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Abstract: Nearly half of children with fragile X syndrome experience sleep problems including
trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep–wake
cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity.
Electroencephalography (EEG) results were compared with published rest–activity patterns to deter-
mine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep–wake patterns in adult wild
type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings
manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep–wake
patterns similar to wild type littermates when maintained on a control purified ingredient diet.
Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid
eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which
corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep
periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes
(number and length of sleep and wake bouts) supported the altered sleep states in response to a
ketogenic diet and were correlated with altered rest–activity cycles. While actigraphy may be a less
expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did
not correlate with EEG sleep states.
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1. Introduction

Fragile X syndrome (FXS) is a rare developmental disability with an estimated preva-
lence of 1 in 5000 [1]. Loss of expression of the RNA binding protein fragile X messenger
ribonucleoprotein (FMRP) in FXS results in intellectual disability, autism, and seizures [1].
Many FXS phenotypes are manifested in Fmr1KO mice which lack expression of FMRP [2];
however, there has been difficulty translating promising therapeutics from the mouse
model to human clinical trials. The development of validated outcome measures that trans-
late between preclinical and clinical studies is a critical need for the FXS community [3].
Here we examined sleep architecture in Fmr1KO mice comparing EEG sleep measures to
published actigraphy findings. We also explored the effects of ketogenic diet (KD) therapy,
which has been shown to reduce hyperactivity and seizures in Fmr1KO mice [4], on sleep
measures. We hypothesize that sleep states will be altered in Fmr1KO mice and rescued
with KD.

Parents report that nearly half of children with FXS experience sleep difficulties with
the most frequent issues involving sleep onset insomnia, reduced total sleep time and
frequent awakenings [5–12]. Sleep disorders observed include obstructive sleep apnea
(OSA) and nocturnal enuresis [6,12–15]. Polysomnography studies in FXS subjects showed
a higher percentage of stage 1 non-rapid eye movement (NREM) sleep, a lower percentage
of rapid eye movement (REM) sleep, and an increase in REM latency compared to normal
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controls indicative of disrupted sleep microstructure [16,17]. Considering the essential role
that sleep plays in learning and memory consolidation, rescuing sleep deficits in FXS may
be therapeutic, and sleep electroencephalography (EEG) and actigraphy may be viable
outcome measures that translate between preclinical and clinical FXS studies. Thus, it is
important to discern if there are altered sleep phenotypes in FXS preclinical models such as
the Fmr1KO mouse.

The classic KD was introduced in 1921 to replace starvation in the treatment of seizures
and is in use today to treat drug refractory epilepsy [18]. KDs are high in fat with moderate
levels of protein and low carbohydrate. They force the body into a state of ketosis where
ketones are used as the energy source instead of glucose. In recent years, the KD has become
the new fad diet for weight loss and is being tested in numerous neurological models [19].
Recent studies in human and rodent models of autism indicate that the KD improves core
behavioral symptoms [20–28]. There is an established link between circadian dysfunction
and FXS-related proteins and accumulating evidence that the KD rewires the circadian
clock [29–39]. Circadian rhythms are the 24-h cycles generated by a master pacemaker lo-
cated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus of mammals. They
control locomotor activity, feeding behavior, sleep–wake patterns, and other physiological
and metabolic pathways. The importance of diet and circadian rhythm to sleep behavior
are well recognized [30,35]. The KD decreases the hyperexcitability of in vitro epileptic
networks, improves diurnal rhythmicity in epileptic mice, and improves slow-wave sleep
and sleep quality in children with refractory epilepsy [39–42]. These findings prompt the
hypothesis that the KD may be beneficial in attenuating sleep disturbances in FXS.

This study compares sleep states acquired by sleep EEG to published rest–activity
cycles attained by actigraphy. EEG is the gold standard clinical tool employed in sleep
research [43]; however, the clinical feasibility of overnight polysomnography is reduced
in persons with developmental disabilities. While actigraphy is a convenient and indi-
rect way of assessing sleep measures, details on sleep microstructure cannot be obtained.
Actigraphy offers several advantages over polysomnography for preclinical research in-
cluding 24-7 continuous recordings, ease of use, less invasive, and reduced cost [44]. Sleep
measured by EEG can provide details of the sleep microarchitecture.

2. Results
2.1. Study Design

WT and Fmr1KO male littermate mice were randomly weaned onto control and KD at
postnatal day 18 (P18), maintained on respective diets throughout the study, and tested
for EEG sleep phenotypes at 5–6 months of age (Figures 1 and S1). Similar to our prior
study [4], there was significantly reduced body weight and increased blood ketones in WT
and Fmr1KO mice in response to KD (Figure S2). EEG recordings were collected for 7 days
and days 4 and 6 scored manually for sleep states (Figure S3, hypnograms).

