Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound
Abstract
:1. Introduction
2. Results
2.1. Behavioural Examination
2.2. Biochemical Studies
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs/Substances
Drugs Administration Schedule
4.3. Behavioural Examination
4.3.1. Forced Swimming Test (FST)
4.3.2. Tail Suspension Test (TST)
4.3.3. Locomotor Activity Test
4.3.4. Research Scheme
4.4. Biochemical Analysis
4.4.1. Collection of Blood Samples
4.4.2. Determination of Biochemical Parameters
4.5. Statistical Analyze
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). Available online: https://vizhub.healthdata.org/gbd-results (accessed on 4 March 2023).
- World Health Organization. Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 10 July 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Trivedi, M.H.; Greer, T.L. Cognitive dysfunction in unipolar depression: Implications for treatment. J. Affect. Disord. 2014, 152–154, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Halahakoon, D.C.; Kieslich, K.; O’Driscoll, C.; Nair, A.; Lewis, G.; Roiser, J.P. Reward-processing behavior in depressed participants relative to healthy volunteers: A systematic review and meta-analysis. JAMA Psychiatry 2020, 77, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Cha, D.S.; Soczynska, J.K.; Woldeyohannes, H.O.; Gallaugher, L.A.; Kudlow, P.; Alsuwaidan, M.; Baskaran, A. Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depress. Anxiety 2013, 30, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Roiser, J.P.; Elliott, R.; Sahakian, B.J. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 2012, 37, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res. Rev. 2009, 61, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Berk, M.; Goehler, L.; Song, C.; Anderson, G.; Gałecki, P.; Leonard, B. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012, 10, 66. [Google Scholar] [CrossRef]
- Maes, M.; Galecki, P.; Chang, Y.S.; Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 676–692. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef]
- Möller, H.J.; Fuger, J.; Kasper, S. Efficacy of new generation antidepressants: Meta-analysis of imipramine-controlled studies. Pharmacopsychiatry 1994, 27, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Duval, F.; Lebowitz, B.D.; Macher, J.P. Treatments in depression. Dialogues Clin. Neurosci. 2006, 8, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, I.; Deacon, B.J.; Huedo-Medina, T.B.; Scoboria, A.; Moore, T.J.; Johnson, B.T. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008, 5, e45. [Google Scholar] [CrossRef] [PubMed]
- Młyniec, K.; Davies, C.L.; de Agüero Sánchez, I.G.; Pytka, K.; Budziszewska, B.; Nowak, G. Essential elements in depression and anxiety. Part I Pharmacol. Rep. 2014, 66, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Nowak, G.; Szewczyk, B.; Pilc, A. Zinc and depression. An update. Pharmacol. Rep. 2005, 57, 713–718. [Google Scholar] [PubMed]
- Frederickson, C.J.; Koh, J.Y.; Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462. [Google Scholar] [CrossRef]
- Młyniec, K.; Gaweł, M.; Doboszewska, U.; Starowicz, G.; Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 68–78. [Google Scholar] [CrossRef]
- Takeda, A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. J. Trace Elements Med. Biol. 2012, 26, 80–84. [Google Scholar] [CrossRef]
- Tamano, H.; Takeda, A. Dynamic and specific roles of zinc in brain activity. Prog. Brain Res. 2008, 170, 161–170. [Google Scholar]
- Tassabehji, N.M.; Corniola, R.S.; Alshingiti, A.; Levenson, C.W. Zinc deficiency induces depression-like symptoms in adult rats. Physiol. Behav. 2008, 95, 365–369. [Google Scholar] [CrossRef]
