significant UV-curing applications [44]. Ben-
zophenones are excited to the singlet excited state when exposed to UV light. Through
intersystem crossing, the singlet excited state decays into the triplet excited state. The
ketone derivatives in the triplet excited state absorb hydrogen from the hydrogen donor
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such as alcohols [45], amines [32], ethers [46], or thiols [47], leading to the formation of a
radical produced from the carbonyl compound (ketyl-type radical) and another radical
derived from the hydrogen donor [45]. These radicals reduce metal ions to produce metal
nanoparticles [48].

The ketyl radicals formed during the photoreduction of ketones are excellent reducing
agents, effectively converting Ag+ ions to Ag0. The photoreduction of benzophenone
is a reliable source of ketyl radicals; in the presence of Ag+, the mechanism is thought
to involve electron transfer by ketyl radicals. Kometani et al. [49] found that when an
aqueous solution of AgClO4, sodium dodecyl sulfate, and benzophenone was irradiated
with near-UV light, photoreduction of Ag+ ions occurred, resulting in the formation of
colloidal silver nanoparticles. Eustis et al. [50] investigated the process of producing silver
nanoparticles from benzophenone using both a laser and a mercury lamp as light sources.
These researchers also modified silica with benzophenone, which helped to create stable
silver nanoparticles using a solid-supported photosensitizer [51]. Scaiano et al. [52] also
prepared micelles of sodium dodecyl sulfate and used 1,4-cyclohexadiene as a hydrogen
donor to promote the rapid generation of ketyl radicals. Irradiating this system in the
presence of Ag+ and BP leads to the rapid and efficient formation of silver nanoparticles.
In a subsequent study, Sakamoto et al. identified the fabrication of gold nanoparticles in a
poly(vinyl alcohol) film using a two-color, two-laser irradiation with benzophenone as the
reducing agent [53]. Another study showed that AuNPs can be produced photochemically
under the irradiation of a 368 nm LED, exploiting the rarely reported nucleophilic property
of the benzophenone triplet [54]. Sakamoto et al. also found that co-reducing Au and Cu
ions in a PVA film resulted in the creation of core/shell-like Au/Cu bimetallic NPs [55]. In
their study, the PVA film containing BP, Cu(acac)2, and HAuCl4 was irradiated with UV
light. Zhao et al. [56] explored the mechanism of BP-initiated one-step photosynthesis of
silver nanoparticles in a system free of hydrogen donors. This investigation was conducted
through a combination of spectroscopic and theoretical methods. The electron donation
ability of BP triplets leads to the direct reduction of Ag+ to Ag0. In a recent study, a
combination of triethylamine and iodonium salt, which are benzophenone derivatives,
were tested as potential new photoinitiators for the rapid and efficient formation of metal
nanoparticles in an organic solvent, where silver and gold ions were reduced under light at
419 nm [32].

Thioxanthone (TX) and its derivatives are widely used as Type II photoinitiators [57].
Thioxanthone-Anthracene (TX-A) was recently used as a one-component photoreducing
agent to produce metal and metal oxide nanoparticles from metallic salts like AgNO3,
HAuCI4, and MnCI2 [58]. The AuNPs (18–25 nm) synthesized in the polymer matrix are
larger than the AuNPs (8–16 nm) synthesized in the solution with an air atmosphere. It is
crucial to mention how the atmosphere affects the size and shape of the NPs. In solution,
AgNPs in the size range of 45–53 nm can form due to endoperoxide formation in the air
atmosphere, whereas in the nitrogen atmosphere, AgNPs can grow as large as 1900 nm.
Arsu and co-workers also investigated the effect of a photoreducing agent on the size, shape,
and distribution of metallic Ag and Au nanoparticles in the presence of a one-component
Type II photoinitiator, namely 2-thioxanthone thioacetic acid dioxide [59]. The rapid
achievement of in situ formation of metallic nanoparticles was observed in both aqueous
solution and polymer matrix. The impact of the photoinitiator concentration on the size,
shape, and distribution of the nanoparticles was examined. The diameters of the AuNPs
synthesized with a photoinitiator concentration of 2 × 10−3 M are approximately 90 nm.
However, the nanoparticle size increases to 1.623 µm upon decreasing the photoinitiator
concentration. On the other hand, the observed size of AgNPs is 143.4 nm at a low
photoinitiator concentration, whereas the size of AgNPs increases to 427.2 nm upon an
increase in photoinitiator concentration.