2.2. Differences in 24-h Vigilance State Distribution Are Diet Dependent

Neither 24- nor 12-h time bins indicated WT versus Fmr1 genotype-specific effects in
the percent of time spent awake, asleep or in NREM or REM sleep in mice fed AIN-76A
purified ingredient diet (Figure 2 and Table S1 (statistics)). Conversely, KD increased %
NREM sleep by 13% in WT versus Fmr1KO mice. KD significantly reduced % time awake in
both genotypes (21%↓WT and 12%↓ Fmr1KO) and elevated % NREM (29%↑WT and 18%↑
Fmr1KO) compared to AIN-76 controls.

2.3. KD Increases Time Spent in Sleep during the Dark Cycle

Mice are nocturnal with higher activity levels during the dark cycle and increased sleep
during the light cycle. Binning the data by light and dark cycles indicated that KD increased
time spent in NREM sleep during lights off in both genotypes, but significantly more in
WT compared to Fmr1KO. Thus, a genotype-specific effect was observed when mice were
fed KD with a 15% decrease in NREM sleep during the dark cycle in Fmr1KO compared to
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WT. The KD significantly decreased % wake time by 34% in WT and 23% in Fmr1KO and
increased % NREM sleep by 79% in WT and 54% in Fmr1KO during the dark cycle compared
to respective controls maintained on AIN-76A (Figures 2 and S4 (pie charts) and Table S1).
The KD decreased REM sleep by 27% in WT and 24% in Fmr1KO during the light cycle and
increased REM sleep during the dark cycle by 84% in WT and 55% in Fmr1KO.
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Figure 1. Study Design. Male WT and Fmr1KO mice were randomized to AIN-76A versus KD at P18. 
At 5 months of age, mice underwent surgery for EEG/EMG electrode implantation followed by EEG 
recordings over 7 days and data analysis. Mice were weighed on the day of surgery. Blood samples 
were tested for glucose and ketone levels at the time of euthanization. Representative sleep stage 
hypnograms as a function of genotype and diet are shown where yellow = wake state, blue = NREM 
sleep, and red = REM sleep. 

2.2. Differences in 24-h Vigilance State Distribution Are Diet Dependent 
Neither 24- nor 12-h time bins indicated WT versus Fmr1 genotype-specific effects in 

the percent of time spent awake, asleep or in NREM or REM sleep in mice fed AIN-76A 
purified ingredient diet (Figure 2 and Table S1 (statistics)). Conversely, KD increased % 
NREM sleep by 13% in WT versus Fmr1KO mice. KD significantly reduced % time awake 
in both genotypes (21%↓ WT and 12%↓ Fmr1KO) and elevated % NREM (29%↑ WT and 
18%↑ Fmr1KO) compared to AIN-76 controls. 

Figure 1. Study Design. Male WT and Fmr1KO mice were randomized to AIN-76A versus KD at P18.
At 5 months of age, mice underwent surgery for EEG/EMG electrode implantation followed by EEG
recordings over 7 days and data analysis. Mice were weighed on the day of surgery. Blood samples
were tested for glucose and ketone levels at the time of euthanization. Representative sleep stage
hypnograms as a function of genotype and diet are shown where yellow = wake state, blue = NREM
sleep, and red = REM sleep.
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Figure 2. Effect of KD on Sleep Architecture in WT and Fmr1KO Mice as a Function of Light and Dark 
Cycles. EEG/EMG recordings were scored for wake, sleep, NREM and REM activity and the data 
parsed into 24-h full day and 12-h light/dark bins starting at Zeitgeber time zero. The average percent 
sleep state was plotted versus bin for (A) % wake, (B) % sleep, (C) % NREM, and (D) % REM. Mouse 
cohorts included WT fed AIN-76A (n = 12), WT fed KD (n = 9), Fmr1KO fed AIN-76A (n = 16), and Fmr1KO 
fed KD (n = 13). Statistics with GraphPad Prism included 2-way ANOVA with post-hoc Tukey multiple 
comparison tests. Key for statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Figure 2. Effect of KD on Sleep Architecture in WT and Fmr1KO Mice as a Function of Light and
Dark Cycles. EEG/EMG recordings were scored for wake, sleep, NREM and REM activity and the
data parsed into 24-h full day and 12-h light/dark bins starting at Zeitgeber time zero. The average
percent sleep state was plotted versus bin for (A) % wake, (B) % sleep, (C) % NREM, and (D) % REM.
Mouse cohorts included WT fed AIN-76A (n = 12), WT fed KD (n = 9), Fmr1KO fed AIN-76A (n = 16),
and Fmr1KO fed KD (n = 13). Statistics with GraphPad Prism included 2-way ANOVA with post-hoc
Tukey multiple comparison tests. Key for statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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2.4. Sleep EEG Selectively Correlates with Actigraphy Findings during the Dark Cycle

