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Abstract: The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays
crucial roles in stress response and growth. However, little is known about Pum in plants. In this
study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although
each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the
gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-
elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except
for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression
profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2,
ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4,
7, and 13 exhibited dramatically high expression levels during seed development. The study not
only contributes valuable information for further validating the functions of ZmPum genes but also
provides insights for improvement and enhancing maize yield.

Keywords: maize; Pumilio RNA-binding proteins; gene expression; kernel development

1. Introduction

Post-transcriptional regulation of gene expression employs a wide range of RNA-
binding proteins (RBPs) and plays crucial roles in finely controlling protein synthesis in
a spatial and temporal manner. RBPs contribute to regulating RNA processing, mRNA
transport, stability, and translation by targeting specific 3′-untranslated regions (UTRs) of
target mRNA [1–3]. Additionally, RBPs can collaborate with ribosomal protein binding
sites within the 5′-UTR or microRNAs (miRNAs) to regulate mRNA metabolism [4,5]. The
Pumilio (Pum) RNA-binding proteins, known as Puf proteins, are a kind of RBP and are
well characterized in animals and fungi [6,7], but little is known about the Pum family
in plants.

The Pum proteins exhibit high conservation of the Pumilio Homology Domain (Pum-
HD) in various organisms [8–10]. The Pum-HD possesses a unique crescent-shaped struc-
ture and is necessary for RNA binding [11–13]. Typically, this domain consists of imperfect
tandem Puf repeats forming as α-helices each containing approximately 36 amino acids,
and allows Pum proteins specifically to interact with mRNA to regulate post-transcription
processes [11,14–16]. Within each Puf repeat, the second α-helix serves as the primary
binding interface between the Pum and the target RNA [17]. The Puf repeat binds to a
single RNA base through hydrogen bonds, van der Waals interactions, and base stacking.
The binding of Pum and RNA can be facilitated by three conserved amino acid side chains
within each repeat, which allows Pum proteins to selectively bind to specific mRNA se-
quences [8]. Generally, Pum proteins are recognized by the conserved UGUA core motif
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situated within the 3′-UTR of target mRNA [18,19]. Interestingly, it was also found that
Pum proteins interact with other proteins to inhibit translation or the initiation of mRNA
decay processes [17]. The human Pum interacts with NORAD (non-coding RNA activated
by DNA damage) to preserve genomic stability [20]. The PUF5p forms a complex with
Pop2p, a component of the deadenylase complex, to regulate mRNA decay in yeast [21].
Specifically, Pum proteins stimulate deadenylation and decapping to accelerate mRNA
turnover and reduce translation efficiency [22].

Although Pum proteins show high conservation in the Pum-HD sequence, there is
a high diversity of Pum gene members in plants. For example, there are 2, 2, 2, 6, 10,
and 11 Pum genes in the genome of Drosophila melanogaster, human, mouse, Saccharomyces
cerevisiae, Trypanosoma cruzi, and Caenorhabditis elegans, respectively [8,11,23,24]. On the
contrary, there are 31, 26, 28, 26, 22, and 20 Pum genes in the genome of Arabidopsis lyrata,
Arabidopsis thaliana, Malus domestica, Glycine max, Oryza sativa ssp. Indica, and Oryza sativa
ssp. Japonica, respectively [17,24,25]. This suggests that Pum proteins are involved in a wide
range of post-transcriptional/translational regulations to control growth and development
and cope with environmental stresses in plants. However, little is known about the roles of
Pum genes in plants. In Arabidopsis, AtPum5 is involved in cucumber mosaic virus (CMV)
and abiotic stress response and negatively regulates salt and drought tolerance by binding
to 3′-UTR of the abiotic stress-responsive genes containing the Pum RNA-binding motifs at
the 3′-UTR [26,27]. AtPum9 binds to target transcripts to trigger mRNA degradation via
Pum-HD at the C-terminal and interacts with DCP2 (the catalytic subunit of the decapping
complex) to positively regulate heat stress and seed dormancy mediated by REDUCED
DORMANCY5 encoding a PP2C phosphatase [28,29]. AtPum23, a nuclear-localized protein,
is required for normal plant growth including leaf development and organ polarity, as
well as being involved in salt response mediated by ABA signaling via regulating rRNA
processing [30–32]. AtPum24 is an atypical Pum protein and reduces mRNA stability of the
BTB/POZMATH (BPM) gene family by directly binding to their 3′-UTR to regulate plant
development, seed maturation, and starch, protein, and oil biosynthesis [33,34]. To date,
the Pum gene family has only been identified genome-wide in Arabidopsis and rice [17]. In
addition, the roles of Pum genes in plants are largely unknown.

