Redox Status and Telomere–Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Collection and Measurement
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 3 August 2023).
- Boudoulas, K.D.; Triposciadis, F.; Geleris, P.; Boudoulas, H. Coronary Atherosclerosis: Pathophysiologic Basis for Diagnosis and Management. Prog. Cardiovasc. Dis. 2016, 58, 676–692. [Google Scholar] [CrossRef]
- Dudas, K.; Björck, L.; Jernberg, T.; Lappas, G.; Wallentin, L.; Rosengren, A. Differences between acute myocardial infarction and unstable angina: A longitudinal cohort study reporting findings from the Register of Information and Knowledge about Swedish Heart Intensive Care Admissions (RIKS-HIA). BMJ Open 2013, 3, e002155. [Google Scholar] [CrossRef]
- Jneid, H.; Addison, D.; Bhatt, D.L.; Fonarow, G.C.; Gokak, S.; Grady, K.L.; Green, L.A.; Heidenreich, P.A.; Ho, P.M.; Jurgens, C.Y.; et al. 2017 AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non-ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. J. Am. Coll. Cardiol. 2017, 70, 2048–2090. [Google Scholar] [CrossRef]
- Kumar, A.; Cannon, C.P. Acute coronary syndromes: Diagnosis and management, part I. Mayo. Clin. Proc. 2009, 84, 917–938. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165, Erratum in Eur. Heart J. 2019, 40, 3096. [Google Scholar] [CrossRef]
- Head, S.J.; Farooq, V.; Serruys, P.W.; Kappetein, A.P. The SYNTAX score and its clinical implications. Heart 2014, 100, 169–177. [Google Scholar] [CrossRef]
- Bundhun, P.K.; Sookharee, Y.; Bholee, A.; Huang, F. Application of the SYNTAX score in interventional cardiology: A systematic review and meta-analysis. Medicine 2017, 96, e7410. [Google Scholar] [CrossRef]
- Kotur-Stevuljevic, J.; Memon, L.; Stefanovic, A.; Spasic, S.; Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Kalimanovska-Ostric, D.; Jelić-Ivanovic, Z.; Zunic, G. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin. Biochem. 2007, 40, 181–187. [Google Scholar] [CrossRef]
- Guzonjic, A.; Sopic, M.; Ostanek, B.; Kotur-Stevuljevic, J. Telomere length as a biomarker of aging and diseases. Arch. Pharm. 2022, 72, 105–126. [Google Scholar] [CrossRef]
- Coluzzi, E.; Colamartino, M.; Cozzi, R.; Leone, S.; Meneghini, C.; O’Callaghan, N.; Sgura, A. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS ONE 2014, 9, e110963. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Bose, A.; Lee, C.Y.; Opresko, P.L.; Myong, S. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res. 2017, 45, 11752–11765. [Google Scholar] [CrossRef] [PubMed]
- Aeby, E.; Ahmed, W.; Redon, S.; Simanis, V.; Lingner, J. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Rep. 2016, 17, 3107–3114. [Google Scholar] [CrossRef]
- Herrington, W.G.; Nye, H.J.; Hammersley, M.S.; Watkinson, P.J. Are arterial and venous samples clinically equivalent for the estimation of pH, serum bicarbonate and potassium concentration in critically ill patients? Diabet. Med. 2012, 29, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Park, S.J.; Shin, H.S.; Jung, Y.S.; Rim, H. Correlation between peripheral venous and arterial blood gas measurements in patients admitted to the intensive care unit: A single-center study. Kidney Res. Clin. Pract. 2013, 32, 32–38. [Google Scholar] [CrossRef]