- Grønli, O.; Kvamme, J.M.; Friborg, O.; Wynn, R. Zinc deficiency is common in several psychiatric disorders. PLoS ONE 2013, 8, e82793. [Google Scholar] [CrossRef] [PubMed]
- Styczeń, K.; Sowa-Kućma, M.; Dudek, D.; Siwek, M.; Reczyński, W.; Szewczyk, B.; Misztak, P.; Topór-Mądry, R.; Opoka, W.; Nowak, G. Zinc and copper concentration do not differentiate bipolar disorder from major depressive disorder. Psychiatr. Polska 2018, 52, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Szewczyk, B.; Misztak, P.; Topór-Mądry, R.; Opoka, W.; Nowak, G. The serum zinc concentration as a potential biological marker in patients with major depressive disorder. Metab. Brain Dis. 2017, 32, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Siwek, M.; Dudek, D.; Paul, I.A.; Sowa-Kućma, M.; Zieba, A.; Popik, P.; Pilc, A.; Nowak, G. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: A double blind, placebo-controlled study. J. Affect. Disord. 2009, 118, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Solati, Z.; Jazayeri, S.; Tehrani-Doost, M.; Mahmoodianfard, S.; Gohari, M.R. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutr. Neurosci. 2015, 18, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in depression: A meta-analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, E.; Kasaei, M.S.; Mohammad-Shirazi, M.; Nasrollahzadeh, J.; Rashidkhani, B.; Shams, J.; Mostafavi, S.A.; Mohammadi, M.R. Effects of zinc supplementation in patients with major depression: A randomized clinical trial. Iran. J. Psychiatry 2013, 8, 73–79. [Google Scholar]
- Aid, T.; Kazantseva, A.; Piirsoo, M.; Palm, K.; Timmusk, T. Mouse and rat BDNF gene structure and expression revisited. J. Neurosci. Res. 2007, 85, 525–535. [Google Scholar] [CrossRef]
- Heyland, D.K.; Jones, N.; Cvijanovich, N.Z.; Wong, H. Zinc supplementation in critically ill patients: A key pharmaconutrient? JPEN J. Parenter. Enteral. Nutr. 2008, 32, 509–519. [Google Scholar] [CrossRef]
- Jafari, F.; Mohammadi, H.; Amani, R. The effect of zinc supplementation on brain derived neurotrophic factor: A meta-analysis. J. Trace Elements Med. Biol. 2021, 66, 126753. [Google Scholar] [CrossRef]
- Lindqvist, D.; Wolkowitz, O.M.; Picard, M.; Ohlsson, L.; Bersani, F.S.; Fernström, J.; Westrin, Å.; Hough, C.M.; Lin, J.; Reus, V.I.; et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 2018, 43, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Mlyniec, K. Interaction between Zinc, GPR39, BDNF and Neuropeptides in Depression. Curr. Neuropharmacol. 2021, 19, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, R.; Okamoto, N.; Chibaatar, E.; Natsuyama, T.; Ikenouchi, A. The serum brain-derived neurotrophic factor increases in serotonin reuptake inhibitor responders patients with first-episode, drug-naïve major depression. Biomedicines 2023, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Marreiro, D.D.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; De Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Ambareesha, K.; Nilesh, N.K.; Gaja, L.; Suresh, M.; Chandrashekar, M. Effect of forced swim stress on wistar albino rats in various behavioral parameters. Int. J. Med. Res. Health Sci. 2012, 1, 7–12. [Google Scholar]
- Nagaraja, H.S.; Jeganathan, P.S. Forced swimming stress-induced changes in the physiological and biochemical parameters in albino rats. Indian J. Physiol. Pharmacol. 1999, 43, 53–59. [Google Scholar]
