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Abstract: Graphyne is a material that has unique mechanical properties, but little is known about
how these properties change when the material has holes. In this work, the effect of hole geometry,
considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response
of γ-graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures
are under investigation. An efficient nonlinear finite element analysis (FEA) method is adequately
implemented under large deformations for this purpose. The study varied the size and shape of
the holes to understand how these changes affect the nanostructure’s mechanical response. The
results indicate that the hole geometry significantly impacts the mechanical nonlinear response of
γ-graphyne structures. The holes’ size and shape affect the structures’ elastic behavior, deformation,
and strength. The findings can be used to optimize the design of γ-graphyne structures for specific
mechanical applications. The study highlights the importance of considering the hole geometries in
the design and fabrication of these materials.

Keywords: γ-graphyne structures; hole; nonlinear finite element analysis; mechanical properties

1. Introduction

The introduction of monolayer graphene in 2004 was a scientific breakthrough in
the field of materials due to its combination of superior mechanical, electromagnetic,
optical, and thermal properties [1,2]. In recent years, efforts have been made to discover
materials and structures at the nanoscale that are akin to graphene or possess superior
physical and structural attributes compared to graphene. Among the most promising
recently identified graphene-like nanomaterials is the family of graphyne materials, initially
examined theoretically by Balaban and colleagues [3], and subsequently by Narita and
Nagai through first-principles analysis [4]. Graphyne represents a novel category of two-
dimensional (2D) substances that have recently garnered interest owing to their distinct
physical and chemical characteristics. Comprising sp- and sp2-bonded carbon atoms, these
substances exhibit a honeycomb configuration akin to graphene, but with extra atoms or
functional groups affixed to the carbon atoms. The presence of these additional atoms or
groups gives rise to a wide range of properties, including enhanced electrical conductivity,
mechanical strength, and chemical stability [5–7].

Despite the successful synthesis of graphdiyne by Li et al. in 2010 [8], there are
limited experimental data available on the mechanical properties of graphyne structures
in the literature. According to Ivanovskii [9], various types of graphyne and graphdiyne
were thoroughly investigated for basic structural and mechanical properties, which were
determined by experiments or evaluated by ab initio theory. Additionally, as reported
by Zhang et al. [10], the Raman spectra of graphyne and graphdiyne were examined in a
systematic manner, and the behavior of these materials under mechanical stress and strain
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was also investigated. A study by Xiao et al. [11] used atomic force microscopy experiments
to determine the thermomechanical properties of graphdiyne films.

The effective design of advanced applications using nanostructures requires a thor-
ough understanding of their properties and an ability to predict them using reliable theoret-
ical or computational tools. Numerous molecular dynamics (MD) simulations and ab initio
studies have been carried out on structures like graphene, carbon nanotubes, and fullerenes
to comprehend a broad spectrum of properties [12–14] and behaviors [15–17]. Additionally,
the finite element method has been used to provide a more comprehensive approach to
the computational modeling of nanostructures. With regard to nanostructures, several
forms of finite elements, such as beams [18–20], spring-like elements [21–23], shells [24,25],
and bar elements [26,27], have been formulated to analyze the mechanical performance of
these materials.

Atomistic finite element models simulate interatomic interactions of atoms using
appropriate finite element formulations. Couto and Silvestre [28] introduced an FEA mod-
eling approach to estimate the elastic behavior of graphyne. They conducted uniaxial
and biaxial tensile simulations using computational models of zigzag and armchair con-
figurations and compared their results with equivalent molecular dynamics and density
functional theory models, finding that they were in good agreement. Lee et al. [29] applied
an atomistic FE model to analyze the sensitivity of various graphyne-based resonators
under different boundary conditions and size configurations. They compared the results
with those of graphene-based resonators and concluded that graphyne derives higher
sensitivity. Georgantzinos et al. [30,31] investigated the elastic and elastoplastic mechanical
properties of γ-graphyne family structures utilizing FE analysis. They conducted various
parametric studies, concentrating on the size-dependency of the sheet structure on the
mechanical properties, and generalized their results using regression models. Galhofo and
Silvestre [32] derived stress–strain curves to examine both the monotonic and hysteretic be-
havior of γ-graphyne sheets using the same geometric configurations as in [28]. Siampanis
et al. [33] examined the stress–strain behavior of graphyne structures under shear loading
and obtained higher shear strength and stiffness compared to other structures of this family.

