SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Demographics
2.2. Whole Exome Sequencing
2.3. RNA Analysis
3. Discussion
4. Materials and Methods
4.1. Study Population and Design
4.2. Bioinformatics
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.; O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. USA 2011, 108, 18032–18037. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Lacchetti, C.; Annunziata, C.M. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline Summary. JCO Oncol. Pract. 2020, 16, e835–e838. [Google Scholar] [CrossRef] [PubMed]
- Radu, M.R.; Pradatu, A.; Duica, F.; Micu, R.; Cretoiu, S.M.; Suciu, N.; Cretoiu, D.; Varlas, V.N.; Radoi, V.E. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021, 9, 693. [Google Scholar] [CrossRef]
- Chava, S.; Gupta, R. Identification of the Mutational Landscape of Gynecological Malignancies. J. Cancer 2020, 11, 4870–4883. [Google Scholar] [CrossRef] [PubMed]
- Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [PubMed]
- Kurman, R.J.; Shih Ie, M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum. Pathol. 2011, 42, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Luo, H.; Hu, Q.; Zhu, H. Identification of Potential Driver Genes Based on Multi-Genomic Data in Cervical Cancer. Front. Genet. 2021, 12, 598304. [Google Scholar] [CrossRef]
- Sur, I.; Neumann, S.; Noegel, A.A. Nesprin-1 role in DNA damage response. Nucleus 2014, 5, 173–191. [Google Scholar] [CrossRef]
- Cartwright, S.; Karakesisoglou, I. Nesprins in health and disease. Semin. Cell Dev. Biol. 2014, 29, 169–179. [Google Scholar] [CrossRef]
- Beaudin, M.; Gamache, P.L.; Gros-Louis, F.; Dupré, N. SYNE1 Deficiency. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Doherty, J.A.; Rossing, M.A.; Cushing-Haugen, K.L.; Chen, C.; Van Den Berg, D.J.; Wu, A.H.; Pike, M.C.; Ness, R.B.; Moysich, K.; Chenevix-Trench, G.; et al. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: An Ovarian Cancer Association Consortium study. Cancer Epidemiol. Biomark. Prev. 2010, 19, 245–250. [Google Scholar] [CrossRef]
- King, S.J.; Nowak, K.; Suryavanshi, N.; Holt, I.; Shanahan, C.M.; Ridley, A.J. Nesprin-1 and nesprin-2 regulate endothelial cell shape and migration. Cytoskeleton 2014, 71, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhang, L.; Yang, M.; Wang, X.; Huang, W.; Wu, X.; Pan, H.; Yuan, L.; Huang, W.; Wu, Y.; et al. Expression profile of SYNE3 and bioinformatic analysis of its prognostic value and functions in tumors. J. Transl. Med. 2020, 18, 355. [Google Scholar] [CrossRef]
- Matsumoto, A.; Hieda, M.; Yokoyama, Y.; Nishioka, Y.; Yoshidome, K.; Tsujimoto, M.; Matsuura, N. Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med. 2015, 4, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Tessema, M.; Willink, R.; Do, K.; Yu, Y.Y.; Yu, W.; Machida, E.O.; Brock, M.; Van Neste, L.; Stidley, C.A.; Baylin, S.B.; et al. Promoter Methylation of Genes in and around the Candidate Lung Cancer Susceptibility Locus 6q23-25. Cancer Res. 2008, 68, 1707–1714. [Google Scholar] [CrossRef]