Our paper presents the development of novel photoinitiators specifically designed for
the efficient synthesis of silver and gold nanoparticles using photochemical methods. Our
main focus is to enhance the effectiveness and safety of Ag and Au NPs production. We
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systematically investigate the impact of different concentrations of Au and Ag precursors
on the size and morphology of the resulting NPs. Through rigorous analysis, we elucidate
the significant role of precursor concentrations in controlling the size and morphology
of the NPs, and propose a comprehensive mechanistic understanding of the underlying
reaction. This research contributes to the advancement of NP synthesis techniques and
provides valuable insights into the key factors influencing their formation.

2. Results and Discussion
2.1. Light Absorption Properties of the Photoinitiators

The UV-vis absorption spectra of photoinitiators A and B, each at a concentration
of 5 × 10−4 M, in methanol are shown in Figure 1. Photoinitiator A exhibits maximum
absorption peaks at 270 nm (π-π* transition) and 324 nm (n-π* transition) in methanol, with
a bathochromic shift of 20 nm and hyposochromic shift of 6 nm, compared to the reference
compound BP (250 nm and 350 nm, respectively) [60]. It is known that transitions of BP in
the region of 250 nm are of the π-π* type. The important n-π* transitions are typically found
between 300 and 350 nm and are characterized by a low extinction coefficient due to the
spin forbidden transition [61]. In contrast, photoinitiator B exhibits a maximum absorption
wavelength at 334 nm, which is likely the n-π* transition.
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Figure 1. The UV−vis absorption spectra of the observed photoinitiators (5 × 10−4 M) in methanol.

2.2. Photolysis of Photoinitiators

To study the photolysis of the photoinitiators, the evolution of the UV-vis spectra of
their solutions in methanol is monitored under light with a wavelength of 419 nm and
different exposure times. Figures 2 and 3 show the results of this experiment. When the
photoinitiators are irradiated in methanol using a photoreactor consisting of ten LED lamps
at 419 nm with an irradiation intensity of 250 mW/cm2, it is observed that the ground-
state absorption decreased, and there were no colored photolysis products as the UV light
exposure time increased for both photoinitiators. This indicates that these photoinitiators
are not photochemically stable. In fact, the photolysis of photoinitiator B is faster than that
of photoinitiator A, which requires more time. Figure 2a shows a plot of UV absorption
versus wavelength and demonstrates the decrease in absorbance. When the irradiation
time was extended to 116 min, a decrease in absorbance at 272 and 330 nm was observed,
and it almost disappeared. In contrast, Figure 3a shows that the maximum absorbance at
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330 nm almost disappeared within 98 min. Figures 2b and 3b show that the peaks of the
absorbance follow an exponential decay. In the case of photoinitiator A, the decay time τ

is around 4406 s and 5968 s for the peaks at 330 nm and 272 nm, respectively. In the case
of photoinitiator B, the decay time τ is about 2512 s for the only observed peak at 330 nm,
which is much lower than that obtained using photoinitiator A. We can conclude that the
absorbance extinction is faster in the case of photoinitiator B.
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 21 
 

 

was observed, and it almost disappeared. In contrast, Figure 3a shows that the maximum 
absorbance at 330 nm almost disappeared within 98 min. Figures 2b and 3b show that the 
peaks of the absorbance follow an exponential decay. In the case of photoinitiator A, the 
decay time τ is around 4406 s and 5968 s for the peaks at 330 nm and 272 nm, respectively. 
In the case of photoinitiator B, the decay time τ is about 2512 s for the only observed peak 
at 330 nm, which is much lower than that obtained using photoinitiator A. We can con-
clude that the absorbance extinction is faster in the case of photoinitiator B. 

 
 

(a) (b) 

Figure 2. (a) UV-vis spectra of the steady-state photolysis of photoinitiator A were recorded at dif-
ferent irradiation times  upon exposure to the LED lamp at 419 nm with an irradiation intensity of 
250 mW/cm2. (b) The maximum absorbance peaks as a function of the inverse of the irradiation time 
(the solid lines are the exponential decay fit of the measured absorbance peak data at wavelengths 
of 330 nm and 272 nm). 

  
(a) (b) 

Figure 3. (a) UV-vis spectra of the steady-state photolysis of photoinitiator B were recorded at dif-
ferent irradiation times  upon exposure to the LED lamp at 419 nm with an irradiation intensity of 
250 mW/cm2. (b) The maximum absorbance peak as a function of the inverse of the irradiation time 
(the solid line is the exponential decay fit of the measured absorbance peak data at a wavelength of 
330 nm). 