- Benz, M.B.; Epstein-Lubow, G.; Weinstock, L.M.; Gaudiano, B.A. Polypharmacy among patients with major depressive disorder and co-occurring substance use disorders in a psychiatric hospital setting: Prevalence and risk factors. J. Clin. Psychopharmacol. 2023, 43, 273–277. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Nelson, J.C.; Kasper, S.; Möller, H.J. A meta-analysis of clinical trials comparing reboxetine, a norepinephrine reuptake inhibitor, with selective serotonin reuptake inhibitors for the treatment of major depressive disorder. Eur. Neuropsychopharmacol. 2008, 18, 122–127. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Stewart, J.W.; Nierenberg, A.A.; Fava, M.; Kurian, B.T.; Warden, D.; Morris, D.W.; Luther, J.F.; Husain, M.M.; et al. Combining medications to enhance depression outcomes (CO-MED): Acute and long-term outcomes of a single-blind randomized study. Am. J. Psychiatry 2011, 168, 689–701. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Thase, M.E.; Fava, M.; Nelson, C.J.; Yang, H.; Qi, Y.; Tran, Q.V.; Pikalov, A.; Carlson, B.X.; Marcus, R.N.; et al. Adjunctive aripiprazole in major depressive disorder: Analysis of efficacy and safety in patients with anxious and atypical features. J. Clin. Psychiatry 2008, 69, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Wiersema, C.; Oude Voshaar, R.C.; van den Brink, R.H.S.; Wouters, H.; Verhaak, P.; Comijs, H.C.; Jeuring, H.W. Determinants and consequences of polypharmacy in patients with a depressive disorder in later life. Acta Psychiatr. Scand. 2022, 146, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.E.; Ros, S.; Agüera, L.; de la Gándara, J.; de Pedro, J.M. Combined antidepressants: Clinical experience. Acta Psychiatr. Scand. Suppl. 2005, 25–31, 36. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Shin, M.; McInnis, M.G.; Bostwick, J.R. Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: Strategies for the management of treatment-resistant depression. Pharmacotherapy 2015, 35, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Pae, C.U.; Forbes, A.; Patkar, A.A. Aripiprazole as adjunctive therapy for patients with major depressive disorder: Overview and implications of clinical trial data. CNS Drugs 2011, 25, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.J.; Trivedi, M.H. A review of quetiapine in combination with antidepressant therapy in patients with depression. Neuropsychiatr. Dis. Treat. 2007, 3, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Rogóż, Z. Combined treatment with atypical antipsychotics and antidepressants in treatment-resistant depression: Preclinical and clinical efficacy. Pharmacol. Rep. 2013, 65, 1535–1544. [Google Scholar] [CrossRef]
- Bschor, T. Lithium in the treatment of major depressive disorder. Drugs 2014, 74, 855–862. [Google Scholar] [CrossRef]
- Rouillon, F.; Gorwood, P. The use of lithium to augment antidepressant medication. J. Clin. Psychiatry 1998, 59 (Suppl. S5), 32–39. [Google Scholar]
- Bauer, M.; Whybrow, P.C. Role of thyroid hormone therapy in depressive disorders. J. Endocrinol. Investig. 2021, 44, 2341–2347. [Google Scholar] [CrossRef]
- Laino, C.H.; Fonseca, C.; Sterin-Speziale, N.; Slobodianik, N.; Reinés, A. Potentiation of omega-3 fatty acid antidepressant-like effects with low non-antidepressant doses of fluoxetine and mirtazapine. Eur. J. Pharmacol. 2010, 648, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.S.; Deng, R.; Fan, Y.; Li, K.; Meng, F.; Li, X.; Liu, R. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates. Mol. Nutr. Food Res. 2017, 61, 1600910. [Google Scholar] [CrossRef] [PubMed]