- Marmé, A.; Zimmermann, H.-P.; Moldenhauer, G.; Schorpp-Kistner, M.; Müller, C.; Keberlein, O.; Giersch, A.; Kretschmer, J.; Seib, B.; Spiess, E.; et al. Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas. Int. J. Cancer 2008, 123, 2048–2056. [Google Scholar] [CrossRef]
- Marme, A.; Zimmermann, H.P.; Moldenhauer, G.; Schorpp-Kistner, M.; Dallner, C.; Lindner, M.; Koppe, A.; Kretschmer, J.; Seib, B.; Spiess, E.; et al. Expression of Drop1, a gene encoding a 350 kDa protein, is downregulated in epithelial malignancies. Cancer Res. 2004, 64, 626. [Google Scholar]
- Li, P.; Xiao, J.; Zhou, B.; Wei, J.; Luo, J.; Chen, W. SYNE1 mutation may enhance the response to immune checkpoint blockade therapy in clear cell renal cell carcinoma patients. Aging 2020, 12, 19316–19324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, Q.; Xu, M.; Liu, D.; Yao, S.; Chen, M. Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer. Front. Immunol. 2022, 13, 901772. [Google Scholar] [CrossRef]
- Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian Cancer Immunotherapy and Personalized Medicine. Int. J. Mol. Sci. 2021, 22, 6532. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Shapira-Frommer, R.; Santin, A.D.; Lisyanskaya, A.S.; Pignata, S.; Vergote, I.; Raspagliesi, F.; Sonke, G.S.; Birrer, M.; Provencher, D.M.; et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the phase II KEYNOTE-100 study. Ann. Oncol. 2019, 30, 1080–1087. [Google Scholar] [CrossRef]
- Cristescu, R.; Aurora-Garg, D.; Albright, A.; Xu, L.; Liu, X.Q.; Loboda, A.; Lang, L.; Jin, F.; Rubin, E.H.; Snyder, A.; et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: A pan-tumor retrospective analysis of participants with advanced solid tumors. J. Immunother. Cancer 2022, 10, e003091. [Google Scholar] [CrossRef]
- Fan, L.; Lei, H.; Lin, Y.; Zhou, Z.; Shu, G.; Yan, Z.; Chen, H.; Zhang, T.; Yin, G. Identification of a Gene Set Correlated With Immune Status in Ovarian Cancer by Transcriptome-Wide Data Mining. Front. Mol. Biosci. 2021, 8, 670666. [Google Scholar] [CrossRef]
- Li, S.; Fang, Y. MS4A1 as a Potential Independent Prognostic Factor of Breast Cancer Related to Lipid Metabolism and Immune Microenvironment Based on TCGA Database Analysis. Med. Sci. Monit. 2022, 28, e934597. [Google Scholar] [CrossRef]
- Chen, S.; Xie, P.; Cowan, M.; Huang, H.; Cardenas, H.; Keathley, R.; Tanner, E.J.; Fleming, G.F.; Moroney, J.W.; Pant, A.; et al. Epigenetic priming enhances antitumor immunity in platinum-resistant ovarian cancer. J. Clin. Investig. 2022, 132, 158800. [Google Scholar] [CrossRef] [PubMed]
- Fucikova, J.; Hensler, M.; Kasikova, L.; Lanickova, T.; Pasulka, J.; Rakova, J.; Drozenova, J.; Fredriksen, T.; Hraska, M.; Hrnciarova, T.; et al. An Autologous Dendritic Cell Vaccine Promotes Anticancer Immunity in Patients with Ovarian Cancer with Low Mutational Burden and Cold Tumors. Clin. Cancer Res. 2022, 28, 3053–3065. [Google Scholar] [CrossRef]
- Liu, J.; Murali, T.; Yu, T.; Liu, C.; Sivakumaran, T.A.; Moseley, H.N.B.; Zhulin, I.B.; Weiss, H.L.; Durbin, E.B.; Ellingson, S.R.; et al. Characterization of Squamous Cell Lung Cancers from Appalachian Kentucky. Cancer Epidemiol. Biomark. Prev. 2019, 28, 348–356. [Google Scholar] [CrossRef]