- Ayaz, F.; Furrukh, M.; Arif, T.; Ur Rahman, F.; Ambreen, S. Correlation of Arterial and Venous pH and Bicarbonate in Patients With Renal Failure. Cureus 2021, 13, e19519. [Google Scholar] [CrossRef]
- Matin, E.; Ghaffari, S.; Garjani, A.; Roshanravan, N.; Matin, S.; Mesri Alamdari, N.; Safaie, N. Oxidative stress and its association with ST resolution and clinical outcome measures in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention. BMC Res. Notes 2020, 13, 525. [Google Scholar] [CrossRef]
- Sotoudeh Anvari, M.; Mortazavian Babaki, M.; Boroumand, M.A.; Eslami, B.; Jalali, A.; Goodarzynejad, H. Relationship between calculated total antioxidant status and atherosclerotic coronary artery disease. Anatol. J. Cardiol. 2016, 16, 689–695. [Google Scholar] [CrossRef]
- Di Filippo, C.; Cuzzocrea, S.; Rossi, F.; Marfella, R.; D’Amico, M. Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc. Drug. Rev. 2006, 24, 77–87. [Google Scholar] [CrossRef]
- Rios-Navarro, C.; Daghbouche-Rubio, N.; Gavara, J.; de Dios, E.; Perez, N.; Vila, J.M.; Chorro, F.J.; Ruiz-Sauri, A.; Bodi, V. Ischemia-reperfusion injury to coronary arteries: Comprehensive microscopic study after reperfused myocardial infarction. Ann. Anat. 2021, 238, 151785. [Google Scholar] [CrossRef]
- Shrestha, B.; Prasai, P.K.; Kaskas, A.M.; Khanna, A.; Letchuman, V.; Letchuman, S.; Alexander, J.S.; Orr, A.W.; Woolard, M.D.; Pattillo, C.B. Differential arterial and venous endothelial redox responses to oxidative stress. Microcirculation 2018, 25, e12486. [Google Scholar] [CrossRef]
- Szasz, T.; Thompson, J.M.; Watts, S.W. A comparison of reactive oxygen species metabolism in the rat aorta and vena cava: Focus on xanthine oxidase. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1341–H1350. [Google Scholar] [CrossRef]
- Börekçi, A.; Gür, M.; Türkoğlu, C.; Selek, Ş.; Baykan, A.O.; Şeker, T.; Harbalıoğlu, H.; Özaltun, B.; Makça, İ.; Aksoy, N.; et al. Oxidative Stress and Spontaneous Reperfusion of Infarct-Related Artery in Patients With ST-Segment Elevation Myocardial Infarction. Clin. Appl. Thromb. Hemost. 2016, 22, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Bagatini, M.D.; Martins, C.C.; Battisti, V.; Gasparetto, D.; da Rosa, C.S.; Spanevello, R.M.; Ahmed, M.; Schmatz, R.; Schetinger, M.R.; Morsch, V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels 2011, 26, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Alhomida, A.S.; Sobki, S.H. Lipid profile of patients with acute myocardial infarction and its correlation with systemic inflammation. Biomark. Insights 2013, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, R.; Sotomi, Y.; Mancone, M.; Whan Lee, C.; Ahn, J.M.; Onuma, Y.; Lemos, P.A.; van Geuns, R.J.; Park, S.J.; Serruys, P.W. Impact of the SYNTAX scores I and II in patients with diabetes and multivessel coronary disease: A pooled analysis of patient level data from the SYNTAX, PRECOMBAT, and BEST trials. Eur. Heart J. 2017, 38, 1969–1977. [Google Scholar] [CrossRef]