The available studies on the mechanical properties of graphyne structures by nu-
merical methods assume ideal sheet structures without any defects or holes. However,
in the case of graphene, a particular interest in the modeling of the structure lies in the
assessment of the influence of nano-holes on the mechanical behavior. This is in line with
the investigation of nanoporous graphene or graphene sheet with holes that have been
studied due to its good properties for gas absorption [34], water desalination [35], energy
storage [36,37], and nanoelectronics applications [38]. Genoese et al. [39] introduced a new
interatomic potential, the Dreading potential, in which they added damping functions,
to investigate the in-plane and out-plane tensile behavior of monolayer graphene sheets.
In their study, they examined the effect of the diameter of a hole located in the middle of
the sheet on the stress and strain distributions. Another study on the effect of holes on
graphene sheets can be found in [40], where Muraru et al. developed a new software tool
to generate graphene-based molecular models. Yoon et al. [41] examined the mechanical
resonance properties of porous graphene sheets computationally and experimentally. How-
ever, graphyne structures fall behind in terms of published papers regarding the role of
holes and their effect on mechanical properties. Recently, Lee et al. [42] used an atomistic
FE model to examine the effect of holes on Young’s moduli of porous γ-graphyne sheets
under tensile loading, concluding that an increase in porosity decreases Young’s modulus.

The presence of holes in a graphyne structure can play a practical role in several areas
such as electronics, energy storage, and catalysis. In electronics, the holes can be used to
create electronic devices with high electron mobility, such as field-effect transistors. In
energy storage, graphyne with holes can be used as a high-capacity electrode material
in lithium-ion batteries. The holes can also be used as active sites for catalytic reactions
in chemical synthesis, such as hydrogenation reactions. The size and shape of the holes
can also be used to control the behavior of the graphyne, such as its strength, electronic
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conductivity, and chemical reactivity. Additionally, by controlling the size and shape of the
holes, it may be possible to create new types of graphyne structures with unique properties
that can be used in a variety of applications. As a recent addition to the family of carbon
allotropes, graphyne structures have not been extensively studied in comparison to other
carbon nanostructures. In this study, we investigate the effect of hole geometry on the
mechanical nonlinear response of γ-graphyne structures, using an efficient nonlinear finite
element method (FEM). Specifically, we examine the mechanical properties of graphyne,
graphdiyne, graphyne-3, and graphyne-4 structures with circular, triangle, and rhombus
hole configurations. The implementation of the FEA model is conducted under large
deformations, and it is an atomistic spring-based finite element model in which a unique
spring is used to simulate the interatomic interactions between carbon atoms.

2. Computational Model
2.1. Geometric Characteristics

Graphyne consists of three types of bonds: aromatic, single, and triple. The repeatable
unit cell of the structure is the single-triple-single bond interconnection. The number of the
unit-cell triple bonds defines the graphyne variation, i.e., one bond yields graphyne, two
bonds yield graphdiyne, three bonds yield graphyne-3, and four bonds yield graphyne-4.
Figure 1 shows the structural configuration of a graphyne sheet along with the bond varia-
tions.

Figure 1. Structural configuration of graphyne.

Figure 2 depicts the geometric failures, which are the circular hole, the square-type
hole and rhombus-type hole. The diameter of the circular hole is denoted as D, the length
of the side of the square-type hole is A, and the lengths of the rhombus-type hole are B
and C. In the case studied, the interior angles of the rhombus are 90 degrees. The holes are
located at the geometrical center of the structure.

The effects of the geometric parameters of the holes are indirectly calculated via
the calculation of the area of the hole. The dimensions of all γ- graphyne models were
approximately 10× 10 nm. The investigations are carried out for five different aspect ratios,
including 5%, 10%, 15%, 20% and 25%. The hole aspect ratio AR is obtained by dividing
the area of the hole (Af ) by the total area of each nanosheet (At).

AR =
A f
At

(1)
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This approach allows for a more generalized analysis of the impact of hole geometry
on the mechanical properties of the graphyne structures, as it accounts for variations in
hole size and shape by normalizing the hole area to the total area of the nanosheet.