We previously assessed rest–activity patterns in adult Fmr1KO mice by actigraphy in
response to KD under the same treatment protocol used here (commencing at P18) and
binning the data by 6-h increments (Figure 2D in [4]) and did not observe genotype-specific
differences in rest–activity patterns. There were significantly decreased activity levels in
both halves of the dark cycle (Zeitgeber hours, Z12–18 and Z18–24) and the first half of
the light cycle (Z0–6) in both WT and Fmr1KO mice fed KD versus control diet. Activity
levels were low in all cohorts during the second half of the light cycle (Table 1). Binning
the EEG data into 6-h increments for direct comparison with the actigraphy data indicates
concurrence regarding the absence of genotype-specific effects and decreased wake state
during the dark cycle in WT and Fmr1KO mice fed KD (Figure S5 and Table S1). A point
of convergence between the EEG and actigraphy data is that percent wake time during
the first half of the light cycle did not correlate with activity levels as all cohorts exhibited
equivalent % wake time by EEG but KD cohorts had decreased activity counts compared
to AIN-76A cohorts.

Table 1. Comparison of Rest/Activity with Sleep Phenotypes in Male WT and Fmr1KO Mice.

Treatment Actigraphy [4] Sleep EEG Concur

KD start at P18

Genotype effects none (AIN-76A) WT ↑ sleep (AIN-76A Z10–12) -

Fmr1KO ↑ activity (KD Z0–6) ([4]
Figure 2D)

Fmr1KO ↑ wake and ↓ sleep, NREM (KD
Z2–4) (Figure 3)

X

Fmr1KO ↑ wake and ↓ NREM (KD
Z22–24) (Figure 3)

-

Diet effects KD ↓ activity (WT and Fmr1KO Z0–6)
([4] Figure 2D)

KD ↓ REM Z0–12 (Figures 2 and S5) -

KD ↓ activity (WT and Fmr1KO

Z12–24) ([4] Figure 2D)
KD ↑ sleep, NREM, REM (WT and
Fmr1KO Z12–24) (Figures 2 and S5) X

KD start at 2–3 months of age

Genotype effects Fmr1KO ↑ activity (AIN76A Z0–6) ([4]
Figure 3E)

TBD -

Diet effects KD ↓ activity (Fmr1KO Z12-24) ([4]
Figure 3E)

TBD -

Further division of the data into 2-h bins (Figure 3 and Table S1) confirms decreased
wake time in both WT and Fmr1KO mice fed KD during the dark cycle, specifically during
the first half of the dark cycle and during the 2 h immediately before the transition to the
light phase. There is also a genotype-specific difference with 26% increased wake time in
Fmr1KO compared to WT mice fed KD during the final 2 h of the dark cycle. The KD blunts
both wake state peaks during the dark period through increased NREM and REM sleep.
The % NREM and % total sleep were the inverse of the wake data with highly statistically
significant differences between all AIN-76A and KD cohorts during the dark cycle. Of note,
there is a trend throughout the dark cycle that KD makes WT mice sleepier than Fmr1KO

as evidenced by increased % NREM that reaches statistical significance during the final
2-h bin. REM sleep was significantly decreased during both halves of the light cycle and
increased during both halves of the dark cycle in response to KD in both WT and Fmr1KO

mice. Specifically, the KD blunted the REM peak (Z4–6 h, lights on) and the REM trough
(Z16–18, lights off) in both WT and Fmr1KO mice. Overall, treatment with KD flattened
diurnal sleep periodicity curves in both wild type and Fmr1KO mice, actigraphy results
only concurred with sleep EEG during the dark cycle when mice should be awake, and
EEG identified decreased REM sleep in response to KD during the light cycle irrespective
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of activity levels. There was a single 2-h bin (final 2 h of light cycle) where WT mice fed
AIN-76A exhibited increased total % sleep compared to Fmr1KO fed AIN-76A.
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Figure 3. Effect of KD on Sleep Architecture in WT and Fmr1KO Mice as a Function of Time of Day.
EEG/EMG recordings were scored for wake, sleep, NREM and REM activity and the data parsed
into 2-h bins starting at Z0 (lights on). The average percent sleep state was plotted versus 2-h time
bins for (A) % wake, (B) % sleep, (C) % NREM, and (D) % REM. Mouse cohorts included WT fed
AIN-76A (n = 12), WT fed KD (n = 9), Fmr1KO fed AIN-76A (n = 16), and Fmr1KO fed KD (n = 13).
Statistics with GraphPad Prism included 2-way ANOVA with repeated measures and post-hoc Tukey
multiple comparison tests. Key for statistical significance: WT/AIN-76A versus Fmr1KO/AIN-76A = “a”,
WT/AIN-76A versus WT/KD = “b”, WT/AIN-76A versus Fmr1KO/KD = “c”, Fmr1KO/AIN-76A versus
WT/KD = “d”, Fmr1KO/AIN-76A versus Fmr1KO/KD = “e”, and WT/KD versus Fmr1KO/KD = “f”; and
aa p < 0.01, b p < 0.05, bb p < 0.01, bbb p < 0.001, bbbb p < 0.0001, c p < 0.05, cc p < 0.01, ccc p < 0.001,
cccc p < 0.0001, d p < 0.05, dd p < 0.01, ddd p < 0.001, dddd p < 0.0001, e p < 0.05, ee p < 0.01, eeee p < 0.0001,
f p < 0.05, ff p < 0.01.