- Shultz, C.; Gates, C.; Petros, W.; Ross, K.; Veltri, L.; Craig, M.; Wen, S.; Primerano, D.A.; Hazlehurst, L.; Denvir, J.; et al. Association of genetic variants and survival in patients with acute myeloid leukemia in rural Appalachia. Cancer Rep. 2023, 6, e1746. [Google Scholar] [CrossRef]
- Riggs, M.J.; Lin, N.; Wang, C.; Piecoro, D.W.; Miller, R.W.; Hampton, O.A.; Rao, M.; Ueland, F.R.; Kolesar, J.M. DACH1 mutation frequency in endometrial cancer is associated with high tumor mutation burden. PLoS ONE 2020, 15, e0244558. [Google Scholar] [CrossRef]
Variable | Total Population N = 50 | SYNE1 WT N = 34 (% of Pop) | SYNE1 Mut N = 16 (% of Pop) | p-Value |
---|---|---|---|---|
Age | 64 years (IQR 53, 72) | 63 (IQR 54, 70) | 65 (IQR 52, 72) | 0.9 |
BMI | 27 kg/m2 (IQR 24, 32) | 27 kg/m2 (IQR 23, 31) | 28 kg/m2 (IQR 24, 38) | 0.2 |
Race | ||||
White | 50 (100%) | 34 (100%) | 16 (100%) | 1 |
Stage | ||||
I | 7 (14%) | 4 (12%) | 3 (19%) | >0.9 |
II | 8 (16%) | 5 (15%) | 3 (19%) | |
III | 19 (38%) | 12 (35%) | 7 (44%) | |
IV | 8 (16%) | 5 (15%) | 3 (19%) | |
Unknown | 8 (16%) | 8 (23%) | 0 (0%) | |
Histology | ||||
Carcinosarcoma | 2 (4%) | 2 (5.9%) | 0 (0%) | 0.9 |
Endometrioid | 4 (8%) | 2 (5.9%) | 2 (12%) | |
Granulosa cell tumor | 3 (6%) | 3 (7.8%) | 0 (0%) | |
High grade serous | 33 (66%) | 21 (62%) | 12 (75%) | |
Mucinous | 1 (2%) | 1 (2.9%) | 0 (0%) | |
Other | 7 (14%) | 5 (15%) | 2 (12%) | |
Urban setting | ||||
Metropolitan county | 14 (28%) | 11 (32%) | 3 (19%) | 0.5 |
Non-metropolitan | 36 (72%) | 23 (68%) | 13 (81%) | |
Appalachia status | ||||
Appalachian county | 32 (64%) | 22 (65%) | 10 (62%) | 0.9 |
Non-Appalachian | 18 (36%) | 12 (35%) | 6 (38%) | |
Insurance provider | ||||
Medicare | 22 (44%) | 13 (38%) | 9 (56%) | 0.14 |
Private insurance | 21 (42%) | 17 (50%) | 4 (25%) | |
Medicaid | 4 (8%) | 3 (8.8%) | 1 (6.2%) | |
Not insured, self-pay | 1 (2%) | 0 (0%) | 1 (6.2%) | |
Insurance, NOS | 1 (2%) | 1 (2.9%) | 0 (0%) | |
Unknown | 1 (2%) | 0 (0%) | 1 (6.2%) | |
Smoking status | ||||
Non-smoker | 30 (62%) | 21 (66%) | 9 (56%) | 0.5 |
Smoker | 18 (38%) | 11 (34%) | 7 (44%) | |
Recurrence | 15 (30%) | 12 (35%) | 3 (19%) | 0.3 |
SYNE1 WT | SYNE1 Mutant | p-Value | |
---|---|---|---|
TMB < 10 | 22 | 5 | 0.02 |
TMB ≥ 10 | 10 | 10 | |
MSI < 20 | 32 | 15 | N/a |
MSI > 20 | 0 | 0 |
TCGA Frequency (%) N = 523 | MCC Frequency (%) N = 50 | q-Value | |
---|---|---|---|
Higher mutation frequency in MCC | |||
TTN | 110 (21%) | 40 (80%) | <0.001 * |
MUC16 | 41 (8%) | 25 (50%) | <0.001 * |
CSMD3 | 38 (7%) | 11 (22%) | <0.001 * |
USH2A | 32 (6%) | 14 (28%) | <0.001 * |
RYR2 | 28 (5%) | 13 (26%) | <0.001 * |
SYNE1 | 26 (5%) | 16 (32%) | <0.001 * |
BRCA1 | 18 (3%) | 11 (22%) | <0.001 * |
BRCA2 | 15 (2.9%) | 13 (26%) | <0.001 * |
KMT2D | 9 (1.9%) | 18 (36%) | <0.001 * |
PIK3CA | 8 (1.5%) | 10 (20%) | <0.001 * |
PTEN | 7 (1.3%) | 10 (20%) | <0.001 * |
ARID1A | 4 (0.8%) | 10 (20%) | 0.032 * |
PIK3R1 | 1 (0.2%) | 4 (8%) | 0.022 * |
MSH2 | 4 (0.8%) | 4 (8%) | 0.090 |
MSH6 | 3 (0.6%) | 1 (2%) | 0.140 |
KRAS | 6 (1.1%) | 2 (4%) | 0.149 |
Lower mutation frequency in MCC | |||
TP53 | 373 (71%) | 25 (50%) | 0.01 * |