Building on the aforementioned methodology, the determination of the effect of the
parameter becomes straightforward when utilizing the provided formulas for specific hole
shapes and given values of AR and At. For a circular hole, the diameter (D) can be derived
from the equation D =

√
4ARAt/π. Similarly, for a square hole, the side length (A) is

given by A =
√

ARAt. In the case of a rhombus-shaped hole, where both diagonals are
equal (B = C), the diagonal length (B) can be calculated using the formula B =

√
2ARAt.

These formulas offer a systematic approach to determine the dimensions of the holes
based on their shape, ensuring a consistent and accurate analysis. By employing these
equations, researchers can effectively gauge the influence of different hole geometries on the
mechanical properties of γ-graphyne structures, further enhancing the comprehensiveness
of the study.

Figure 2. Configuration of graphyne structures with holes: (a) circular, (b) square, and (c) rhombus-
type hole.

2.2. Force Field Description

The aggregate potential energy of a graphyne molecular arrangement can be depicted
as the cumulative energies from interatomic interactions. Considering that nonbonded
interactions are negligible for the molecular systems under investigation, and only in-
plane attributes are being assessed, the potential energy of a γ-graphyne configuration is
articulated as the cumulative energies of bond stretching and bond angle bending:

Utot = ∑ Ui
r + ∑ Ui

θ , (2)

where Ui
r represents the bond stretching term and Ui

θ denotes the bond angle bending term,
respectively. The parameter i denotes the kind of bond, assuming the values s, a, and t
correspond to the single, aromatic, and triple bond, respectively. According to the Morse
potential field [31], the potential energy terms can be written as

Ui
r = Di

e

{[
1− e−Bi(ri−ri

0)
)
]2 − 1

}
(3)

Ui,j
θ =

1
2

ki,j
θ (θi,β − θ

i,j
0 )

2
[1 + ki,j

sextic

(
θi,j − θ

i,j
0 )4

]
(4)

In Equation (2), ri and ri
0 represent the changed and original bond lengths, respectively.

Di
e and Bi are constants that vary based on the type of bond (s, a, t). In Equation (3), θi,j

and θ
i,j
0 are the angles between the deformed and original state of two adjacent bonds

i and j, respectively. ki,j
θ and ki,j

sextic are constants that control the linear and nonlinear
force-deformation relationship of bond angle bending interactions. It is important to note
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that nonbonded interatomic interactions and resulting nonlocality typically have minimal
impact on the overall mechanical behavior of graphene-like nanostructures and can be
omitted in the mathematical formulation.

These formulas can be differentiated to mimic the force field inside the nanostruc-
ture using a mix of translational and rotational springs. The longitudinal rigidity of the
translational springs is determined by differentiating Equation (2) concerning the variation
in bond length (∆ri = ri − ri

0), and the necessary rigidity of the rotational spring can be
obtained by differentiating Equation (3) concerning the variation in the bending angle
(∆θi,j = θi,j − θ

i,j
0 ),

Fi
r

(
∆ri
)
=

∂Ui
r

∂
(
∆ri
) = 2BiDi

e

(
1− e−Bi∆ri

)
e−Bi∆ri

, (5)

Mi,j
θ

(
∆θi,j

)
=

∂Ui,j
θ

∂(∆θi,j)
2 = ki,j

θ ∆θi,j

1 + 4

≈0︷ ︸︸ ︷
ki,j

sextic(∆θi,j)
3

 ≈ ki,j
θ ∆θi,j, (6)

where the developed axial force between two bonded atoms Fi
r
(
∆ri) is a result of a change

in their interatomic distance, while a bending moment Mi,j
θ

(
∆θi,j) arises from a change in

the angle between two linked bonds.

2.3. Finite Element Model

The simulation of potential energies resulting from bond length and bending angle
variations is consistent with the finite element formulation outlined in [30,32]. This is
achieved by utilizing two nodes, spring-based line elements that connect two bonded
atoms. The longitudinal rigidity of the translational springs is determined by differentiating
Equation (4) concerning the variation in bond length, while the rotational spring is derived
by differentiating Equation (5) with respect to bending angle variation.

