Dietary Sources, Sex, and rs5888 (SCARB1) as Modulators of Vitamin A’s Effect on Cardiometabolic Health
Abstract
:1. Introduction
2. Results
2.1. High Intake Level of Vitamin A Is Associated with Benefits for Cardiovascular Health, Particularly in Men
2.2. Vitamin A and Precursors Regulate Ex-Vivo PBMC Gene Expression in a Sex-Dependent Manner
2.3. Relevant Genetic Variants Can Modulate the Response to Carotene Intake/BC Exposure and Cardiometabolic Health
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Cardiometabolic Health Assessment
4.3. Dietary Intake and Physical Activity Evaluation
4.4. Blood Sample Collection, Peripheral Blood Mononuclear Cell Isolation, and Ex Vivo Treatment
4.5. RNA Extraction and Gene Expression Selection and Analysis
4.6. DNA Extraction and Genotype Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 30 January 2023).
- Stewart, R.A.H.; Wallentin, L.; Benatar, J.; Danchin, N.; Hagström, E.; Held, C.; Husted, S.; Lonn, E.; Stebbins, A.; Chiswell, K.; et al. Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk patients with stable coronary heart disease. Eur. Heart J. 2016, 37, 1993–2001. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef]
- Bonet, M.L.; Ribot, J.; Galmés, S.; Serra, F.; Palou, A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158676. [Google Scholar] [CrossRef]
- Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch. Biochem. Biophys. 2015, 572, 112–125. [Google Scholar] [CrossRef]
- Amengual, J.; García-Carrizo, F.J.; Arreguín, A.; Mušinović, H.; Granados, N.; Palou, A.; Bonet, M.L.; Ribot, J. Retinoic Acid Increases Fatty Acid Oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin in Vivo. Cell. Physiol. Biochem. 2018, 46, 187–202. [Google Scholar] [CrossRef]
- Amengual, J.; Petrov, P.; Bonet, M.L.; Ribot, J.; Palou, A. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. Int. J. Biochem. Cell Biol. 2012, 44, 2019–2027. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 32–45. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Zuccaro, M.V.; Costabile, B.K.; Rodas, R.; Quadro, L. Tissue- and sex-specific effects of β-carotene 15,15′ oxygenase (BCO1) on retinoid and lipid metabolism in adult and developing mice. Arch. Biochem. Biophys. 2015, 572, 11–18. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017, 9, 246. [Google Scholar] [CrossRef]
- Alberdi-Aresti, G.; Pérez-Rodrigo, C.; Ramos-Carrera, N.; Aranceta-Bartrina, J.; Lázaro-Masedo, S. Prevalence of General Obesity and Abdominal Obesity in the Spanish Adult Population (Aged 25–64 Years) 2014–2015: The ENPE Study. Rev. Española Cardiol. Engl. Ed. 2016, 69, 579–587. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values: Vitamin A Advice Published; European Food Safety Authority: Parma, Italy, 2015; Available online: https://www.efsa.europa.eu/en/press/news/150305 (accessed on 30 January 2023).
- Galmés, S.; Cifre, M.; Palou, A.; Oliver, P.; Serra, F. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients 2019, 11, 298. [Google Scholar] [CrossRef]
- Reynés, B.; Priego, T.; Cifre, M.; Oliver, P.; Palou, A. Peripheral Blood Cells, a Transcriptomic Tool in Nutrigenomic and Obesity Studies: Current State of the Art. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1006–1020. [Google Scholar] [CrossRef]
- Wuttge, D.M.; Romert, A.; Eriksson, U.; Törmä, H.; Hansson, G.K.; Sirsjö, A. Induction of CD36 by all-trans retinoic acid: Retinoic acid receptor signaling in the pathogenesis of atherosclerosis. FASEB J. 2001, 15, 1221–1223. [Google Scholar] [CrossRef]
- Galmés, S.; Serra, F.; Palou, A. Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018, 10, 1919. [Google Scholar] [CrossRef]
- Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta 2013, 424, 245–252. [Google Scholar] [CrossRef]
- Sundelin, J.P.; Ståhlman, M.; Lundqvist, A.; Levin, M.; Parini, P.; Johansson, M.E.; Borén, J. Increased Expression of the Very Low-Density Lipoprotein Receptor Mediates Lipid Accumulation in Clear-Cell Renal Cell Carcinoma. PLoS ONE 2012, 7, e48694. [Google Scholar] [CrossRef]
- Hiltunen, T.P.; Luoma, J.S.; Nikkari, T.; Ylä-Herttuala, S. Expression of LDL Receptor, VLDL Receptor, LDL Receptor–Related Protein, and Scavenger Receptor in Rabbit Atherosclerotic Lesions. Circulation 1998, 97, 1079–1086. [Google Scholar] [CrossRef]
- Ye, D.; Lammers, B.; Zhao, Y.; Meurs, I.; Van Berkel, T.J.C.; Van Eck, M. ATP-Binding Cassette Transporters A1 and G1, HDL Metabolism, Cholesterol Efflux, and Inflammation: Important Targets for the Treatment of Atherosclerosis. Curr. Drug Targets 2011, 12, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lin, J.; Chen, H.; Wang, J.; Liu, Y.; Xia, M. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Br. J. Nutr. 2015, 114, 509–518. [Google Scholar] [CrossRef]