2.5. KD Increases the Number of Wake, NREM and REM Bouts in WT Mice during the Dark Cycle

Sleep microarchitecture analysis included the number and length of wake, sleep,
NREM and REM bouts over 24-h and 12-h bins. There were no genotype-specific differences
in bout number in mice fed AIN-76A (Figure 4 and Table S1). In mice treated with KD,
Fmr1KO mice exhibited a decreased number of wake, sleep and NREM bouts over the 24-h
period and during the dark cycle compared to WT. Diet-specific effects included statistically
significant increases in wake, sleep and NREM bout number as a function of KD in WT
mice over the 24-h period and during the 12-h dark cycle as well as an increased number of
REM bouts in both WT and Fmr1KO during the dark cycle. In addition, sleep bout number
was increased in WT mice with KD during the light cycle and REM bout number was
decreased in Fmr1KO mice with KD during the light cycle.
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Figure 4. Effect of KD on Sleep Micro-Architecture (Number of Bouts) in WT and Fmr1KO Mice as
a Function of Light and Dark Cycles. EEG/EMG recordings were scored for wake, sleep, NREM
and REM activity and the data parsed into 24-h full day and 12-h light/dark bins starting at Z0. The
average number of sleep/wake state bouts was plotted versus bin for (A) wake bouts, (B) sleep bouts,
(C) NREM bouts, and (D) REM bouts. Mouse cohorts included WT fed AIN-76A (n = 12), WT fed
KD (n = 9), Fmr1KO fed AIN-76A (n = 16), and Fmr1KO fed KD (n = 13). Statistics with GraphPad
Prism included 2-way ANOVA with post-hoc Tukey multiple comparison tests. Key for statistical
significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.6. KD Decreases the Length of Wake Bouts in Mice during the Dark Cycle

The average length of wake bouts during the 12-h dark cycle was significantly reduced
in response to KD in WT and Fmr1KO mice (Figure 5 and Table S1). The average reduction
was 157 s for WT and 93 s for Fmr1KO. The reduced length of wake bouts in conjunction
with an increased or equivalent number of wake bouts during the dark cycle indicates that
the length of the wake bouts underlies reduced % wake time in response to KD during
the dark phase. The average length of sleep bouts during the light cycle was significantly
lower in WT mice in response to KD, which in conjunction with an increased number of
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sleep bouts, equates with equal % sleep in WT mice irrespective of diet. The average length
of NREM bouts during the dark cycle was significantly higher in Fmr1KO mice in response
to KD, which in conjunction with an equivalent number of bouts, indicates that increased
% NREM sleep is primarily due to increased bout length whereas increased % NREM sleep
during the dark cycle in WT mice in response to KD is primarily attributed to increased
bout number.
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Figure 5. Effect of KD on Sleep Micro-Architecture (Length of Bouts) in WT and Fmr1KO Mice as
a Function of Light and Dark Cycles. EEG/EMG recordings were scored for wake, sleep, NREM
and REM activity and the data parsed into 24-h full day and 12-h light/dark bins starting at Z0. The
average length of time of sleep/wake bouts was plotted versus bin for (A) wake bouts, (B) sleep
bouts, (C) NREM bouts, and (D) REM bouts. Mouse cohorts included WT fed AIN-76A (n = 12), WT
fed KD (n = 9), Fmr1KO fed AIN-76A (n = 16), and Fmr1KO fed KD (n = 13). Statistics with GraphPad
Prism included 2-way ANOVA with post-hoc Tukey multiple comparison tests. Key for statistical
significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Analysis of the single longest wake bout over the 24-h period indicates a 64% and 45%
decrease in bout length in WT and Fmr1KO mice, respectively, in response to KD (Figure
S6 and Table S1). There was also a 13% decrease in the longest REM bout in WT mice in
response to KD over the 24-h period. KD caused a statistically significant average decrease
of 19 min in the latency time to the first sleep bout in WT mice (Figure S7 and Table S1).