Maize is one of the most important crops and plays a crucial role in ensuring food
and economic security [35]. The primary components including starch, protein, and oil
are stored within maize seeds, which account for approximately 90% of the total dry seed
weight. The content and composition of these components in maize kernels have a sig-
nificant impact on their quality [36]. Hence, the maize kernel is a valuable resource for
human consumption, animal feed, and bioenergy applications. In this study, we focused on
comprehensively exploring the maize Pum gene family. We identified 19 ZmPum genes and
investigated their physicochemical properties, phylogenetic relationships, chromosome
localization, gene and protein-conserved domain structure, cis-acting elements, and expres-
sion patterns in kernel development. The main objective is to provide valuable insights
into the underlying role of ZmPum genes in regulating seed development in maize and
contribute to the analysis of the Pum family in plants.

2. Results
2.1. The ZmPum Family in Maize

In the maize genome, a total of 19 candidate genes encoding Pum proteins were
identified and defined as ZmPum1 to ZmPum19. The coding sequence of the ZmPum gene
was 1191 to 3009 bp in length, encoding 396 to 1002 amino acids (aa), with a molecular
weight (MW) of 42.49 to 109.02 kDa. The isoelectric points (PIs) of ZmPum1, 2, 3, 5, 7, 13,
14, and 18 proteins were more than 7.00, the other eleven ZmPum proteins had PIs ranging
from 5.70 to 6.73. The instable indices of ZmPum1, 6, 17, 18, and 19 were less than 40.00,
while others were more than 40.00. All ZmPum proteins were hydrophilic proteins with a
grand average of hydropathicity (GRAVY) < 0. Fourteen ZmPum proteins were predicted
to show nuclear localization, only ZmPum1, 2, and 13 showed cytoplasm localization,
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ZmPum6 showed vacuole localization, and ZmPum18 showed chloroplast localization
(Table 1). The diversity of properties of ZmPum proteins may imply their different roles.

Table 1. The ZmPum members in maize.

Gene Name ID Length (bp) a Length (aa) b MW (kDa) PI II GRAVY Local c

ZmPum1 Zm00001eb006950 2085 694 76.22 8.12 39.11 −0.219 C
ZmPum2 Zm00001eb008320 1191 396 44.95 8.04 53.99 −0.002 C
ZmPum3 Zm00001eb028000 2517 838 92.82 9.32 42.50 −0.548 N
ZmPum4 Zm00001eb035700 2985 994 108.97 6.02 47.08 −0.470 N
ZmPum5 Zm00001eb063600 1149 382 42.49 9.37 42.96 −0.245 N
ZmPum6 Zm00001eb087930 2328 775 86.48 5.70 39.96 −0.420 V
ZmPum7 Zm00001eb098710 1419 472 53.14 7.63 66.34 −0.202 N
ZmPum8 Zm00001eb174630 2961 986 108.05 6.00 49.57 −0.476 N
ZmPum9 Zm00001eb191290 3009 1002 109.02 6.16 50.92 −0.450 N

ZmPum10 Zm00001eb200460 2265 754 83.93 6.43 40.51 −0.479 N
ZmPum11 Zm00001eb259050 3003 1000 108.94 6.36 50.17 −0.459 N
ZmPum12 Zm00001eb266980 2616 871 94.92 6.12 54.14 −0.381 N
ZmPum13 Zm00001eb301130 1614 537 58.77 8.58 49.65 −0.165 C
ZmPum14 Zm00001eb311340 1443 480 54.23 8.16 62.40 −0.248 N
ZmPum15 Zm00001eb355970 2622 873 95.18 6.08 52.47 −0.390 N
ZmPum16 Zm00001eb401310 2031 676 74.14 6.73 46.54 −0.182 N
ZmPum17 Zm00001eb408690 2058 685 76.04 6.15 36.44 −0.336 N
ZmPum18 Zm00001eb409750 1440 479 52.63 8.33 31.04 −0.037 Ch
ZmPum19 Zm00001eb419690 2343 780 87.27 5.92 39.25 −0.403 N

a The CDS length of each ZmPum gene. b The amino acid length of each ZmPum protein. c Subcellular localization
of each ZmPum protein. MW: molecular weight. PI: isoelectric point. II: instable index. GRAVY: grand average of
hydropathicity. C: cytoplast. N: nuclear. V: vacuole. Ch: chloroplast.