∂Fi
r

∂
(
∆ri
) = 2BiDi

e

(
2− e−Bi∆ri

)
e−2Bi∆ri

,
∂Mi,j

θ

∂(∆θi,j)
2 ≈ ki,j

θ . (7)

The stiffness matrix of the finite elements and their force-displacement behavior are
deduced by using a local Cartesian coordinate system (x, y). This results in a 2× 2 elemental
matrix that incorporates two fundamental coefficients in the x and y directions:

kel =


kel

x 0 −kel
x 0

0 kel
y 0 −kel

y
−kel

x 0 kel
x 0

0 −kel
y 0 kel

y

. (8)

where the symbolization el of the element receives distinct string values: sas, ast, sts, and
tst, indicating that the current formulation necessitates the implementation of four kinds
of spring-like elements with varying longitudinal and transverse stiffness coefficients, as
illustrated in [30,32]. For example, the notation ‘sts’ corresponds to a spring-based element
used to describe a triple bond located between two single bonds. The nonlinear axial
stiffness coefficients of these elements can be determined using the subsequent equation.

kel
x =


2(Bs)2Ds

e(2− eBs∆x)e−2Bs∆x, el = ast,tst
2(Ba)2Da

e (2− eBa∆x)e−2Ba∆x, el = sas
2(Bt)

2Dt
e(2− eBt∆x)e−2Bt∆x, el = sts

, (9)
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kel =


kel

x 0 −kel
x 0

0 kel
y 0 −kel

y
−kel

x 0 kel
x 0

0 −kel
y 0 kel

y

. (10)

The notation el of the element is assigned one of four different string values: sas, ast,
sts, and tst. This indicates that the current formulation necessitates the implementation of
four types of spring-like elements, each with distinct longitudinal and transverse stiffness
coefficients, as outlined in [21,31]. For example, the notation sts represents a spring-like
element used to describe a triple bond between two single bonds. The nonlinear axial
stiffness coefficients of these elements can be determined using the following equation.

kel
x =


2(Bs)2Ds

e(2− eBs∆x)e−2Bs∆x, el = ast,tst
2(Ba)2Da

e (2− eBa∆x)e−2Ba∆x, el = sas
2(Bt)

2Dt
e(2− eBt∆x)e−2Bt∆x, el = sts

. (11)

In accordance with the simplified modeling technique, detailed in [42], the bond angle
bending variation can be effectively addressed by utilizing an suitable rigidity coefficient
in the y-direction for each element el = sas,ast,sts,tst. This is provided by:

kel
x =


2(Bs)2Ds

e(2− eBs∆x)e−2Bs∆x, el = ast,tst
2(Ba)2Da

e (2− eBa∆x)e−2Ba∆x, el = sas
2(Bt)

2Dt
e(2− eBt∆x)e−2Bt∆x, el = sts

. (12)

To investigate the elastoplastic behavior of a nanostructure, the equilibrium equation
for each nonlinear spring-based element can be written as:

keluel = fel. (13)

The equilibrium equation is for each hypothetical nonlinear spring-based element,
where uel and fel represent the respective force and displacement vectors for each element.
These vectors have the following notation if i and j are the two nodes of the finite element:

uel =
[
uel

xi uel
yi uel

xj uel
yj

]T
, (14)

fel =
[

f el
xi f el

yi f el
xj f el

yj

]T
. (15)

The system of nonlinear equations can be assembled into its final form, through the
transformation of the global coordinate system to the elemental stiffness equation for each
finite element, in accordance with the constraints of nodal connectivity:

Kel(Uel) Uel = Fel, (16)

where Fel, Uel, and Kel(U)el are the assembled force vector, assembled displacement vector,
and assembled deformation-dependent stiffness matrix, respectively.

To simulate the nonlinear mechanical tensile tests, appropriate supports and loads are
applied as boundary conditions. The next step is to use an established incremental-iterative
method based on the Newton–Raphson algorithm to address the nonlinearity of the global
stiffness matrix numerically and determine the response of the structure as a result.

3. Results and Discussion

The size of the structure and the number of aromatic rings are indeed inversely related
when considering the length of the acetylenic linkage in graphyne structures. Specifically,
graphyne, with the shortest acetylenic linkage, accommodates more aromatic rings within
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a given size compared to its counterparts. As we progress to graphdiyne, graphyne-3,
and graphyne-4, the length of the acetylenic linkage increases, which results in a reduced
number of aromatic rings for structures of the same size (Figure 1). This relationship has
significant implications for the mechanical properties of these materials. Aromatic rings
inherently contribute to the rigidity and stability of the structure due to their conjugated
and electron-delocalized nature. Therefore, materials with a higher number of aromatic
rings, like graphyne, tend to exhibit superior mechanical properties [30,31]. In essence, the
more aromatic rings present in the structure, the better the mechanical strength and stability.