- Costa-Campos, L.; Herrmann, A.P.; Pilz, L.K.; Michels, M.; Noetzold, G.; Elisabetsky, E. Interactive effects of N-acetylcysteine and antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, G.I.; Mischoulon, D.; Shyu, I.; Alpert, J.E.; Fava, M. S-adenosyl methionine (SAMe) augmentation of serotonin reuptake inhibitors for antidepressant nonresponders with major depressive disorder: A double-blind, randomized clinical trial. Am. J. Psychiatry 2010, 167, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Serefko, A.; Szopa, A.; Poleszak, E. Magnesium and depression. Magnes. Res. 2016, 29, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Szopa, A.; Serefko, A.; Poleszak, E.; Nowak, G. The role of magnesium and zinc in depression: Similarities and differences. Magnes. Res. 2018, 31, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Nowak, G. Zinc, future mono/adjunctive therapy for depression: Mechanisms of antidepressant action. Pharmacol. Rep. 2015, 67, 659–662. [Google Scholar] [CrossRef]
- Sowa-Kućma, M.; Legutko, B.; Szewczyk, B.; Novak, K.; Znojek, P.; Poleszak, E.; Papp, M.; Pilc, A.; Nowak, G. Antidepressant-like activity of zinc: Further behavioral and molecular evidence. J. Neural. Transm. 2008, 115, 1621–1628. [Google Scholar] [CrossRef]
- Szewczyk, B.; Kotarska, K.; Siwek, A.; Olech, Ł.; Kuter, K. Antidepressant activity of zinc: Further evidence for the involvement of the serotonergic system. Pharmacol. Rep. 2017, 69, 456–461. [Google Scholar] [CrossRef]
- Szewczyk, B.; Poleszak, E.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Ryszewska-Pokraśniewicz, B.; Radziwoń-Zaleska, M.; Opoka, W.; Czekaj, J.; Pilc, A.; et al. Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol. Rep. 2008, 60, 588–589. [Google Scholar]
- Nowak, G.; Siwek, M.; Dudek, D.; Zięba, A.; Pilc, A. Effect of zinc supplementation on antidepressant therapy in unipolar depression: A preliminary placebo-controlled study. Pol. J. Pharmacol. 2003, 55, 1143–1147. [Google Scholar] [PubMed]
- Ranjbar, E.; Shams, J.; Sabetkasaei, M.; M-Shirazi, M.; Rashidkhani, B.; Mostafavi, A.; Bornak, E.; Nasrollahzadeh, J. Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depression. Nutr. Neurosci. 2014, 17, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, D.; Xiang, H.; Yan, S.; Sun, F.; Wei, Z. Rapid antidepressant actions of imipramine potentiated by zinc through PKA-dependented regulation of mTOR and CREB signaling. Biochem. Biophys. Res. Commun. 2019, 518, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Kroczka, B.; Zieba, A.; Dudek, D.; Pilc, A.; Nowak, G. Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol. J. Pharmacol. 2000, 52, 403–406. [Google Scholar] [PubMed]
- Szewczyk, B.; Brański, P.; Wierońska, J.M.; Pałucha, A.; Pilc, A.; Nowak, G. Interaction of zinc with antidepressants in the forced swimming test in mice. Pol. J. Pharmacol. 2002, 54, 681–685. [Google Scholar] [PubMed]
- Cunha, M.P.; Machado, D.G.; Bettio, L.E.; Capra, J.C.; Rodrigues, A.L. Interaction of zinc with antidepressants in the tail suspension test. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Rafało-Ulińska, A.; Poleszak, E.; Szopa, A.; Serefko, A.; Rogowska, M.; Sowa, I.; Wójciak, M.; Muszyńska, B.; Krakowska, A.; Gdula-Argasińska, J.; et al. Imipramine influences body distribution of supplemental zinc which may enhance antidepressant action. Nutrients 2020, 12, 2529. [Google Scholar] [CrossRef]
- Jin, J.; Sklar, G.E.; Min Sen Oh, V.; Chuen Li, S. Factors affecting therapeutic compliance: A review from the patient’s perspective. Ther. Clin. Risk Manag. 2008, 4, 269–286. [Google Scholar] [CrossRef]
- Rogalewicz, B.; Szczesio, M.; Poleszak, E.; Kowalczyk, J.; Szewczyk, B.; Camargo, B.C.; Szczytko, J.; Witkowski, M.; Fruziński, A.; Raducka, A.; et al. Influence of incorporation of different dn-electron metal cations into biologically active system on its biological and physicochemical properties. Int. J. Mol. Sci. 2021, 22, 12909. [Google Scholar] [CrossRef]