The phylogenetic analysis showed that maize ZmPum members were clustered into
four subclades within the phylogenetic tree based on the similarity of their amino acid
sequences with AtPum proteins. ZmPum3, 4, 6, 8, 9, 11, 12, 13, 15, and 19 were grouped in
subclade I. ZmPum1, 10, 16, 17, and 18 were clustered into clade II. Two (ZmPum7 and
14) and three (ZmPum2, 5, and 24) of them were grouped in clades III and IV, respectively
(Figure 1).

2.2. Protein Architectures of ZmPum

As shown in Figure 2, six conserved motifs were discovered in ZmPum proteins
and named motifs 1–6. The majority of ZmPum proteins contained motifs 1, 2, and 3,
excluding ZmPum3 and ZmPum5. Among them, motifs 1, 2, 3, 4, and 5 contribute to
the composition of Pum domains. Conserved domain analysis showed that the ZmPum
proteins could be divided into two groups: typical Pum and atypical Pum. ZmPum3, 5, 7,
and 14 belonged to one subgroup and were atypical Pum families because they possessed
few Pum domains. The other 14 ZmPum members were grouped into another clade and
were typical Pum proteins.

Three-dimensional structures of 19 ZmPum proteins were predicated using structure-
based analysis in the Ensembl database. All ZmPum proteins contained the conserved
Pum domain with a different number of α-helix repeats. The ZmPum proteins from the
same subgroup exhibited a similar three-dimensional structure. However, the members
from subclade I were atypical Pum proteins containing fewer imperfect Pum domains.
The ZmPum members from group II, except ZmPum16, had eight Pum domains at the
C-terminal region (Figures 2 and 3).
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2.3. Chromosomal Location and Gene Duplication of ZmPum

The information on chromosome location of ZmPum genes was obtained from the
maizeGDB database and used for visualization of 19 ZmPum mapping to the maize genome
(Figure 4). In detail, there was no ZmPum gene on chromosome 3. Other ZmPum genes were
unevenly distributed on the other 9 maize chromosomes. There were five, three, three, two,
and two ZmPum genes on chromosomes 1 (ZmPum1, 2, 3, 4, and 5), 4 (ZmPum8, 9, and 10),
10 (ZmPum17, 18, and 19), 2 (ZmPum6 and 7), and 7 (ZmPum13 and 14), respectively. The
ZmPum11, 12, 15, and 16 genes were mapped on chromosomes 5, 6, 8, and 9, respectively.
The results of gene duplication analysis showed that seven segmental duplication events
were detected among 19 ZmPum genes, and each gene pair was located on a distinct
chromosome, including pairs of ZmPum1 and 16, ZmPum2 and 16, ZmPum4 and 8, ZmPum6
and 19, ZmPum7 and 14, ZmPum9 and 11, as well as ZmPum12 and 15 (Figure 4).

Additionally, the synteny between the Pum gene families in the maize and rice, as
well as maize and Arabidopsis genomes, was also examined. It was revealed that there were
nineteen pairs of Pum orthologous genes in maize and rice, and five Pum gene pairs in
maize and Arabidopsis (Figure 5; Table S1).

2.4. Gene Structure and Cis-Elements of ZmPum

To further examine the organization of the exons and introns of ZmPum genes, the
CDS and the corresponding gDNA sequence of each ZmPum gene were analyzed using
GSDS. It showed that the numbers of exons and introns varied greatly among different
ZmPum members (Figure 6), which ranged from 5 to 10 exons unevenly. For example,
ZmPum3, 5, 9, and 11 had 10 exons. ZmPum6, 12, and 15 had 9 exons, ZmPum4 and 19 both
possessed 8 exons, and the other ZmPum genes had fewer exons.
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(GSDS).