PPP2R1A | 5 (1%) | 0 (0%) | 1 |
Gene | SYNE1 WT, N = 34 (%) | SYNE1 Mut, N = 16 (%) | p-Value 1 | q-Value 2 |
---|---|---|---|---|
KMT2D | 8 (24%) | 10 (62%) | 0.007 | 0.1 |
USH2A | 6 (18%) | 8 (50%) | 0.04 | 0.3 |
BRCA2 | 6 (18%) | 7 (44%) | 0.082 | 0.4 |
FBXW7 | 1 (2.9%) | 2 (12%) | 0.2 | 0.6 |
PIK3CA | 5 (15%) | 5 (31%) | 0.3 | 0.6 |
MSH6 | 0 (0%) | 1 (6.2%) | 0.3 | 0.6 |
CTNNB1 | 2 (5.9%) | 3 (19%) | 0.3 | 0.8 |
KRAS | 1 (2.9%) | 1 (6.2%) | 0.5 | 0.7 |
MECOM | 3 (8.8%) | 0 (0%) | 0.5 | 0.7 |
KMT2C | 10 (29%) | 6 (38%) | 0.6 | 0.7 |
MSH2 | 2 (5.9%) | 2 (12%) | 0.6 | 0.7 |
BRCA1 | 7 (21%) | 4 (25%) | 0.7 | 0.8 |
PTEN | 6 (18%) | 4 (25%) | 0.7 | 0.8 |
TP53 | 17 (50%) | 8 (50%) | >0.9 | >0.9 |
Genes | logFC | p-Value | Q-Value | Functions | |
---|---|---|---|---|---|
Upregulated | |||||
ZCCHC12 | 5.03431 | 1.19 × 10−13 | 4.46 × 10−9 | Transcription regulation | |
DKK4 | 8.38282 | 1.89 × 10−12 | 3.55 × 10−8 | Cell-signaling | |
TPH1 | 3.60935 | 7.84 × 10−12 | 9.79 × 10−8 | Neurotransmitter biosynthesis | |
CCL21 | 4.37155 | 4.33 × 10−11 | 4.06 × 10−7 | Cytokine signaling | |
SLC14A1 | 3.95827 | 1.12 × 10−10 | 8.37 × 10−7 | Membrane transporter | |
TRH | 4.89343 | 2.51 × 10−10 | 1.57 × 10−6 | Hormone signaling | |
MS4A1 | 4.28194 | 1.84 × 10−9 | 9.85 × 10−6 | Lymphocyte differentiation | |
C1QTNF9B | 3.37106 | 5.89 × 10−9 | 2.76 × 10−5 | Cell-signaling | |
NIBAN3 | 2.75499 | 9.52 × 10−9 | 3.96 × 10−5 | Apoptosis regulator | |
TDRD15 | 3.54089 | 3.36 × 10−8 | 1.25 × 10−4 | Nucleic acid binding | |
Downregulated | |||||
ACTC1 | −6.50242 | 4.26 × 10−6 | 3.63 × 10−3 | Cell motility | |
RPL7AP9 | −2.5812 | 6.90 × 10−6 | 5.38 × 10−3 | Pseudogene | |
RFX4 | −4.67237 | 7.48 × 10−6 | 5.61 × 10−3 | Transcription regulation | |
KRT6C | −7.43576 | 1.91 × 10−5 | 1.09 × 10−2 | Structural integrity | |
ELAVL2 | −3.95196 | 2.33 × 10−5 | 1.23 × 10−2 | Post-translational modifications | |
MTCO2P12 | −3.52321 | 2.42 × 10−5 | 1.24 × 10−2 | Mitochondrial electron transport | |
KRT6B | −6.06818 | 2.85 × 10−5 | 1.37 × 10−2 | Cytoskeleton signaling | |
C4BPA | −3.97177 | 3.93 × 10−5 | 1.71 × 10−2 | Complement activation | |
AMY1C | −3.70389 | 6.83 × 10−5 | 2.33 × 10−2 | Amylase enzyme | |
PLAAT1 | −1.81246 | 6.89 × 10−5 | 2.33 × 10−2 | Acetyltransferase activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harbin, L.M.; Lin, N.; Ueland, F.R.; Kolesar, J.M. SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 14212. https://doi.org/10.3390/ijms241814212
Harbin LM, Lin N, Ueland FR, Kolesar JM. SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer. International Journal of Molecular Sciences. 2023; 24(18):14212. https://doi.org/10.3390/ijms241814212
Chicago/Turabian StyleHarbin, Laura M., Nan Lin, Frederick R. Ueland, and Jill M. Kolesar. 2023. "SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer" International Journal of Molecular Sciences 24, no. 18: 14212. https://doi.org/10.3390/ijms241814212
APA StyleHarbin, L. M., Lin, N., Ueland, F. R., & Kolesar, J. M. (2023). SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer. International Journal of Molecular Sciences, 24(18), 14212. https://doi.org/10.3390/ijms241814212