- Atrooz, F.; Alkadhi, K.A.; Salim, S. Understanding stress: Insights from rodent models. Curr. Res. Neurobiol. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Lucca, G.; Comim, C.M.; Valvassori, S.S.; Réus, G.Z.; Vuolo, F.; Petronilho, F.; Dal-Pizzol, F.; Gavioli, E.C.; Quevedo, J. Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem. Int. 2009, 54, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Fernández, S.; Gurpegui, M.; Díaz-Atienza, F.; Pérez-Costillas, L.; Gerstenberg, M.; Correll, C.U. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: Results from a meta-analysis. J. Clin. Psychiatry 2015, 76, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Réus, G.Z.; Stringari, R.B.; de Souza, B.; Petronilho, F.; Dal-Pizzol, F.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Quevedo, J. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid Med. Cell. Longev. 2010, 3, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, M.L.; Harvey, B.H.; Oliver, D.W.; Brink, C.B. Ozone modulates the effects of imipramine on immobility in the forced swim test, and nonspecific parameters of hippocampal oxidative stress in the rat. Metab. Brain Dis. 2010, 25, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Doboszewska, U.; Szewczyk, B.; Sowa-Kućma, M.; Noworyta-Sokołowska, K.; Misztak, P.; Gołębiowska, J.; Młyniec, K.; Ostachowicz, B.; Krośniak, M.; Wojtanowska-Krośniak, A.; et al. Alterations of bio-elements, oxidative, and inflammatory status in the zinc deficiency model in rats. Neurotox. Res. 2016, 29, 143–154. [Google Scholar] [CrossRef]
- Emojevwe, V.; Nwangwa, E.K.; Naiho, A.O.; Oyovwi, M.O.; Igiehon, O.; Ogunwole, E.; Makinde-Taylor, M.S.; Ayotomide, O.A.; Akinola, A.O.; Edesiri, P.T.; et al. Therapeutic efficacy of N-acetylcysteine and zinc sulphate against di-(2-ethylhexyl) phthalate-induced testicular oxido-nitrergic stress in male Wistar rat. Andrologia 2022, 54, e14508. [Google Scholar] [CrossRef]
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104. [Google Scholar] [CrossRef]
- Stawski, R.S.; Almeida, D.M.; Lachman, M.E.; Tun, P.A.; Rosnick, C.B.; Seeman, T. Associations between cognitive function and naturally occurring daily cortisol during middle adulthood: Timing is everything. J. Gerontol. B Psychol. Sci. Soc. Sci. 2011, 66 (Suppl. 1), 71–81. [Google Scholar] [CrossRef]
- Ter Hark, S.E.; Vos, C.F.; Aarnoutse, R.E.; Schene, A.H.; Coenen, M.J.H.; Janzing, J.G.E. Biomarkers as predictors of treatment response to tricyclic antidepressants in major depressive disorder: A systematic review. J. Psychiatr. Res. 2022, 150, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Can, A.; Dao, D.T.; Arad, M.; Terrillion, C.E.; Piantadosi, S.C.; Gould, T.D. The mouse forced swim test. J. Vis. Exp. 2012, 59, e3638. [Google Scholar] [CrossRef]
- Herbet, M.; Natorska-Chomicka, D.; Ostrowska, M.; Gawrońska-Grzywacz, M.; Izdebska, M.; Piątkowska-Chmiel, I.; Korga, A.; Wróbel, A.; Dudka, J. Edaravone presents antidepressant-like activity in corticosterone model of depression in mice with possible role of Fkbp5, Comt, Adora1 and Slc6a15 genes. Toxicol. Appl. Pharmacol. 2019, 380, 114689. [Google Scholar] [CrossRef] [PubMed]
- Herbet, M.; Szopa, A.; Wosko, S.; Serefko, A.; Izdebska, M.; Gawronska-Grzywacz, M.; Piatkowska-Chmiel, I.; Janas, M.; Gieroba, R.; Korga, A.; et al. The positive synergism of CPT and MK-801 in behavioral tests and in reduction of environmental stress and redox signaling changes in mice cerebral cortex. CNS Neurol. Disord. Drug Targets 2017, 16, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Nestler, E.J. Animal models of depression: Molecular perspectives. Curr. Top. Behav. Neurosci. 2011, 7, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Takahashi, Y.; Murakami, S.; Wani, K.; Matsumoto, Y.; Okamoto, M.; Ishihara, T. Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci. Rep. 2022, 12, 9224. [Google Scholar] [CrossRef] [PubMed]