- Yammine, M.; Itagaki, S.; Pawale, A.; Toyoda, N.; Reddy, R.C. SYNTAX score may predict the severity of atherosclerosis of the ascending aorta. J. Thorac. Dis. 2017, 9, 3859–3865. [Google Scholar] [CrossRef]
- Brugaletta, S.; Magro, M.; Simsek, C.; Heo, J.H.; de Boer, S.; Ligthart, J.; Witberg, K.; Farooq, V.; van Geuns, R.J.; Schultz, C.; et al. Plaque compositional Syntax score: Combining angiography and lipid burden in coronary artery disease. JACC Cardiovasc. Imaging 2012, 5 (Suppl. 3), S119–S121. [Google Scholar] [CrossRef]
- Van Belle, E.; Dallongeville, J.; Vicaut, E.; Degrandsart, A.; Baulac, C.; Montalescot, G. OPERA Investigators Ischemia-modified albumin levels predict long-term outcome in patients with acute myocardial infarction. Am. Heart J. 2010, 159, 570–576. [Google Scholar] [CrossRef]
- Panjwani, J.P.; Naqvi, F.; Ruqaya Siddiqui, I.A.; Farhan, E.; Fawwad, A.; Zakir, U. Role of ischemia modified albumin and total oxidative stress as a biomarker in the diagnosis of myocardial infarction in Pakistani population. Int. J. Biol. Biotech. 2019, 16, 667–671. [Google Scholar]
- Kotur-Stevuljević, J.; Vemić, S.; Spasojević-Kalimanovska, V.; Spasić, S.; Jelić-Ivanović, Z. Association of prooxidative-antioxidative balance (PAB) with inflammation markers in coronary artery disease patients. Free Radical. Res. 2009, 43, 96–97. [Google Scholar]
- Nabatchican, F.; Einollahi, N.; Kazemi Khaledi, A. Relationship between prooxidant-antioxidant balance and severity of coronary artery disease in patients of Imam Khomeini Hospital of Tehran, Iran. Acta Med. Iran 2014, 52, 116–121. [Google Scholar] [PubMed]
- Antunovic, T.; Stefanovic, A.; Gligorovic Barhanovic, N.; Miljkovic, M.; Radunovic, D.; Ivanisevic, J.; Prelevic, V.; Bulatovic, N.; Ratkovic, M.; Stojanov, M. Prooxidant-antioxidant balance, hsTnI and hsCRP: Mortality prediction in haemodialysis patients, two-year follow-up. Ren. Fail. 2017, 39, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, D.; Ekin, S.; Sahinalp, S. Evaluations of Antioxidant Enzyme Activities, Total Sialic Acid and Trace Element Levels in Coronary Artery Bypass Grafting Patients. Braz. J. Cardiovasc. Surg. 2021, 36, 769–779. [Google Scholar] [CrossRef]
- Aksoy, S.; Cam, N.; Gurkan, U.; Oz, D.; Özden, K.; Altay, S.; Durmus, G.; Agirbasli, M. Oxidative stress and severity of coronary artery disease in young smokers with acute myocardial infarction. Cardiol. J. 2012, 19, 381–386. [Google Scholar] [CrossRef]
- Vukašinović, A.; Ostanek, B.; Klisic, A.; Kafedžić, S.; Zdravković, M.; Ilić, I.; Sopić, M.; Hinić, S.; Stefanović, M.; Memon, L.; et al. Telomere-telomerase system status in patients with acute myocardial infarction with ST-segment elevation—Relationship with oxidative stress. Arch. Med. Sci. 2021, 19, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Morrow, D.A.; Giugliano, R.P.; Burton, P.B.; Murphy, S.A.; McCabe, C.H.; Gibson, C.M.; Braunwald, E. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 2005, 111, 2042–2049. [Google Scholar] [CrossRef]