The proposed finite element model has been previously validated through compar-
isons with other available results in the open literature [31] regarding pristine graphyne
structures. However, a number of comparisons were performed between the outcomes
of this computational approach and related data taken from various literature sources, as
provided in Table 1, in order to validate the numerical calculation of the key mechanical
properties of γ-graphynes. This comparison serves as further verification of the validity
and accuracy of the proposed model. These sources employed different approaches to
extract the data. The results indicate a reasonable agreement with the findings of previous
studies and demonstrate that the model can be used to predict the mechanical properties
of graphyne structures with holes with a high degree of accuracy, providing confidence
in the accuracy of the computational scheme, and thus can be useful for the design and
optimization of graphyne-based materials and devices.

Table 1. Comparison of the mechanical characteristics of pristine graphene predicted by the finite
element method with equivalent findings from previous investigations.

Method Lx × Ly (nm ×
nm) Ex (GPa) Ey (GPa) σux (GPa) σuy (GPa) εfx εfy

G
ra

ph
yn

e FEM (present) 9.5 × 9.55 501.2 440.1 39.2 66.6 0.108 0.178
FEM [31] 10.9 × 9.8 512.6 507.8 48.6 72 0.13 0.17
FEM [43] 9.5 × 9.55 481.6 419.0 - - - -
MD [5] 10 × 10 - - 45 63.96 0.11 0.177

G
ra

ph
-d

iy
ne FEM (present) 10.32 × 9.89 439.2 476.4 33.4 51.8 0.115 0.168

FEM [3] 10.7 × 10.1 360.6 383.6 - - - -
MD [44] 10 × 10 312.5 270.3 29.8 65.1 0.109 0.208
DFT [45] 7 × 7 - 384.8 - - - -

G
ra

ph
yn

e-
3

FEM (present) 10.8 × 10.5 364.9 399.5 24.8 38.2 0.096 0.141

FEM [43] 11.2 × 10.7 288.9 307.8 - - - -
MD [5] 10 × 10 243.1 212.3 22.8 65.3 0.109 0.223

G
ra

ph
en

e-
4

FEM (present) 10.2 × 10.23 310.2 345.8 21.15 32.5 0.116 0.166
FEM [31] 10.8 × 10.5 364.9 399.5 24.8 38.2 0.096 0.141
FEM [43] 10.6 × 10.4 239.7 257.4 - - - -
MD [44] 10 × 10 199.5 168.3 18.4 65.3 0.108 0.224

The behavior of the elastic modulus of graphyne structures (graphyne, graphdiyne,
graphyne-3, graphyne-4) with increasing aspect ratio of the hole is an important aspect
of understanding the mechanical properties of these materials. Figure 3 provides insights
on this behavior, illustrating the change in elastic modulus for different types of holes.
Figure 3a,b show the behavior of the elastic modulus in the x and y axis for the case of a
central circular hole for the four structures. Figure 3b,c depict the case of a square hole,
while Figure 3c,d describe the case of a rhombus-type hole. The elastic modulus is seen
to decrease as the size of the hole increases in all circumstances. Additionally, the rate
of decrease in the elastic modulus with an increase in hole size is similar for all cases.
This suggests that the graphyne structures have a relatively consistent response to the
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introduction of holes in their structure. However, small fluctuations in the elastic modulus
may be attributed to the non-symmetric geometric effects caused by the hole creation,
depending on the number of atoms and bonds cut off. As the length of the acetylene series
increases, the elastic modulus is generally lower in all cases. This highlights the importance
of the number of atoms and bonds in determining the mechanical properties of graphyne
structures. Close values are observed concerning the elastic modulus in the y-direction
between the graphyne and graphdiyne specifically, indicating that these two structures
may have similar mechanical properties in certain directions.
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The mechanical tensile strength of graphyne structures (graphyne, graphdiyne, graphyne-
3, graphyne-4) seems to be considerably affected by the aspect ratio of the hole. Figure 4
illustrates the change in ultimate strength for different types of holes. Figure 4a,b show
the ultimate strength in the x and y axis for the case of a central circular hole for the four
structures. Figure 4b,c depict the case of a square hole, while Figure 4c,d describe the case
of a rhombus-type hole. As the size of the hole increases, the structure can experience a
significant reduction in strength, with losses of up to almost 50% observed for aspect ratios
near 0.25. The rate of decrease in the ultimate strength with an increase in hole size is
similar for all cases. Small fluctuations in the ultimate strength may be observed for the
same reasons as previously.
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As the length of the acetylene series increases, the ultimate strength is generally
lower in all cases. This emphasizes the significance of the number of atoms and bonds in
establishing the mechanical properties of graphyne structures.