- Herbet, M.; Szumełda, I.; Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Dudka, J. Beneficial effects of combined administration of fluoxetine and mitochondria-targeted antioxidant at in behavioural and molecular studies in mice model of depression. Behav. Brain Res. 2021, 405, 113185. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
Treatment | Dose [mg/kg] | Locomotor Activity between the 2nd and the 6th min [cm] |
---|---|---|
0.9% NaCl | - | 637.0 ± 84.57 |
IMI-Zn complex | 5 | 620.6 ± 51.21 |
IMI-Zn complex | 10 | 397.7 ± 108.9 |
IMI-Zn complex | 20 | 531.8 ± 106.4 |
IMI-Zn complex | 40 | 730.1 ± 90.27 |
IMI-Zn complex | 80 | 515.0 ± 94.92 |
IMI-Zn complex | 100 | 708.3 ± 53.04 |
IMI | 90 | 248.3 ± 84.15 * |
Treatment | Dose [mg/kg] | Locomotor Activity between the 2nd and the 6th min [cm] |
---|---|---|
0.9% NaCl | - | 670.4 ± 47.71 |
IMI | 90 | 448.1 ± 28.63 ** |
Zn | 60 | 664.1 ± 42.09 |
IMI | 60 | 732.0 ± 31.33 |
Zn | 40 | 722.0 ± 40.01 |
IMI + Zn | 60 + 40 | 667.9 ± 69.13 |
IMI-Zn complex | 20 | 731.1 ± 29.03 |
Treatment | Dose [mg/kg] | GPX [nmol/min/mL] | GR [nmol/min/mL] | TAS [µmol/l] | |
---|---|---|---|---|---|
A | Naive | - | 114.52 ± 21.7 | 10.8 ± 2.38 | 391.69 ± 0.08 |
B | 0.9% NaCl | - | 141.26 ± 11.4 | 9.67 ± 1.55 | 391.34 ± 0.27 |
C | IMI | 60 | 157.90 ± 11.1 | 11.2 ± 1.63 | 391.35 ± 0.21 |
D | Zn | 40 | 162.83 ± 7.19 | 10.3 ± 0.62 | 391.68 ± 0.13 |
E | Zn | 60 | 153.92 ± 6.61 | 10.8 ± 3.37 | 375.32 ± 16.3 |
F | IMI + Zn | 60 + 40 | 129.21 ± 9.41 | 7.21 ± 1.05 | 391.68 ± 0.15 |
G | IMI-Zn complex | 5 | 147.13 ± 9.90 | 7.81 ± 1.57 | 391.56 ± 0.13 |
H | IMI-Zn complex | 10 | 159.86 ± 8.50 | 8.32 ± 1.32 | 388.72 ± 1.38 |
I | IMI-Zn complex | 20 | 149.59 ± 11.4 | 6.87 ± 0.43 | 391.24 ± 0.36 |
J | IMI-Zn complex | 40 | 143.90 ± 9.99 | 7.55 ± 0.89 | 391.56 ± 0.11 |
K | IMI-Zn complex | 80 | 143.22 ± 10.9 | 7.98 ± 0.81 | 391.85 ± 0.09 |
L | IMI-Zn complex | 100 | 175.74 ± 15.0 | 8.74 ± 0.89 | 391.31 ± 0.16 |
IMI-Zn Complex [mg/kg] | Pure Zn [mg/kg] | Pure IMI [mg/kg] |
---|---|---|
5 | 0.424 | 3.655 |
10 | 0.849 | 7.310 |
20 | 1.698 | 14.62 |
40 | 3.396 | 29.24 |
80 | 6.792 | 58.48 |
100 | 8.490 | 73.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szopa, A.; Herbet, M.; Poleszak, E.; Serefko, A.; Czylkowska, A.; Piątkowska-Chmiel, I.; Kasperek, K.; Wróbel, A.; Prewencka, P.; Szewczyk, B. Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound. Int. J. Mol. Sci. 2023, 24, 14157. https://doi.org/10.3390/ijms241814157
Szopa A, Herbet M, Poleszak E, Serefko A, Czylkowska A, Piątkowska-Chmiel I, Kasperek K, Wróbel A, Prewencka P, Szewczyk B. Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound. International Journal of Molecular Sciences. 2023; 24(18):14157. https://doi.org/10.3390/ijms241814157
Chicago/Turabian StyleSzopa, Aleksandra, Mariola Herbet, Ewa Poleszak, Anna Serefko, Agnieszka Czylkowska, Iwona Piątkowska-Chmiel, Kamila Kasperek, Andrzej Wróbel, Paulina Prewencka, and Bernadeta Szewczyk. 2023. "Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound" International Journal of Molecular Sciences 24, no. 18: 14157. https://doi.org/10.3390/ijms241814157
APA StyleSzopa, A., Herbet, M., Poleszak, E., Serefko, A., Czylkowska, A., Piątkowska-Chmiel, I., Kasperek, K., Wróbel, A., Prewencka, P., & Szewczyk, B. (2023). Evaluation of Antidepressive-like Behaviours and Oxidative Stress Parameters in Mice Receiving Imipramine-Zinc Complex Compound. International Journal of Molecular Sciences, 24(18), 14157. https://doi.org/10.3390/ijms241814157