- Feng, Q.Z.; Zhao, Y.S.; Li, Y.F. Effect of haemoglobin concentration on the clinical outcomes in patients with acute myocardial infarction and the factors related to haemoglobin. BMC Res. Notes 2011, 4, 142. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; Chang, Y.F.; Otvos, J.; Evans, R.W.; Orchard, T.J. Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 2003, 46, 674–682. [Google Scholar] [CrossRef]
- Xu, W.; Guan, H.; Gao, D.; Wang, Z.; Ba, Y.; Yang, H.; Shen, W.; Lian, J.; Zhou, J. The Association of Syntax Score with Levels of Lipoprotein (a) and Inflammatory Biomarkers in Patients with Stable Coronary Artery Disease and Different Low-Density Lipoprotein Cholesterol Levels. Diabetes Metab. Syndr. Obes. 2020, 13, 4297–4310. [Google Scholar] [CrossRef] [PubMed]
- Karabağ, Y.; Çağdaş, M.; Rencuzogullari, I.; Karakoyun, S.; Artaç, İ.; İliş, D.; Atalay, E.; Yesin, M.; Gürsoy, M.O.; Halil Tanboğa, I. Relationship between C-reactive protein/albumin ratio and coronary artery disease severity in patients with stable angina pectoris. J. Clin. Lab. Anal. 2018, 32, e22457. [Google Scholar] [CrossRef] [PubMed]
- Kotur-Stevuljevic, J.; Bogavac-Stanojevic, N.; Jelic-Ivanovic, Z.; Stefanovic, A.; Gojkovic, T.; Joksic, J.; Sopic, M.; Gulan, B.; Janac, J.; Milosevic, S. Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis 2015, 241, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Vukašinović, A.R.; Kotur-Stevuljević, J.M.; Mlakar, V.; Sopić, M.D.; Cvetković, Z.P.; Petković, M.R.; Spasojević-Kalimanovska, V.V.; Bogavac-Stanojević, N.B.; Ostanek, B. Telomerase stability and evaluation of real-time telomeric repeat amplification protocol. Scand. J. Clin. Lab. Investig. 2019, 79, 188–193. [Google Scholar] [CrossRef]
- Jodczyk, S.; Pearson, J.F.; Aitchison, A.; Miller, A.L.; Hampton, M.B.; Kennedy, M.A. Telomere length measurement on the Roche LightCycler 480 Platform. Genet. Test Mol. Biomark. 2015, 19, 63–68. [Google Scholar] [CrossRef] [PubMed]
Parameter | AMI Patients |
---|---|
N | 92 |
Age, years # | 60.8 ± 11.72 |
Body mass index, kg/m2 | 25.7 (23.6–28.7) |
Syntax score, points | 13 (8–19) |
High blood pressure, % | 29.7 |
Smokers, % | 42.3 |
Dyslipidaemia, % | 49.3 |
Glucose intolerance, % | 11.8 |
Statins, % | 17.2 |
Coronary vessels with atherosclerotic occlusion, number | 1–5 |
Implanted stents, number | 1–5 |
Left chamber ejection fraction rate, % | 42.1 |
BMI, kg/m2 | 25.7 (23.6–28.7) |
Triglycerides, mmol/L | 1.75 (1.20–2.39) |
Total cholesterol, mmol/L | 5.58 (4.66–6.42) |
Total blood proteins, g/L | 69.5 (65.0–75.0) |
Troponin I, mg/L | 0.41 (0.07–2.93) |
Creatine kinase activity, IU/L | 204 (100–487) |
Haemoglobin, g/L # | 144 ± 16.2 |
Parameter | AMI Patients | p | |
---|---|---|---|
Peripheral Blood Sample | Arterial Blood Sample | ||
AOPP, μmol/L | 25.6 (14.7–35.6) | 51.9 (37.8–76.2) | <0.001 |
Total SH groups, mmol/L | 0.443 (0.325–0.561) | 0.344 (0.255–0.382) | <0.001 |
PAB, U/L | 117 (102–133) | 106 (87–152) | 0.388 |
TAS, μmol/L | 910 (771–1138) | 916 (481–1415) | 0.496 |
TOS, μmol/L | 20.4 (8.0–27.9) | 8.7 (5.1–19.2) | 0.002 |
O2•−, μmol/L NBT/min/L | 56 (38–77) | 160 (48–255) | <0.001 |
SOD, U/L | 141 (124–187) | 155 (109–203) | 0.695 |
PON1, U/L | 284 (172–474) | 275 (166–618) | 0.609 |