According to previous findings for other carboxylic acid derivatives of benzophe-
none, the proposed mechanism for the initiation of photoinitiator A is based on intermo-
lecular hydrogen abstraction and decarboxylation (see Scheme 1). The involvement of a 

Figure 3. (a) UV-vis spectra of the steady-state photolysis of photoinitiator B were recorded at
different irradiation times upon exposure to the LED lamp at 419 nm with an irradiation intensity of
250 mW/cm2. (b) The maximum absorbance peak as a function of the inverse of the irradiation time
(the solid line is the exponential decay fit of the measured absorbance peak data at a wavelength of
330 nm).



Int. J. Mol. Sci. 2023, 24, 14018 6 of 20

According to previous findings for other carboxylic acid derivatives of benzophenone,
the proposed mechanism for the initiation of photoinitiator A is based on intermolecular
hydrogen abstraction and decarboxylation (see Scheme 1). The involvement of a decar-
boxylation process during the photolysis of A was confirmed by detecting the presence
of CO2 using a procedure described in the literature [62]. A 1 mL solution of photoini-
tiator A in DMF (5 mM) was placed in a Pyrex tube, which was connected to another
tube containing an aqueous solution of Na2CO3 (0.67 mM) and a drop of phenolphthalein
solution (0.025 mM). After 3 h of irradiation, the pink color of the phenolphthalein solution
disappeared, indicating the formation of CO2.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 21 
 

 

decarboxylation process during the photolysis of A was confirmed by detecting the pres-
ence of CO2 using a procedure described in the literature [62]. A 1 mL solution of photoin-
itiator A in DMF (5 mM) was placed in a Pyrex tube, which was connected to another tube 
containing an aqueous solution of Na2CO3 (0.67 mM) and a drop of phenolphthalein so-
lution (0.025 mM). After 3 h of irradiation, the pink color of the phenolphthalein solution 
disappeared, indicating the formation of CO2. 

It has been demonstrated that the excited state of a photoinitiator can abstract hydro-
gen from the ground state of another molecule, resulting in the generation of an alkyl 
radical through photodecarboxylation. Additionally, it has been shown that self-quench-
ing from the triplet state can lead to the formation of initiating radicals during the decar-
boxylation process for this type of benzophenone derivative. 

 
Scheme 1. Possible photoinitiated radical mechanism of photoinitiator A. 

The ability of both photoinitiators A and B to generate radical species under light 
irradiation was analyzed through ESR spectroscopy. In Figure 4, the acquired ESR spectra 
after 100 s of light irradiation at 405 nm are shown. The simulation of both spectra led to 
the following hyperfine coupling constants, (hfc) aN = 13.5 G and aH = 1.8 G, which are 
characteristic of oxygen-centered radicals, typically the 0 °C ones. The production of free 
radicals for photoinitiators A and B upon light irradiation was evident, but the chemical 
mechanism for photoinitiator B remains unclear in terms of the yield and the nature of the 
radical center. 

3450 3460 3470 3480 3490 3500 3510 3520

 

 

Compound BP1
 Experimental
 Simulated

Magnetic field (G)
3450 3460 3470 3480 3490 3500 3510 3520

Photoinitiator A
Experimental
Simulateted

Magnetic field (G)

3450 3460 3470 3480 3490 3500 3510 3520

 

 

Compound BP2
 Experimental
 Simulated

Magnetic field (G)
3450 3460 3470 3480 3490 3500 3510 3520

Photoinitiator B
Experimental
Simulateted

Magnetic field (G)

Figure 4. ESR spectra for photoinitiators A and B in tert-butylbenzene nitrogen saturated solution; 
(----) experimental; (----) simulated. 

Scheme 1. Possible photoinitiated radical mechanism of photoinitiator A.

It has been demonstrated that the excited state of a photoinitiator can abstract hydro-
gen from the ground state of another molecule, resulting in the generation of an alkyl radical
through photodecarboxylation. Additionally, it has been shown that self-quenching from
the triplet state can lead to the formation of initiating radicals during the decarboxylation
process for this type of benzophenone derivative.