During the EEG scoring for sleep states, an EEG pattern was observed that suggested
the mice were trying to enter REM but failing. To be scored as REM, the EEG pattern
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needed to exhibit seven or more epochs (an epoch is a 4-s period) of low amplitude/high
frequency waves. Upon secondary analysis of the EEG recordings, instances of 1–6 epochs
of low amplitude/high frequency waves were tallied as failed attempts to enter REM. The
percentage of failed REM attempts indicates a statistically significant 20% decrease in failed
REM attempts in Fmr1KO mice compared to WT fed AIN-76A during the dark cycle (Figure 6).
This was the only genotype-specific EEG phenotype observed with the control diet.
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were scored for the number of failed attempts to enter REM and expressed as a percentage of total
attempts. Mouse cohorts included WT fed AIN-76A (n = 12), WT fed KD (n = 9), Fmr1KO fed AIN-76A
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2.7. Fmr1KO Mice Do Not Exhibit Epileptic Activity on Sleep EEG

Epilepsy is a comorbid phenotype in FXS that manifests as benign focal epilepsy of
childhood (BFEC) with predominantly nocturnal focal motor seizures and a characteristic EEG
pattern with morphologically distinct centrotemporal discharges activated by sleep [45,46].
Similar to Pietropaolo and colleagues [47], we did not observe seizures, absences or interictal
events in any WT or Fmr1KO mouse in scored EEG recordings.

3. Discussion

The identification of comparable outcome measures that can be feasibly employed in
both preclinical mouse and clinical human studies is an important need for the FXS field [48].
Considering the pivotal role sleep plays in memory consolidation and its association
with epileptiform activity, dysfunctional sleep in FXS may underly numerous disease
phenotypes. We assessed sleep states in Fmr1KO mice by EEG and asked if actigraphy could
serve as an easier implemented, less expensive surrogate for sleep EEG. We found similar
sleep–wake patterns in wild type and Fmr1KO mice maintained on a control diet, and that
sleep states did not correlate with activity levels during the light cycle when nocturnal
animals sleep. These data suggest that sleep is not a viable preclinical outcome measure that
translates between mouse and human models of FXS and that actigraphy, while a viable
outcome measure, is not an absolute surrogate for sleep EEG in mice in our experience.

Mouse and fly models of FXS exhibit altered activity states and circadian rhythms,
which potentially mirror the sleep disturbances observed in patients with the disorder.
FMRP-related proteins are associated with increased [2,47,49–73], decreased [74], and no
change [47,54,59,70,75–84] in measures of locomotor activity in Fmr1KO model organisms.
Of note, testing in Fmr1KO mice was conducted by Saré and colleagues who employed a
home-cage monitoring system that assessed activity counts as a surrogate for sleep during
the light and dark phases as a function of age over six consecutive days where sleep was
defined as 40 s of inactivity [85]. Juvenile Fmr1KO mice (P21) do not differ from controls.
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There is reduced “sleep” in adult Fmr1KO mice (P70 and P180) selectively during the light
phase compared to controls. Thus, “sleep” disturbances emerge during the later stages of
brain maturation. Their methodology resembles our actigraphy assessment of rest–activity
in Fmr1KO mice where we observe hyperactivity in Fmr1KO mice [4], which concurs with
most of the literature. Neither study found genotype-specific differences in habituation to
the novel housing conditions. Both studies found increased activity in adult mice selectively
during the light phase compared to controls, albeit we selectively found the difference
during the first half of the light cycle and lost statistical significance if we binned in 12-h
timeframes. Saré and colleagues found a 6–8% increase in activity counts during the 12-h
light cycle in adult Fmr1KO mice, and we found a 38% increase during the first 6 h of the
light cycle. Numerous environmental factors can affect the outcome and magnitude of
rodent behavioral studies. The disadvantage of actigraphy testing as a surrogate for sleep
is lack of data on sleep stages and bout duration, while the disadvantages of EEG testing
are the invasiveness of the surgery, implantation of electrodes, weight and restriction of the
wires attached to the headcap, and the inability to test juvenile mice due to limitations with
attaching and maintaining the electrode headcap.