Cis-elements analysis showed that abundant elements involved in hormone response
were identified in promoter sequences of ZmPum genes, such as ABRE, AuxRRcore, P-
box/GARE, TCA, and TGACG/CGTCA motif elements, which were responsive to ABA,
auxin, gibberellin, SA, and MeJA, respectively (Figure 7; Table S2). In general, 13 ZmPum
genes (68.4%) possessed auxin-responsive elements (AuxRRcore). Thirteen ZmPum genes
had gibberellin-responsive elements (P-box or GARE). Moreover, ZmPum12 carried RY-
elements involved in seed-specific regulation. Meanwhile, MBS, MBSI, and LTR elements
involved in drought, flavonoid biosynthetic regulation, and low-temperature response,
respectively, were found in their promoters. In total, 11 ZmPum genes had MBS elements,
10 ZmPum genes (52.6%) had LTR elements, and 2 ZmPum genes had MBSI elements.

2.5. Tissue-Specific Expression Patterns of ZmPum

The results of tissue-specific expression analysis showed that the ZmPum genes were
classified into three groups in terms of different expression patterns (Figure 8). ZmPum3, 4,
5, 9, 11, 15, and 18 could be clustered into one group and highly expressed in pollinated
internodes, embryos, endosperm, and whole seeds. ZmPum1, 2, 6, 7, 8, 17, and 19 were
clustered into one group and expressed in bicellular male gametophytes, microspores,
and sperm cells. Interestingly, ZmPum6 and 17 were also slightly expressed during seed
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development. In addition, ZmPum10, 12, 13, 14, and 16 were grouped into one branch
and dominantly expressed in endosperm and whole seeds. Meanwhile, ZmPum12 and 14
exhibit high expression in pollinated internodes and slight expression in seminal, silk, roots,
and bicellular male gametophytes. The results suggest that the ZmPum genes may play
essential roles in regulating maize growth and development, particularly in the formation
of seeds.
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2.6. ZmPum Regulates Kernel Development

High-resolution transcriptome data in maize endosperms ranging from 48 to 144 h
(En48-144) after pollination (HAP) with a time interval of 24 h were recently reported by
Fu et al. [37]. Interestingly, except for the ZmPum2 gene, the expression of the other 18
ZmPum genes was detected during En48-144 HAP (Figure 9). ZmPum1, 4, 8, 9, 11, 16, 17,
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and 18 exhibited a high expression level in En48 HAP and a low transcript level in En72,
En96, En120, and En144 HAP. While ZmPum3, 5, 6, 7, 10, 12, 13, 14, 15, and 19 showed high
expression levels in En72, En96, En120, and En144 HAP, but low expression in En48 HAP.
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Subsequently, qRT-PCR was performed and used to confirm the expression of ZmPum
genes in maize kernel development at 15, 20, and 25 days after pollination (DAP). As shown
in Figure 10, the expression of ZmPum2 was not detected in any samples. However, the
ZmPum4, 7, and 13 genes showed extremely high expression levels in the kernel of 15, 20,
and 25 DAP. The ZmPum3, 8, 9, 10, 11, 12, 14, 16, and 17 genes exhibited a high transcript
level. Inversely, the expression of the ZmPum1, 5, 6, 18, and 19 genes in the kernel of 15, 20,
and 25 DAP was lower than others.
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The above results suggest that the ZmPum genes play a key role in kernel development
and may have distinct roles and functions during endosperm development.

3. Discussion

To date, Pum proteins have been identified as a kind of RBP to regulate gene post-
transcription via conserved Pum-HD [11,13,14,29]. In the present study, a total of 19 ZmPum
members were identified in the maize genome (Table 1; Figure 1). Meanwhile, ZmPum
were grouped into typical and atypical Pum with different numbers of Pum domains and
showed the diversity of gene structures (Figures 2, 3 and 6), which was similar to the AtPum
family [17,30]. However, the number of Pums in different organisms is variable and showed
higher diversity in plants, which could be explained by whole-genome duplications [17]. It
was also found that there were some paralogous and orthologous Pum gene pairs in the
maize genome and between the rice and Arabidopsis genomes (Figures 4 and 5). Tandem
duplication and segmental duplication have played essential roles in expanding gene
families during the species’ evolutionary history [38,39].