The ability of both photoinitiators A and B to generate radical species under light
irradiation was analyzed through ESR spectroscopy. In Figure 4, the acquired ESR spectra
after 100 s of light irradiation at 405 nm are shown. The simulation of both spectra led to
the following hyperfine coupling constants, (hfc) aN = 13.5 G and aH = 1.8 G, which are
characteristic of oxygen-centered radicals, typically the 0 ◦C ones. The production of free
radicals for photoinitiators A and B upon light irradiation was evident, but the chemical
mechanism for photoinitiator B remains unclear in terms of the yield and the nature of the
radical center.
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2.3. Photoinitiators Oxidation Process

The oxidation potentials (Eox) of photoinitiators A and B were determined using cyclic
voltammetry (see Figure 5). The excited state energies (E∗) were obtained from the intersec-
tion of the absorption and luminescence spectra (see Figure S3). These values are presented
in Table 1. The initial step in this work is to understand the thermodynamic formation of
nanoparticles using photoinitiators as reducing agents. According to Newman et al. [63],
the reduction potential of HAuCl4 to Au0 was found to be 0.854 V. Moreover, the reduction
potential of Ag+/Ag was found to be 0.799 V by Kornweitz et al. [10]. The free energy
change (∆G) for the photoproduction of NPs was evaluated using Equation (1). We find
that the photoproduction of AuNPs is shown to be thermodynamically favorable. The
reduction of HAuCl4 to Au0 had a ∆G value of approximately −3.514 and −2.964 eV for
photoinitiators A and B, respectively, indicating that the process was favorable (as indicated
in Table 1). When exposed to UV light, photoinitiators are excited to the singlet excited
state. This state then decays into the triplet excited state through intersystem crossing. In
the triplet excited state, the benzophenone undergoes hydrogen abstraction to generate the
ketyl radical, which reduces Au+3 to Au+2. Au+2 is unstable and can be reduced further by
the radical to Au+1 and then to Au0, leading to the formation of nanoparticles [44]. On the
other hand, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically
feasible, with ∆G values of approximately −3.459 and −2.909 eV for photoinitiators A and
B, respectively (Table 1). Ketyl radicals, produced in the photoreduction of ketones such as
benzophenone for photoinitiator A, are highly potent reducing agents and can effectively
convert Ag+ to Ag0 [52].
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Table 1. Excited state energies E∗ and oxidation potentials Eox for photoinitiators, and the change in
the free energy ∆G for the interaction.

Photoinitiator Eox (V) E* (eV) ∆GAu (ev) ∆GAg (ev)

A 0.82 3.48 −3.514 −3.459
B 0.91 3.02 −2.964 −2.909

2.4. Photoproduction of Metal NPs

The new photoinitiators A and B do not promote a thermal reduction of gold III and
silver ion. It was tested under 50 and 80 ◦C in dark conditions using the weight percentages
1, 3, and 5 wt%. These solutions were stirred for a long time (around 50 min), and it does not
affect the color of the samples or create a SPR peak. The last one indicates that the thermal
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reduction does not occur. For this reason, it was interesting to study the photochemical
reduction of gold III and silver ion by the new photoinitiators A and B.

2.4.1. Photoproduction of Au Nanoparticles

Gold nanoparticles were synthesized via photoreduction, which was repeated using
photoinitiators A and B. HAuCl4 solutions at three different concentrations (1, 3, and
5 wt%) with the photoinitiators were exposed to a 419 nm LED at 250 mW/cm2 for a certain
period of time to study the effect of Au+3 concentration on the production of Au0. Upon
irradiation, the transparent solutions turned purple, indicating AuNP production. AuNP
formation was monitored with UV-vis spectroscopy. The obtained solution, when left
at room temperature for 7 days, maintains its transparency without precipitating. These
findings suggest that photoinitiators A and B behave as reductants and stabilizers and
selectively produce AuNP photoirradiation.

For the AuA1 (1 wt%) solution in the presence of photoinitiator A, AuNP synthesis
took approximately 40 min. Surface plasmon resonance (SPR) appeared after 60 s of
irradiation at 541–579 nm, corresponding to AuNPs averaging 3.45 ± 0.20 nm. Increasing
absorbance over time showed ongoing AuNP growth (see Figure S4).

By increasing the concentration of HAuCl4 to 3 wt% (AuA2), we noticed that the
SPR remained constant while increasing the absorbance intensity peak versus irradiation
time during AuNPs synthesis. The SPR was obtained at a wavelength of 550 nm and with
particle sizes of about (3.38 ± 0.20) nm, as shown in Figure S4.