- Stanislovaitiene, D.; Lesauskaite, V.; Zaliuniene, D.; Smalinskiene, A.; Gustiene, O.; Zaliaduonyte-Peksiene, D.; Tamosiunas, A.; Luksiene, D.; Petkeviciene, J.; Zaliunas, R. SCARB1 single nucleotide polymorphism (rs5888) is associated with serum lipid profile and myocardial infarction in an age- and gender-dependent manner. Lipids Health Dis. 2013, 12, 24. [Google Scholar] [CrossRef]
- Borel, P.; Lietz, G.; Goncalves, A.; Szabo de Edelenyi, F.; Lecompte, S.; Curtis, P.; Goumidi, L.; Caslake, M.J.; Miles, E.A.; Packard, C.; et al. CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. J. Nutr. 2013, 143, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Park, C.S.; Kim, M.H.; Kim, E.Y.; Chang, H.S.; Ki, S.Y.; Uh, S.T.; Moon, S.H.; Kim, Y.H.; Lee, H.B. Lipopolysaccharide-induced Synthesis of IL-1beta, IL-6, TNF-alpha and TGF-beta by Peripheral Blood Mononuclear Cells. Tuberc. Respir. Dis. 1998, 45, 846. [Google Scholar] [CrossRef]
- Nozaki, Y.; Tamaki, C.; Yamagata, T.; Sugiyama, M.; Ikoma, S.; Kinoshita, K.; Funauchi, M. All-trans-retinoic acid suppresses interferon-γ and tumor necrosis factor-α; a possible therapeutic agent for rheumatoid arthritis. Rheumatol. Int. 2006, 26, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Alatshan, A.; Kovács, G.E.; Aladdin, A.; Czimmerer, Z.; Tar, K.; Benkő, S. All-Trans Retinoic Acid Enhances both the Signaling for Priming and the Glycolysis for Activation of NLRP3 Inflammasome in Human Macrophage. Cells 2020, 9, 1591. [Google Scholar] [CrossRef]
- Gromovsky, A.D.; Schugar, R.C.; Brown, A.L.; Helsley, R.N.; Burrows, A.C.; Ferguson, D.; Zhang, R.; Sansbury, B.E.; Lee, R.G.; Morton, R.E.; et al. Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Proinflammatory and Proresolving Lipid Mediators. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 218–231. [Google Scholar] [CrossRef]
- Emre, Y.; Nübel, T. Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Lett. 2010, 584, 1437–1442. [Google Scholar] [CrossRef]
- Saidijam, M.; Tootoonchi, A.S.; Goodarzi, M.T.; Hassanzadeh, T.; Borzuei, S.H.; Yadegarazari, R.; Shabab, N. Expression of interleukins 7 & 8 in peripheral blood mononuclear cells from patients with metabolic syndrome: A preliminary study. Indian J. Med. Res. 2014, 140, 238–243. [Google Scholar]
- Mizuno, T.M. Fat Mass and Obesity Associated (FTO) Gene and Hepatic Glucose and Lipid Metabolism. Nutrients 2018, 10, 1600. [Google Scholar] [CrossRef]
- Ma, R.; Zhu, X.; Yan, B. SCARB1 rs5888 gene polymorphisms in coronary heart disease: A systematic review and a meta-analysis. Gene 2018, 678, 280–287. [Google Scholar] [CrossRef]
- Goodarzynejad, H.; Boroumand, M.; Behmanesh, M.; Ziaee, S.; Jalali, A. The rs5888 single nucleotide polymorphism in scavenger receptor class B type 1 (SCARB1) gene and the risk of premature coronary artery disease: A case-control study. Lipids Health Dis. 2016, 15, 7. [Google Scholar] [CrossRef]
- Galmés, S.; Palou, A.; Serra, F. Increased risk of high body fat and altered lipid metabolism associated to suboptimal consumption of vitamin a is modulated by genetic variants rs5888 (Scarb1), rs1800629 (ucp1) and rs659366 (ucp2). Nutrients 2020, 12, 2588. [Google Scholar] [CrossRef] [PubMed]
- Cifre, M.; Díaz-Rúa, R.; Varela-Calviño, R.; Reynés, B.; Pericás-Beltrán, J.; Palou, A.; Oliver, P. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI. Mol. Nutr. Food Res. 2017, 61, 1600353. [Google Scholar] [CrossRef] [PubMed]
- Cifre, M.; Palou, A.; Oliver, P. Impaired CPT1A Gene Expression Response to Retinoic Acid Treatment in Human PBMC as Predictor of Metabolic Risk. Nutrients 2020, 12, 2269. [Google Scholar] [CrossRef] [PubMed]
- He, C.-S.; Fraser, W.D.; Gleeson, M. Influence of vitamin D metabolites on plasma cytokine concentrations in endurance sport athletes and on multiantigen stimulated cytokine production by whole blood and peripheral blood mononuclear cell cultures. ISRN Nutr. 2014, 2014, 820524. [Google Scholar] [CrossRef] [PubMed]
- Sociedad Española para el Estudio de la Obesidad (SEEDO). Consenso SEEDO’2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2000, 115, 587–597. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- Anta, R.M.O.; Sobaler, A.M.L.; Carvajales, P.A.; Marcos, A.M.R.; Vizuete, A.A.; Casares, L.M.M. DIAL Programa para Evaluación de Dietas y Cálculos de Alimentación. Available online: https://www.alceingenieria.net/infodial.htm (accessed on 20 July 2020).