Plants evolved various mechanisms, including physiological, biochemical, and molec-
ular changes, for survival under adverse conditions [40]. Herein, improvement of crop
performance and yield under environmental stimuli is a crucial goal during sustainable
agriculture production to ensure food security. Although it is not well known for Pum in
plants, few available reports show that Pum can respond to stress such as heat, drought,
salt, osmotic, ABA, dark, light, brassinolide, and glucose, as well as regulate develop-
ment [26–28,32,34,41]. In Arabidopsis, AtPum1 to 6 are specifically associated with genes
related to shoot stem cell maintenance genes [25]. AtPum5 regulates CMV infection and
salt tolerance [26,27,42]. Similarly, rice Pum genes respond to biotic and abiotic stress
including Magnaporthe oryzae and Nilaparvata lugens infections, cold, drought, auxin, and
cytokinin [30]. However, the atpum23 mutant exhibited delayed germination rates com-
pared to wild-type plants [32]. Reducing AtPum24 expression resulted in abnormal seed
maturation, wrinkled seeds, and lower seed oil contents, but higher starch and sugar con-
tents. Inversely, overexpression of AtPum24 increased seed fatty acid, size, and weight [33].
The findings suggest that Pum regulates seed development in plants.

In maize, the endosperm is the main nutritive tissue and accounts for approximately
90% of the total dry seed weight. Starch, protein, and oil are the primary storage compo-
nents within maize endosperm [43]. The improvement of kernel traits holds significant
importance for cultivating new maize germplasm with superior quality and high yield.
Statistical analysis of transcriptome data from MaizeGDB showed that 84% (16/19) of
ZmPum genes are highly expressed in seeds after pollination, except ZmPum2, 8, and 19
(Figure 8). In maize, the early endosperm development phase plays a key role in kernel
development and comes to an end at 144 h HAP. Afterward, the endosperm shifts to rapid
cell proliferation and differentiation, and enters the filling stage [38,44–46]. Here, it was
also found that 18 ZmPum genes exhibited high transcription activity in En48, En72, En96,
En120, or En144 HAP (Figure 9). Most ZmPum genes maintained high expression levels in
maize seeds (Figure 10). These results indicate that the ZmPum family is involved in the
regulation of early endosperm development.

Insights into the molecular interactions between Pum proteins and RNA bases have
been well revealed in some eukaryotes but are still urgently needed to be explored in plants.
Plants possess highly complex genomes with a high number of Pum members, which
implies that Pum has specific target mRNA and function in plants [25]. In summary, we
identified 19 ZmPum genes and found their involvement in kernel development in maize.
In a further study, the function and molecular mechanism of ZmPum genes in regulating
seed traits will be revealed. Overall, the study provides a valuable reference to improve
crops through genetic engineering approaches.



Int. J. Mol. Sci. 2023, 24, 14036 11 of 14

4. Materials and Methods
4.1. Identification of ZmPum and Phylogenetic Analysis

To identify the ZmPum in maize, the database of amino acid of Zm-B73 V5.0 and
the AtPum protein sequences were retrieved from MaizeGDB (https://maizegdb.org/,
accessed on 5 April 2023) and TAIR (https://www.arabidopsis.org/accessed on 5 April
2023), respectively. The local BLASTP was conducted for ZmPum searching using the
AtPum sequences as a reference. Additionally, the hidden Markov model (HMM) files of
Pum-HD were acquired from the Pfam database (http://pfam.xfam.org/, accessed on 7
April 2023) and used to search for ZmPUM protein sequences [47]. The properties of the
ZmPUM proteins such as molecular weight, isoelectric point, hydrophilic index, stability
coefficient, and grand average of hydropathicity (GRAVY) were analyzed using the ExPASy
tool (www.expasy.org/tools/, accessed on 7 April 2023) [48]. The subcellular localization
was predicted using the BUSCA tool (http://busca.biocomp.unibo.it/, accessed on 7 April
2023) [49]. For the phylogenetic analysis, the amino acid sequences of Pum from maize
and Arabidopsis were aligned and used for constructing a phylogenetic tree by Mega 7.0,
employing 1000 bootstrap replicates to assess the reliability of the tree topology.