In the AuA3 solution (5 wt%), we observed that the wavelength had an oscillatory shift,
and an increasing absorbance intensity peak versus irradiation time was also observed. The
SPR is obtained at the wavelength range 553–567 nm, and AuNPs have a mean diameter of
about (2.53 ± 0.20) nm (see Figure 6).
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HAuCl4 (5 wt%) with photoinitiator A; corresponding TEM images of AuNPs with their respective
size distributions.

During this study, we noticed that the concentration of (HAuCl4) was found to affect
the absorption of the AuNPs, as the absorption maximum (λmax) showed a hypsochromic
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shift when the concentration of HAuCl4 was varied from 1 wt% to 5 wt%. The proposed
reaction mechanism is illustrated in Scheme 2(1).
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The synthesis of gold nanoparticles was also studied using photoinitiator B with
varying concentrations of HAuCl4. For 1 wt% (AuB1), a wavelength blue shift and an
increasing absorbance intensity peak versus irradiation time during AuNPs synthesis were
noticed. The surface plasmon resonance (SPR) manifested after 360 s of irradiation time at a
wavelength range of 533–541 nm, and the obtained AuNPs have a mean diameter of about
(3.15 ± 0.20) nm (see Figure S5). For the concentration of 3 wt% of gold chloride added to
the photoinitiator B (AuB2), it was observed that the wavelength remained constant while
increasing the absorbance intensity peak versus irradiation time during AuNPs synthesis.
By contrast, surface plasmon resonance (SPR) was observed after 60 s of irradiation time at a
wavelength of 539 nm, as depicted in Figure S5. The obtained AuNPs have a mean diameter
of about (3.80 ± 0.20) nm, which is comparable with the 1 wt% of HAuCl4. Figure 7 shows
the photoreduction of gold nanoparticles using 5 wt% of HAuCl4 (AuB3). It was noticed
that by using this concentration the surface plasmon resonance (SPR) manifested after 240 s
of irradiation time at a wavelength range of 546–550 nm, and the obtained AuNPs have a
mean diameter of about (2.75 ± 0.20) nm, which is comparatively smaller than the previous
concentrations. The results show that the concentration of HAuCl4 had an effect on the
absorption of the AuNPs: the absorption increased as the concentration increased.

In order to understand the photoreduction mechanism of gold(III) by photoinitiator B
for the synthesis of AuNPs, we carried out an investigation into the effect of various pH
values in both acidic and basic environments (see Section 3.8). Our results suggest that the
formation of AuNPs in the photoreduction process with photoinitiator B follows a nucle-
ation/growth mechanism [64] (see Scheme 3). The coordination of photoinitiator B with
Au+3Cl4− leads to the formation of a photoinitiator B–Au+3Cl2− complex (Scheme 3(1)),
which was confirmed with the absorption spectra. The absorption spectra show that
methanol containing 3 wt% gold(III) chloride exhibits a ligand-to-metal charge transfer
(LMCT) band at 325 nm (green line in Figure 8a). After 16 min of irradiation, the appearance
of a band at 298 nm (purple line) confirmed the formation of the photoinitiator B–Au+3Cl2
complex. Irradiation of the photoinitiator B–Au+3Cl2 complex results in a decrease in the
LMCT band and the appearance of the SPR band of AuNPs. The photoinitiator B anion
can be adsorbed onto the surface of Au0 (Scheme 3(2)), acting as a surface stabilizer [65].
The negative charge of the anions suppresses the aggregation of AuNPs due to electrostatic
repulsion [65,66]. As illustrated in Figure 8b, the SPR band of the solution increased at pH
6 and 12. However, at pH 2, photoinitiator B retains its molecular form, indicating that
it has not undergone deprotonation. Consequently, a complex is not formed between the
compound and gold(III).
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Figure 8. (a) The absorption spectrum of gold nanoparticles obtained from photoreduction of HAuCl4
with photoinitiator B; (b) change in SPR absorbance of water containing HAuCl4 and photoinitiator
B at different pH under 419 nm photoirradiation at 25 ◦C.

The Au+3 absorbance calculations revealed that when using photoinitiator A, the rate
of conversion of gold III to gold nanoparticles increases as the concentration is increased.
At 1 wt%, the conversion rate is 31%, whereas at 5 wt%, the conversion rate increases to
71%. It was noted that the rate of conversion of Au+3 to Au0 using photoinitiator B did not
increase with increasing concentration. Instead, it remained constant within the range of
74% (see Table 2).