- Mantilla Toloza, S.C.; Gómez-Conesa, A. El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Rev. Iberoam. Fisioter. Kinesiol. 2007, 10, 48–52. [Google Scholar] [CrossRef]
- Lemke, S.L.; Dueker, S.R.; Follett, J.R.; Lin, Y.; Carkeet, C.; Buchholz, B.A.; Vogel, J.S.; Clifford, A.J. Absorption and retinol equivalence of β-carotene in humans is influenced by dietary vitamin A intake. J. Lipid Res. 2003, 44, 1591–1600. [Google Scholar] [CrossRef]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
Ob-IB Cohort | OptiDiet-15 Cohort | |||||
---|---|---|---|---|---|---|
All | Men | Women | All | Men | Women | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
n = 455 | n = 165 | n = 290 | n = 81 | n = 41 | n = 40 | |
General characteristics | ||||||
Age (years) | 36 (15) | 37 (17) | 35 (15) | 36 (14) | 36 (16) | 36 (12) |
Female (%) | 63.7 | 49.4 | ||||
Anthropometric features | ||||||
BF% | 29.5 (8.98) | 24.5 (8.08) | 32.4 (8.20) | 30.6 (9.50) | 25.1 (7.39) | 36.3 (7.95) |
Waist (cm) | 83.8 (15.8) | 92.2 (15.2) | 79.1 (14.1) | 86.3 (15.9) | 89.0 (14.2) | 83.5 (17.2) |
WHR | 0.87 (0.09) | 0.93 (0.08) | 0.84 (0.09) | 0.87 (0.12) | 0.92 (0.10) | 0.83 (0.12) |
Prevalence of cardio-metabolic risk factors | ||||||
High-BF (%) | 47.0 | 46.1 | 47.6 | 51.9 | 41.5 | 62.5 |
VO (%) | 34.1 | 35.8 | 33.1 | 40.7 | 39.0 | 42.5 |
HT (%) | 9.40 | 14.2 | 6.67 | 12.3 | 17.1 | 7.50 |
DL (%) | 11.2 | 11.7 | 10.9 | 6.17 | 12.2 | 0.00 |
T2D (%) | 5.39 | 8.07 | 3.87 | 7.41 | 12.2 | 2.50 |
CMR (number) | 1.07 (1.19) | 1.17 (1.36) | 1.01 (1.07) | 1.19 (1.22) | 1.22 (1.42) | 1.15 (0.98) |
≥2 CMR factors (%) | 30.6 | 33.5 | 28.9 | 34.6 | 36.6 | 32.5 |
Physical activity | ||||||
METs/day | 278 (260) | 298 (287) | 266 (244) | 247 (192) | 212 (161) | 283 (216) |
Main nutritional characteristics | ||||||
Energy intake (kcal/day) | 2006 (459) | 2227 (519) | 1880 (366) | 1959 (400) | 2119 (378) | 1796 (358) |
Carbohydrate (%EC) | 42.3 (10.0) | 42.4 (10.1) | 42.3 (10.0) | 42.7 (9.17) | 42.0 (7.70) | 43.4 (10.5) |
Fat (%EC) | 37.7 (9.38) | 37.3 (9.50) | 38.0 (9.32) | 37.3 (8.37) | 37.4 (7.92) | 37.3 (8.90) |
Proteins (%EC) | 16.0 (3.97) | 16.0 (3.34) | 16.1 (4.30) | 15.9 (3.17) | 15.7 (2.67) | 16.1 (3.63) |
Vitamin A (µg/day) | 924 (2317) | 1108 (3639) | 819 (942) | 564 (201) | 569 (165) | 558 (235) |
Tercile 1 | ≤516 | ≤504 | ≤525 | ≤459 | ≤459 | ≤446 |
Tercile 3 | >841 | >842 | >852 | >647 | >661 | >649 |
Retinol (Eq/day) | 474 (2285) | 686 (3637) | 353 (811) | 250 (133) | 253 (113) | 248 (152) |
Tercile 1 | ≤206 | ≤228 | ≤195 | ≤170 | ≤208 | ≤161 |
Tercile 3 | >361 | >368 | >349 | >310 | >294 | >324 |