Recent studies in FXS human and rodent models identify enhanced resting state
gamma power and reduced inter-trial coherence of sound-evoked gamma oscillations as
common EEG biomarkers [86–97]. There is also evidence of exaggerated theta power in
subjects with FXS and abnormal hippocampal theta–gamma phase amplitude coupling in
Fmr1KO mice [98–100]. Furthermore, in vivo electrophysiological studies in the hippocam-
pal CA1 region of Fmr1KO mice indicate a deficit in REM sleep due to a reduction in the
frequency of REM bouts (60 min test session during the light phase), which is consistent
with sleep architecture abnormalities in FXS patients [101]. Considering the documented
prevalence of sleep problems in FXS, we were surprised we did not find differences in REM
or NREM sleep in Fmr1KO mice over 24-h test periods. Our three-channel EEG methodology
is less precise than the published 18-tetrode microdrive technology but also less invasive.
We did not find altered wake or sleep (NREM, REM) states as a function of Fmr1 genotype
with electrodes implanted in the right frontal and left parietal cortices of the brain and
with the mice maintained on a control AIN-76A diet. We also did not find differences in
the number and/or length of wake, NREM or REM bouts as a function of Fmr1 genotype.
While scoring EEG, we observed a pattern whereby mice appeared to be trying to enter
REM but failing. This was the only genotype-specific difference we found between WT and
Fmr1KO mice maintained on AIN-76A diet from weaning.

An important question regarding EEG outcomes is response to treatment. Prior studies
assessing sleep by home-cage monitoring found that the GABAB agonist R-baclofen and
the mTOR inhibitor rapamycin did not rescue deficits in the light phase [85,102]. In fact,
rapamycin reduced “sleep” duration and had adverse effects on social behavior in both
adult WT and Fmr1KO mice. Herein, we also find that total sleep, as assessed by EEG, did
not differ during the light cycle with KD therapy, which is highly effective at reducing
audiogenic-induced seizures (AGS) in Fmr1KO mice tested during the light cycle [4]. NREM
sleep did not change with KD during the light cycle, but REM sleep was reduced. We
chose to test the effect of KD on sleep EEG in Fmr1KO mice because the KD is proving
therapeutic for many disease states that are comorbid with FXS, including epilepsy and
autism; individuals with FXS present with an abnormal fatty acid profile [103]; and our
prior work indicated that KD was as or more effective than the best metabotropic glutamate
receptor 5 (mGluR5) inhibitors tested in the AGS assay.

We found that a KD increased NREM and REM sleep during the dark cycle in both
WT and Fmr1KO mice, which corresponds to reduced activity levels in the actigraphy assay;
however, REM sleep was reduced in mice in response to a KD during the light cycle,
which did not correlate with activity counts. These data suggest that the mice were awake
longer but not moving during the light cycle when nocturnal animals should be sleeping.
BAER-101, a selective GABAA agonist, reduces delta power in Fmr1KO mice during the light
cycle during a 5-min period free of excessive movement [104]. Others have demonstrated
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states of quiet rest or quiet wakefulness in WT rats (3–9 Hz activity) when the Fmr1KO rat
cortex remains activated (18–52 Hz) [105]. Thus, the KD and GABA agonists may increase
quiet rest in mice. Decreased REM sleep during lights on is suggestive of keto insomnia,
which is a lack of sleep reported by humans during the early days of KD introduction.
Increased NREM and REM sleep in mice during lights off is suggestive of somnogenic
(sleepiness) effects of the KD during a time when the mice are expected to be active. In
contrast, in humans, a KD reduces nocturnal awakenings and improves excessive daytime
sleepiness [106].

The mechanism underlying KD-induced changes in sleep architecture in C57BL/6J
mice remain to be determined. Protein-enriched food (casein; three-fold over the standard
18% by weight), but not sugar or fat enrichment, has been shown to decrease the percent
awakenings in response to stimulation with a corresponding decrease in the number of
sleep and wake bouts [107]. Here, the KD, which has decreased protein (8.6%) versus the
control diet (18%) caused increased percent awakenings (albeit without stimulation) as
there was an increased number of wake, sleep, NREM and REM bouts during the dark cycle
in WT C57BL/6J mice suggesting that dietary protein content affects arousal. Similarly,
the length of sleep bouts and % REM were increased with high protein in the diet, and
we found decreased length of sleep bouts and % REM during the light cycle with the KD,
which contained lower protein. Thus, suboptimal protein content of the diet may affect
multiple sleep macro- and microarchitecture phenotypes.

Alternatively, or in addition to protein, ketones may underly alterations in sleep
structure in response to a KD. Others have tested the effects of a KD plus medium chain
triglycerides (MCT) on sleep in mice and found increased ketone levels and reduced REM
sleep duration during the light cycle [108]. Their treatment started at 8 weeks of age, and
they did not observe decreased body weight. NREM sleep and wakefulness were not
affected, but slow wave sleep (delta/theta ratio) during NREM increased during the active
phase with KD-MCT. We also observed increased ketones and reduced REM sleep during
the light cycle, but we have significantly reduced body weight. In addition, our % wake
and % NREM sleep during the light cycle were also unaffected and our % NREM increased
during the dark cycle. As the two studies have similar findings, the data suggest that our
significantly reduced body weight in response to KD is not a confounding factor interfering
with sleep architecture.