Table 2. Conversion percentage of Au+3 to Au0.

No. A0 At Conversion (A0 − At/A0)

AuA1 1.550 1.062 31%
AuA2 1.245 0.751 39%
AuA3 3.713 1.070 71%
AuB1 3.780 0.976 74%
AuB2 3.800 1.100 71%
AuB3 3.900 1.010 74%

2.4.2. Photoproduction of Ag Nanoparticles

Using different concentrations of silver salt (AgNO3) as a precursor in methanol and
photoinitiators as reducing agents, silver ions were photoreduced to silver nanoparticles
(AgNPs) in this experiment (see Section 3.7). For a certain period of time, the solution was
exposed to an LED with a wavelength of 419 nm and an intensity of 250 (mW/cm2). UV-vis
absorption spectroscopy was used to keep track of the synthesis of AgNPs. After being
exposed to radiation, the solution changed from being clear to orange, showing that silver
ions had been successfully reduced to AgNPs. This investigation was conducted with the
two photoinitiators to create silver nanoparticles. The effect of silver nitrate concentration
on the production of AgNPs was evaluated using three different concentrations of silver
nitrate (1, 3, and 5 wt%).

The growth of AgNPs using the ketyl radical of benzophenone derivate (photoinitiator
A) was efficiently achieved within approximately 4 min. The first significant SPR absorption
of the AgNPs at different concentrations occurs after 2 min of irradiation time at 422–430 nm.
This was followed by sublinear growth of the surface plasmon absorption as a function
of time (Figure 9). Moreover, the absorption spectra show increased absorbance intensity
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peaks during the synthesis of AgNPs, which indicates an increase in the concentration of
AgNPs [67].
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At low concentrations, the appearance of surface plasmon resonance (SPR) was ob-
served following an irradiation time of 120 s, within the wavelength range of 419–438 nm
(see Figure S6). The AgNPs acquired exhibit an average diameter of approximately
(2.30 ± 0.20) nm. When the concentration is increased to 3 wt%, we notice that the SPR
peak appears at 422–430 nm after 60 s of irradiation time, and the obtained AgNPs possess
an average diameter of approximately (2.90 ± 0.20) nm. It is observed that the nanoparticle
sizes of 1 wt% and 3 wt% were similar; however, at elevated concentrations of 5 wt%,
there was a discernible increase in size due to the formation of aggregates. As a result,
the observation SPR was at 435–426 nm and the average size of the collected AgNPs was
(16 ± 0.20) nm, as shown in Figure 9. The proposed reaction mechanism is illustrated in
Scheme 2(2).

The synthesis of silver nanoparticles (AgNPs) using photoinitiator B at different
concentrations was observed to exhibit a characteristic surface plasmon resonance (SPR) at
wavelengths ranging from 419 to 435 nm, which increased with irradiation time from 0 to
4 min, indicating continued generation of AgNPs (Figure 10). The concentration of silver
nitrate (AgNO3) was found to affect the absorption of the AgNPs versus irradiation time,
as shown in Figure S7. The SPR’s absorption spectra revealed a relationship between the
redshift wavelength and the elevated peak in absorbance intensity during the production
of AgNPs. Notably, a faster onset of SPR growth was observed in samples with lower
AgNO3 concentrations (1 wt%) compared to higher concentrations (3 wt% and 5 wt%). TEM
analysis of the nanoparticles further revealed an average size range of 1–18 nm. Specifically,
at 1 wt% concentration, the appearance of SPR was observed after 60 s of irradiation
time at a wavelength range of 409–430 nm with an average diameter of (2.00 ± 0.20) nm.
Increasing the concentration to 3 wt% showed an SPR band after 120 s of irradiation time
at a wavelength range of 420–428 nm, and the obtained AgNPs had a mean diameter
of (5.10 ± 0.20) nm, as confirmed with TEM images in Figure S7 (AgB1 and AgB2). At
high concentrations, a redshift was observed at a wavelength of 433 nm, with an increase
in nanoparticle size to (14.00 ± 0.20) nm, as depicted in Figure 10 (AgB3). Furthermore,
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photoinitiator B exhibited aggregations at high concentrations, similar to the behavior
observed with photoinitiator A.
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Figure 10. The absorption spectrum of silver nanoparticles (AgB3) obtained from photoreduction of
AgNO3 (5 wt%) with photoinitiator B; corresponding TEM images of AgNPs with their respective
size distributions.