In Figure 5, we observe the variation in fracture strain for different types of holes.
Figure 5a,b present the fracture strain in the x and y axis for the case of a central circular hole
for the four structures. Figure 5b,c depict the case of a square-type hole, while Figure 5c,d
describe the case of a rhombus-type hole. It is noticeable that in all cases, the rate of decrease
in the fracture strain with an increase in hole size is similar for all cases. Slight variations
in the fracture strain can be attributed to non-symmetric geometric effects caused by the
hole creation, depending on the number of atoms and bonds cut off. Similarly, here, as the
length of the acetylene series increases, the fracture strain is generally lower in all cases.
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Figure 5. The fracture strain of graphyne structures vs. aspect ratio in (a) x—direction for the circular
hole, (b) y—direction for the circular hole, (c) x—direction for the square hole, (d) y—direction for the
square hole, (e) x—direction for the rhombus-type hole, and (f) y—direction for the rhombus-type hole.
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We conducted a nonlinear regression analysis to extract analytical equations that cap-
ture the hole-dependent variations in mechanical properties of the four types of graphyne
with central holes, aiming to enable a more systematic and simplified prediction of their
mechanical properties. The following fitting 3-parameter function of hole aspect ratio was
used for all of the attempted property approximations:

Y/Y0 = a + be−ARc, (17)

where Y is the suggested mathematical model to fit the data computed for all examined
properties Ex, Ey, σux, σuy, εfx, and εfy whereas, a, b, and c are constant parameters that must
be found using a different regression procedure for each mechanical property variation.
Y0 is the corresponding property of pristine graphyne structure. Equation (20) from [31]
is a valuable tool for predicting the mechanical properties of graphyne structures, by
considering the effect of size variations. This equation can be used to estimate Yo, an
important parameter for understanding the mechanical behavior of these structures. By
utilizing Equation (17), which relates Yo to the corresponding mechanical properties Y,
predictions of any size can be made, providing a comprehensive understanding of the
mechanical response of graphyne structures with holes.

By incorporating the FEM results and performing a regression analysis using Equa-
tion (17), the optimized values of the parameters can be calculated. Appendix A presents
the regression curves for each graphyne structure type, hole type, and mechanical property
in Figures A1–A3. These figures also include the average curve obtained by considering a
single equation for all graphyne structure types. Table 2 provides the parameter values for
the unique equation applied to all graphyne structure types. For a more accurate predic-
tion, Table A1 contains the values of the parameters for Equation (17) that were obtained
from the fitting process for mechanical properties data of graphyne and each hole type.
The fitting process for the mechanical properties data based on Equation (17) yielded the
parameter values shown in Table A2, regarding the graphdiyne. Tables A3 and A4 provide
the parameter values obtained from fitting Equation (17) to the mechanical properties data
for each hole type in graphyne-3 and graphyne-4, respectively.

Table 2. Parameter values of Equation (17) for the analytical prediction of mechanical properties.

Ex Ey σux σuy εfx εfy

C
ir

cu
la

r
ho

le

a 0.2655 0.41855 0.41263 0.41566 0.66951 0.56134

b 0.72223 0.57663 0.57642 0.57436 0.33157 0.4381
c 0.26581 0.16479 0.13383 0.05611 0.10066 0.03045

R2 0.94 0.95 0.93 0.95 0.84 0.91

Sq
ua

re
ho

le a −0.40512 0.25461 0.41804 0.45973 0.60684 0.69359
b 1.39502 0.73541 0.57141 0.52862 0.38811 0.30464
c 0.62309 0.23804 0.17159 0.06837 0.20698 0.03318

R2 0.94 0.95 0.94 0.95 0.77 0.91

R
ho

m
bi

c
ho

le

a 0.26796 0.26272 0.40943 0.32775 0.64213 0.56321

b 0.73041 0.73113 0.59529 0.66189 0.34733 0.43487
c 0.21701 0.21103 0.09505 0.07381 0.10297 0.0326