Aberrant signaling through metabotropic glutamate receptor 5 (mGluR5), the most
studied therapeutic target for FXS [109], may contribute to sleep phenotypes in FXS. Knock-
out mice lacking mGluR5 do not exhibit altered sleep phenotypes during the light cycle
under baseline conditions; however, they do exhibit lack of recovery sleep after sleep
deprivation including decreased REM and NREM sleep compared to WT littermates [110].
Similarly, we did not find differences in REM or NREM sleep between WT and Fmr1KO

mice fed control diet, but the KD diet caused a trend for decreased % NREM throughout the
dark cycle in Fmr1KO versus WT that reached statistical significance around the dark/light
transition (Z22–24 and Z2–4). Thus, stress whether in the form of sleep deprivation or a
stringent diet, may exacerbate sleep deficits in Fmr1KO mice. Fmr1KO mice overexpress
amyloid precursor protein (APP) through an mGluR5-dependent pathway [111], and the
J20 mouse model of Alzheimer’s disease that over-expresses APP with familial mutations
exhibits a deficit in REM sleep, which is rescued with the mGluR5 inhibitor CTEP. CTEP
also improves NREM delta and sigma power but did not correct rest–activity rhythms or
alter other behavioral outcomes [112]. The effect of mGluR5 inhibitors on sleep states in
Fmr1KO mice remains to be determined.

The limitations of this study include testing adult animals, as larger deficits may be
observed during postnatal development, as well as the labor-intensive requirement for
manual scoring of the EEG recordings. We tested adult mice in this preliminary study due
to technical limitations with the weight of the EEG headcaps compared to mouse body
weight and because postnatal animals are rapidly growing, including the skull, which
could interfere with headcap stability. We only tested male mice in this study due to the
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labor-intensive nature of manually scoring the sleep EEG, which required an average of
4–6 h per mouse per 24-h period scored, and because KD selectively attenuates seizures,
reduces body weight, and decreases activity levels in male but not female Fmr1KO mice. We
are in the process of scoring sleep EEG in adult Fmr1KO mice commencing KD therapy at
3 months of age, where Fmr1KO mice exhibit a 38% increase in hyperactivity during the first
half of the light cycle (Figure 3 in [4]). Increased hyperactivity in Fmr1KO mice selectively
during the beginning of the light cycle concurs with the sleep phenotype in the human
disorder where children with FXS have trouble falling asleep. The lack of hyperactivity
here in Fmr1KO mice treated from the time of weaning may be due to a therapeutic effect
of the control diet (AIN-76A) compared to standard chows. The effects of diet on sleep
architecture and resultant improvements in disease phenotypes remain to be determined in
FXS models.

In conclusion, this study provides substantial data on sleep EEG outcomes in mice
as a function of Fmr1 genotype and KD. Several sleep outcome measures agreed with
rest–activity data in Fmr1KO mice, but selectively during the dark cycle (mouse wake cycle)
and not during the light cycle (mouse sleep time). These data suggest that actigraphy is
not a viable surrogate to assess sleep states per se in mice. Actigraphy and sleep EEG
outcomes during the mouse active cycle responded to KD treatment in the same direction.
Thus, actigraphy may afford the ability to monitor mice of all ages over a longer period in
preclinical studies without surgery, headcap implantation or risk of destabilization of the
headcap, while wrist or ankle actigraphy bracelets could approximate resting versus active
states and response to interventions in human clinical trials for FXS. The lack of evidence
for improved sleep during the light cycle in Fmr1KO mice suggests that the ketogenic diet
may not be beneficial in treating sleep problems associated with the disorder, albeit there
are significant effects on seizures and activity levels.

4. Materials and Methods
4.1. Materials

A detailed list of materials with supplier information is provided (Figure S8).

4.2. Mice

The Fmr1tm4Cgr (Fmr1KO) mice were originally developed by the Dutch–Belgian FXS
Consortium and backcrossed > 11 times to FVB mice [2]. They were backcrossed into the
C57BL/6J background by Dr. Bill Greenough’s laboratory (University of Illinois at Urbana-
Champaign) and distributed to other laboratories. We have maintained the Fmr1KO mice in
the C57BL/6J background at the University of Wisconsin-Madison for over 15 years with
occasional backcrossing with C57BL/6J mice from Jackson Laboratories to avoid genetic
drift. Breeding pair for these experiments were housed in static microisolator cages with ad
libitum access to food (Teklad 2019) and water in a temperature- and humidity-controlled
vivarium on a 12-h light cycle. The bedding (Shepherd’s Cob + Plus, 1