Carotenes (µg/day) | 2133 (1966) | 1920 (1665) | 2254 (2112) | 1557 (1115) | 1549 (1011) | 1565 (1225) |
Tercile 1 | ≤1013 | ≤870 | ≤1153 | ≤1013 | ≤1037 | ≤971 |
Tercile 3 | >2295 | >2146 | >2414 | >1757 | >1705 | >1859 |
Haplotype | Frequency | T1 | (95% CI) | T3 | (95% CI) |
---|---|---|---|---|---|
Men | |||||
CACAG | 0.132 | Ref | 0.00 | Ref | 0.00 |
TGCTG | 0.082 | −0.06 | (−0.26–0.13) | −1.05 | (−1.19–−0.92) |
CGCTG | 0.077 | 0.06 | (−0.08–0.20) | −1.02 | (−1.13–−0.91) |
TATTG | 0.076 | −1.30 | (−1.49–−1.11) | −1.05 | (−1.20–−0.90) |
CGCAG | 0.065 | −0.59 | (−0.69–−0.49) | −0.49 | (−0.55–−0.42) |
TGTTG | 0.058 | −0.43 | (−0.48–−0.38) | −0.22 | (−0.25–−0.18) |
TACAG | 0.058 | −0.51 | (−0.72–−0.30) | −0.68 | (−0.81–−0.55) |
CACTG | 0.055 | −1.48 | (−1.58–−1.37) | −0.94 | (−1.03–−0.86) |
CATTG | 0.051 | 0.15 | (0.09–0.22) | −0.05 | (−0.10–−0.00) |
TACTG | 0.050 | 0.53 | (0.49–0.56) | −0.16 | (−0.18–−0.13) |
Women | |||||
CGCAG | 0.103 | Ref | 0.00 | Ref | 0.00 |
CACTG | 0.100 | 0.62 | (0.42–0.82) | −0.98 | (−1.12–−0.83) |
TACTG | 0.087 | −0.25 | (−0.46–−0.05) | −1.44 | (−1.60–−1.29) |
TGCTG | 0.073 | 0.40 | (0.19–0.61) | −0.56 | (−0.72–−0.40) |
CATTG | 0.061 | −0.01 | (−0.24–0.22) | −0.98 | (−1.14–−0.83) |
TATTG | 0.058 | −0.09 | (−0.32–0.15) | −0.76 | (−0.93–−0.59) |
TGCAG | 0.056 | 0.20 | (0.07–0.33) | −1.10 | (−1.20–−1.00) |
CGTTG | 0.054 | 0.09 | (−0.03–0.20) | −1.73 | (−1.81–−1.66) |
TACAG | 0.051 | 0.92 | (0.77–1.07) | −0.35 | (−0.44–−0.25) |
CGCTG | 0.051 | −0.10 | (−0.18–−0.03) | −0.68 | (−0.74–−0.61) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galmés, S.; Palou, A.; Serra, F. Dietary Sources, Sex, and rs5888 (SCARB1) as Modulators of Vitamin A’s Effect on Cardiometabolic Health. Int. J. Mol. Sci. 2023, 24, 14152. https://doi.org/10.3390/ijms241814152
Galmés S, Palou A, Serra F. Dietary Sources, Sex, and rs5888 (SCARB1) as Modulators of Vitamin A’s Effect on Cardiometabolic Health. International Journal of Molecular Sciences. 2023; 24(18):14152. https://doi.org/10.3390/ijms241814152
Chicago/Turabian StyleGalmés, Sebastià, Andreu Palou, and Francisca Serra. 2023. "Dietary Sources, Sex, and rs5888 (SCARB1) as Modulators of Vitamin A’s Effect on Cardiometabolic Health" International Journal of Molecular Sciences 24, no. 18: 14152. https://doi.org/10.3390/ijms241814152
APA StyleGalmés, S., Palou, A., & Serra, F. (2023). Dietary Sources, Sex, and rs5888 (SCARB1) as Modulators of Vitamin A’s Effect on Cardiometabolic Health. International Journal of Molecular Sciences, 24(18), 14152. https://doi.org/10.3390/ijms241814152