As we discussed earlier, both acidic and basic media pH (2, 6, and 12) were tested to
see how pH affects the photoreduction process of silver nitrate by photoinitiator B during
AgNPs synthesis (see Section 3.8). Figure 11a demonstrates a similar result to that observed
with AuNPs, where there is a decrease in the LMCT band and the appearance of the SPR
band of AgNPs at 340 nm. Moreover, the solution’s SPR band exhibited an increase at
pH levels of 6 and 12, as depicted in Figure 11b. At a pH of 2, it can be observed that
photoinitiator B remains in its molecular form, suggesting that deprotonation has not
occurred. As a result, the formation of a complex between the compound and silver ion
does not occur.
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When comparing the growth of AgNPs obtained using the two photoinitiators under
the same conditions, it was observed that both photoinitiators offer rapid particle genera-
tion. Furthermore, the results indicate that the average particle size of silver nanoparticles
exhibited an increase with increasing concentrations of silver nitrate for both photoinitia-
tors, as determined with the measurement (see Figure 12a). Similar observations were
reported by Goh et al. [68] and Bicer and Sisman [69] in their previous works, indicating
that reducing the concentration of metal salt can result in the production of smaller particles.
According to theoretical considerations, the rate of conversion of ions to metal particles
in a reaction is dependent on the initial concentration of metal ions [70]. For Figure 12b
concerning AuNPs, the reduction in size may have its origin in the stripping of Au aggre-
gates by chlorine after a certain critical concentration of HAuCl4. Choosing a different Au
precursor is preferable. A high SPR value is observed when compared to the nanoparticle
size. It is assumed that the observed phenomenon could be attributed to the influence of
the solvent used [71].
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3. Materials and Methods
3.1. Materials

The structures of the photoinitiators are shown in Scheme 4, and the synthetic process
for photoinitiator B can be found in the supplementary material [Section 1] [72]. Moreover,
Figures S1 and S2 illustrate the 1H NMR and 13C NMR spectra of photoinitiator B, respec-
tively. Photoinitiator A was synthesized in a previous study [73]. Silver nitrate (AgNO3,
99.99%), gold (III) chloride hydrate (HAuCl4, 99.99%) and methanol are purchased from
Sigma Aldrich (Burlington, MA, USA).

3.2. Irradiation Source

The prepared solution was placed in a pyrex tube having a quartz window ((i.d.)
9 mm), and irradiated via an LED lamp at 419 nm with an intensity of 250 mW/cm2 in
standard conditions.

3.3. Absorbance Measurements

The absorption properties of the photoinitiators evolution was followed using a
Shimadzu UV-1800 spectrophotometer (Shimadzu, Duisburg, Germany).
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3.4. ESR Experiments

The ESR spectra were recorded at room temperature using an X band spectrometer
(EMXPlus, Bruker, Germany, Karlsruhe). Chemicals are dissolved in tert-butyl benzene,
poured in a quartz EPR tube and adding N-tert-butyl-alpha-phenylnitrone (PBN) as a
spin trap agent, and then, nitrogen was saturated via subsequent gas bubbling. Samples
are irradiated inside the EPR cavity using LED emission at 405 nm (Thorlabs M405LP1).
Spectra are simulated using the Winsim v.0.96 software.

3.5. Redox Potentials

The oxidation potential (Eox) in acetonitrile solution for the photoinitiators A and B
were estimated using cyclic voltammetry with tetrabutylammonium hexafluorophosphate
0.1 M (TBAP) as a supporting electrolyte. The potential of the working electrode was
gauged against the Ag/AgCl reference electrode (E

◦
= 0.203 V versus standard hydrogen

electrode (SHE)), a pure Pt wire was utilized as the counter electrode, and a platinum rod
with a 0.2 cm2 surface area was utilized as the working electrode. The free energy change
∆Get for an electron transfer reaction is calculated using the classic Rehm–Weller equation
(Equation (1)).

∆Get = Eox − Ered − E∗ + C (1)

where Eox, Ered, E∗, and C are the oxidation potential of the electron donor, the reduction
potential of the electron acceptor, the excited state energy level, and the Coulombic term for
the initially formed ion pair, respectively [74]. It often occurs that C is neglected in polar
solvents, which is the case here.