4 inch cob) contained
nesting material as the only source of environmental enrichment. All animal husbandry,
surgery and euthanasia procedures were performed under NIH and an approved University
of Wisconsin-Madison animal care protocol administered through the Research Animal
Resources Center with oversight from the Institutional Animal Care and Use Committee
(IACUC). Fmr1 genotypes were determined by PCR analysis of DNA extracted from
tail biopsies with HotStarTaq polymerase (Qiagen Inc, Germantown, MD, USA; catalog
#203205) and Jackson Laboratories’ (Bar Harbor, ME, USA) primer sequences oIMR2060
[mutant forward; 5′-CAC GAG ACT AGT GAG ACG TG-3′], oIMR6734 [wild type (WT)
forward; 5′-TGT GAT AGA ATA TGC AGC ATG TGA-3′], and oIMR6735 [common reverse;
5′-CTT CTG GCA CCT CCA GCT T-3′], which produces PCR products of 400 base pairs
(Fmr1KO) and 131 base pairs (WT). Heterozygote females exhibit both the 400 and 131 base
pair bands. Fmr1HET females were bred with Fmr1KO males and generated WT and Fmr1KO

male littermate mice for the described experiments. Experimental animals were derived
from multiple breeding pairs as recommended [113,114]. Mice were randomly weaned onto
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control and KD at postnatal day 18 (P18), maintained on respective diets throughout the
study, and tested for EEG sleep phenotypes at 5–6 months of age (Figures 1 and S1). Some
of the mice [AIN-76A (n = 3), WT fed a KD (n = 2), Fmr1KO fed AIN-76A (n = 6), and Fmr1KO

fed a KD (n = 5)] completed a previously described KD treatment and behavioral battery
(Figure 2 of [4]) before EEG. The remaining mice were generated to increase sample sizes
and were experimentally naïve prior to EEG electrode implantation albeit diet treatments.
Mice were socially housed prior to surgery and individually housed after EEG electrode
implantation. Cohorts included AIN-76A (n = 12), WT fed KD (n = 9), Fmr1KO fed AIN-76A
(n = 16), and Fmr1KO fed KD (n = 13).

4.3. EEG Electrode Implantation

Right frontal, left parietal, and occipital electrodes were placed along with two stainless
steel wire electrodes in nuchal muscles for EMG under isoflurane anesthesia according
to methods described previously [112] (Figure S9). The occipital electrode served as the
ground and as the reference electrode for the surgical recording procedure. Mice were
allowed to recover from surgery for 3 days prior to transfer to tethered EEG recording
setups with mice housed individually in Plexiglas®chambers for sleep recording. EEG
signals were acquired for 7 days (across the light and dark cycles) on an XLTEK machine
(Natus, Madison, WI) with a 512 Hz sampling rate. EDF Browser software (v.2.40) was used
to convert Natus EEG recordings into files compatible with Sirenia® Sleep Pro software
v.1.3.2 (Pinnacle Technology, Lawrence, KS, USA). EEG signals from days 4 and 6 were
scored by hand with Sirenia® Sleep Pro software v1.3.2 in 4-s epochs for wake, REM,
and NREM states by two scorers blinded with respect to treatment group as previously
described [112,115,116]. Waking epochs were identified as those with high EMG amplitude,
and epochs with little EMG activity were scored as sleep. Specific sleep states were scored
based on predominant EEG power where NREM was associated with low frequency and
high amplitude delta (1–4 Hz) activity and REM was associated with increased frequency
but low amplitude theta (5–7 Hz) activity. Sample EEG recordings scored for wake, NREM
and REM states are shown in Figure S10 with hypnograms for all scored mice provided in
Figure S3. Data were binned into 2-, 6-, 12- and 24-h increments for analyses.

4.4. Biometrics

Ketone and glucose levels were assessed in urine or blood as indicated in the figure
legend using a Precision Xtra blood glucose and ketone monitoring system (Abbott Diabetes
Care Inc., Alameda, CA, USA). For urine samples, mice were gently restrained at the neck
and urine collected. For blood samples, mice were anesthetized with isoflurane and blood
collected from the inferior vena cava and assayed for ketone and glucose levels with a
Precision Xtra meter. Low off-scale glucose meter readings were adjusted to 20 mg/dL.
High off-scale glucose meter readings were adjusted to 500 mg/dL. High off-scale ketone
meter readings were adjusted to 8.0 mmol/L. Blood samples were collected during the
light phase after 4 h fasting.

4.5. Statistical Analysis

Data were analyzed with Microsoft 365 ExcelTM version 2306 and Prism version
10.0.0 (153) software. The vast majority of the data passed the D’Agostino & Pearson test
for normal Gaussian distribution and all data were analyzed similarly with parametric
ANOVA tests. Average data are presented ±SEM and statistical significance determined by
2-way ANOVA with Tukey’s multiple comparison test (Table S1). The number of subjects,
genotype and treatment details are included in the figure legends.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms241914460/s1.
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