4.2. Conserved Motif, Domain, and Structures Analysis

The conserved motifs of ZmPum proteins were identified using the MEME online
program (http://meme.sdsc.edu/meme/intro.html, accessed on 5 April 2023) [50]. To
verify the conserved Pum-HD of ZmPum proteins, the protein sequences of ZmPum were
analyzed using an online tool in the SMART database (https://smart.embl.de, accessed on
12 April 2023) and NCBI-CDD database (https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi, accessed on 14 April 2023) [51,52]. Meanwhile, the 3D structures of ZmPum pro-
teins were predicted by the Swiss-Model tool (https://swissmodel.expasy.org/interactive/,
accessed on 14 April 2023) [53]. Subsequently, the quality of the predicted protein structures
was evaluated using the SAVES server (http://nihserver.mbi.ucla.edu/SAVES/, accessed
on 15 April 2023) [54].

4.3. Gene Structure and Duplication Analysis

For the examination of exon/intron structures, the coding sequences (CDS) and ge-
nomic DNA (gDNA) sequences of ZmPum genes were analyzed using the Gene Structure
Display Server 2.0 (GSDS) (http://gsds.cbi.pku.edu.cn/, accessed on 18 April 2023) [55].
Chromosome localization of the ZmPum gene was obtained from maizeGDB and visualized
using TBtools [56]. Gene duplications of the ZmPum genes were identified and examined by
TBtools. The collinearity of the orthologous Pum genes between maize, rice, and Arabidopsis
was determined and plotted using MCScanX Circos within TBtools, respectively.

4.4. Cis-Acting Elements and Expression Analysis of ZmPum

To determine the cis-elements in ZmPum gene promoters, the 2000 bp promoter se-
quences of ZmPum genes were acquired from the maizeGDB and analyzed using the
PlantCARE software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, ac-
cessed on 20 April 2023) [57]. Furthermore, the TBtools software was employed to visualize
the composition of cis-elements in promoters.

To examine the specific expression patterns of ZmPum genes in maize, expression data
for maize’s different developmental stages and tissues and high-resolution transcriptome
data from time points ranging from 48 to 144 h after pollination (HAP) were obtained from
qTeller in MaizeGDB (https://qteller.maizegdb.org/, accessed on 22 April 2023) and Fu
et al. [37], respectively. Then, the expression of ZmPum genes was analyzed and used to
create a heatmap using TBtools.

4.5. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

The maize seeds were sampled at 15, 20, and 25 DAP and used to extract total RNA
using RNAiso plus kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions.

https://maizegdb.org/
https://www.arabidopsis.org/accessed
http://pfam.xfam.org/
www.expasy.org/tools/
http://busca.biocomp.unibo.it/
http://meme.sdsc.edu/meme/intro.html
https://smart.embl.de
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://swissmodel.expasy.org/interactive/
http://nihserver.mbi.ucla.edu/SAVES/
http://gsds.cbi.pku.edu.cn/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://qteller.maizegdb.org/
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The concentration and purity of the RNA samples were determined using NanoDropTM

OneC (ThermoScientific, Waltham, USA). The qualified RNA samples were then reverse-
transcribed into cDNA using the PrimeScriptTM reagent kit (TaKaRa, Dalian, China) and
used for qRT-PCR. The qRT-PCR was conducted using the TransScript® II Two-Step RT-
PCR SuperMix (Transgen, Beijing, China) in the Bio-Rad CFX96TM Real-Time PCR system.
The specific primers of each ZmPum gene were designed using Primer-BLAST (https:
//www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome, accessed
on 25 May 2023), synthesized at Sangon Biotech (Chengdu, China), and listed in Table S3.
In addition, a 139 bp fragment of maize ZmTUB gene was amplified using primers T-F/T-R
(Table S3) and used as an internal reference for normalization. To determine the relative
expression levels of the ZmPum genes, the 2−∆∆CT method was employed [58]. This assay
was conducted with three biological and technological replicates.

5. Conclusions

In summary, we identified 19 ZmPum genes and found their involvement in kernel
development in maize. In the next study, the function and molecular mechanism of ZmPum
genes in regulating seed traits will be revealed. Overall, the study provides a valuable
reference to improve crops through genetic engineering approaches.
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