IMA, absorbance units | 0.296 (0.078–0.405) | 0.486 (0.406–0.593) | <0.001 |
MDA, μmol/L | 3.26 (2.44–6.22) | 3.96 (3.43–4.63) | 0.743 |
Leukocyte telomere length, T/S ratio | 1.117 (0.928–1.343) | 1.144 (0.868–1.589) | 0.834 |
Telomerase activity, log activity | 0.375 (0.350–0.396) | 0.359 (0.345–0.387) | 0.419 |
Sample Type | Factors | Included Variables with Loadings | Factor Variability—Single (%) | Factor Variability—Cumulative (%) |
---|---|---|---|---|
Peripheral Blood * | Triglyceride–protein factor | AOPP (0.748) TG (0.733) SH-groups (0.627) | 17.1 | 48.6 |
Oxidative–telomere factor | PAB (−0.734) TAS (0.669) IMA (0.624) LTL (0.504) | 12.1 | ||
Cardiovascular disease biomarker factor | Troponin I (0.891) CK-activity (0.864) BMI (−0.585) | 10.9 | ||
Cholesterol–protein factor | Haemoglobin (0.663) Total cholesterol (0.640) Total serum proteins (0.592) | 8.5 | ||
Arterial Blood ** | Oxidative factor | O2•− (0.829) PAB (0.797) TAS (0.731) IMA (0.563) | 43.3 | 65.9 |
Arterial oxidative–telomere factor | LTL (0.790) PON1 (0.766) TOS (0.629) | 11.4 | ||
Oxidative–telomerase factor | Telomerase activity (−0.855) SOD (−0.501) TOS (0.545) | 11.2 |
Sample Type | Predictors | OR | 95th CI | p |
---|---|---|---|---|
Peripheral Blood | Triglyceride–protein factor | 2.063 | 0.998–4.266 | 0.051 |
Oxidative telomere factor | 0.427 | 0.194–0.943 | 0.035 | |
Cardiovascular disease biomarker factor | 0.876 | 0.506–1.518 | 0.637 | |
Cholesterol–protein factor | 0.379 | 0.184–0.777 | 0.008 | |
Arterial Blood | Oxidative factor | 0.481 | 0.208–1.116 | 0.088 |
Arterial oxidative telomere factor | 1.634 | 0.727–3.671 | 0.235 | |
Oxidative telomerase factor | 1.086 | 0.455–2.590 | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukašinović, A.; Klisic, A.; Ostanek, B.; Kafedžić, S.; Zdravković, M.; Ilić, I.; Sopić, M.; Hinić, S.; Stefanović, M.; Bogavac-Stanojević, N.; et al. Redox Status and Telomere–Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link? Int. J. Mol. Sci. 2023, 24, 14308. https://doi.org/10.3390/ijms241814308
Vukašinović A, Klisic A, Ostanek B, Kafedžić S, Zdravković M, Ilić I, Sopić M, Hinić S, Stefanović M, Bogavac-Stanojević N, et al. Redox Status and Telomere–Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link? International Journal of Molecular Sciences. 2023; 24(18):14308. https://doi.org/10.3390/ijms241814308
Chicago/Turabian StyleVukašinović, Aleksandra, Aleksandra Klisic, Barbara Ostanek, Srdjan Kafedžić, Marija Zdravković, Ivan Ilić, Miron Sopić, Saša Hinić, Milica Stefanović, Nataša Bogavac-Stanojević, and et al. 2023. "Redox Status and Telomere–Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link?" International Journal of Molecular Sciences 24, no. 18: 14308. https://doi.org/10.3390/ijms241814308
APA StyleVukašinović, A., Klisic, A., Ostanek, B., Kafedžić, S., Zdravković, M., Ilić, I., Sopić, M., Hinić, S., Stefanović, M., Bogavac-Stanojević, N., Marc, J., Nešković, A. N., & Kotur-Stevuljević, J. (2023). Redox Status and Telomere–Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link? International Journal of Molecular Sciences, 24(18), 14308. https://doi.org/10.3390/ijms241814308