3.6. Fluorescence Experiments

A JASCO FP-8200 spectrometer (JASCO, Riyadh, Saudi Arabia) was used to deter-
mine the fluorescence properties of the photoinitiators A and B in methanol, each at a
concentration of 1 × 10−4 M.

3.7. Photoproduction of Gold/Silver Nanoparticles by Photoinitiators in Methanol Solution

The gold chloride and silver nitrate were photoreduced to nanoparticle sizes using two
photoinitiator systems in a methanol solution. Both gold chloride and silver nitrate were
dissolved in methanol in all samples. This work was studied with varying concentrations
of HAuCl4 and AgNO3, as indicated in Table 3. The concentration of both photoinitiators
solutions was fixed at (1 × 10−4 M) for all samples. The solution contained 1 mL of the
metal salt solution and 2 mL of the photoinitiator. The solution was exposed to an LED
with a wavelength of 419 nm and an intensity of 250 (mW/cm2) for a certain period of
time. The evolution of the SPR nanoparticles was continuously followed using a Shimadzu
UV-1800 spectrophotometer (Shimadzu, Duisburg, Germany).
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Table 3. Preparation of various nanoparticles solution.

No. Photoinitiator Metal Salt (wt%) Irradiation Time (min)

AuA1 A HAuCl4 (1 wt%) 40
AuA2 A HAuCl4 (3 wt%) 40
AuA3 A HAuCl4 (5 wt%) 40
AuB1 B HAuCl4 (1 wt%) 16
AuB2 B HAuCl4 (3 wt%) 16
AuB3 B HAuCl4 (5 wt%) 16
AgA1 A AgNO3 (1 wt%) 5
AgA2 A AgNO3 (3 wt%) 5
AgA3 A AgNO3 (5 wt%) 5
AgB1 B AgNO3 (1 wt%) 4
AgB2 B AgNO3 (3 wt%) 4
AgB3 B AgNO3 (5 wt%) 4

3.8. Photoproduction of Gold/Silver Nanoparticles by Photoinitiators B at Different pH Values

To understand the photoreduction mechanism of gold(III) by photoinitiator B for the
production of AuNPs, the effects of different pH values were investigated in both acidic and
basic media. The buffer solutions were prepared at different pH values: 2, 6 and 12. The
samples were prepared by combining 1 mL of 3 wt% gold(III) with 2 mL of photoinitiator
B (1 × 10−4 M) in methanol. The reaction was carried out at 25 ◦C under irradiation with
a wavelength of 419 nm and an intensity of 250 mW/cm2. The experiment was repeated
using silver nitrate instead of gold.

3.9. Transmission Electron Microscopy (TEM)

The morphology and particle size of the metal nanoparticles are examined via HR-TEM
(JEOL, JEM-2100, Tokyo, Japan).

4. Conclusions

Photoinitiators A and B have proven to be effective for the synthesis of gold (AuNPs)
and silver nanoparticles (AgNPs). The reactions can be completed rapidly within a few
minutes under LED exposure. Our study suggests that the initiation mechanism of pho-
toinitiator A involves intermolecular hydrogen abstraction followed by decarboxylation.
Notably, ketyl radicals exhibited superior performance as reducing agents for HAuCl4 and
AgNO3 compared to other radicals. The highly negative ∆G values (−3.514 eV for AuNPs
and −3.459 eV for AgNPs) indicate the favorable nature of the production process using
photoinitiator A.

On the other hand, the formation mechanism of nanoparticles in the photoprocess
using photoinitiator B can be attributed to nucleation and growth processes. Photoinitiator
B acts both as a reductant for Au3+ under irradiation and a surface stabilizer for the formed
AuNPs. It is worth mentioning that photoinitiator B forms complexes with gold and
silver at pH 6 and 12, as evidenced by the appearance of absorption bands at 298 nm and
325 nm, respectively.

The findings show that the concentration of AgNO3 had a significant impact on the
size of silver nanoparticles. The diameters of the particles varied between 1 and 5 nm
at 1 wt% and 3 wt% concentrations, whereas a rise in concentration to 5 wt% resulted
in an increase in the diameter of silver nanoparticles to 16 nm. The average diameters
of gold nanoparticles synthesized using both photoinitiators at different concentrations
ranged between 1 and 4 nm. The results indicate that variations in the concentration of
HAuCl4 have negligible effects on the size of gold nanoparticles in both photoinitiators.
Additionally, at high concentrations of metal salts, aggregation was observed for both
AgNPs and AuNPs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241814018/s1.
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