R2 0.97 0.95 0.94 0.97 0.78 0.92

The nonlinear FEA method was implemented under large deformations to examine
the mechanical properties of γ-graphyne structures with circular, triangle, and rhombus
hole configurations. The study used an atomistic spring-based finite element model,
simulating the interatomic interactions between carbon atoms. This approach provided
a comprehensive understanding of the mechanical response of graphyne structures with
holes, enabling a more systematic and simplified prediction of their mechanical properties.
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In addition to the FEA used in this study, the nonlinear response of γ-graphyne structures
can also be investigated using several other robust numerical modeling methods. For
instance, the finite difference method [46], Bezier multi-step method [47], and differential
quadrature method [48] can provide alternative approaches to understanding the nonlinear
response of γ-graphyne structures and can be considered for future studies or comparisons.

The study methodically investigates the nonlinear mechanical response of γ-graphyne
structures, including variations such as graphyne, graphdiyne, graphyne-3, and graphyne-
4, under the influence of different hole geometries (circular, square, and rhombus) and
aspect ratios (5%, 10%, 15%, 20%, 25%). The investigation reveals that hole geometry
significantly impacts the elastic behavior, deformation, and strength of the structures, with
the elastic modulus, ultimate strength, and fracture strain decreasing as hole size increases.
This is attributed to the variations in stress distribution and deformation patterns caused by
the holes. The study also presents analytical equations derived from regression analysis to
capture hole-dependent variations in mechanical properties, providing a valuable tool for
systematic and simplified prediction of mechanical properties. This comprehensive analysis
underscores the importance of considering hole geometries in the design and optimization
of graphyne-based materials and devices, ultimately aiding in the development of materials
with desired mechanical properties for specific applications.

The study of hole geometry, encompassing circular, triangular, and rhombus configu-
rations, is pivotal for comprehending the nonlinear mechanical behavior of γ-graphyne
structures. Different hole geometries lead to variations in the stress distribution, deforma-
tion patterns, and ultimately, the mechanical properties of the material. Specifically, the
hole geometry influences the initiation and propagation of cracks, affecting the material’s
strength and failure mechanisms. This understanding is crucial for optimizing the design
and fabrication of γ-graphyne structures, as it can lead to enhanced mechanical properties,
making the material more suitable for various applications, such as in nanoelectronics and
nanomechanical systems.

4. Conclusions

In this study, we investigated the effect of hole geometry on the mechanical nonlinear
response of γ-graphyne structures, including graphyne, graphdiyne, graphyne-3, and
graphyne-4 structures, under large deformations using a finite element analysis (FEA)
method. We found that the size and shape of the holes significantly impacted the structures’
elastic behavior, deformation, and strength, highlighting the importance of considering
hole geometries in the design and fabrication of graphyne-based materials and devices.
The results indicated that the size and shape of the holes significantly impacted the struc-
tures’ elastic behavior, deformation, and strength. Specifically, the elastic modulus of the
graphyne structures decreased with an increase in the size of the hole, and the ultimate
strength and fracture strain experienced a similar rate of decrease with an increase in hole
size. Small fluctuations in these properties were observed due to non-symmetric geometric
effects caused by the hole creation. Our study provides a valuable tool for predicting the
mechanical properties of graphyne structures with holes by incorporating the effect of
size variations, enabling a more systematic and simplified prediction of their mechanical
properties. The analytical equations extracted from the regression analysis, which capture
the hole-dependent variations in mechanical properties, were presented. This study high-
lights the importance of considering the hole geometries in the design and fabrication of
these materials, providing a comprehensive understanding of the mechanical response of
graphyne structures with holes, which can be useful for the design and optimization of
graphyne-based materials and devices. Overall, our findings can aid in the optimization of
the design of graphyne structures for specific mechanical applications.
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Appendix A

Figure A1 shows the fitting curves based on Equation (17) that fit the FEM data for
each structure and hole type, as well as the corresponding average fitting curve, which
represents the effect of hole magnitude on the Young’s modulus of the graphyne structures.
Figure A2 displays the fitting curves for the ultimate tensile strength, while Figure A3
presents the corresponding fitting curves for the tensile fracture strain.
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Figure A1. Fitting curves for the normalized Young’s modulus of graphyne structures vs. aspect
ratio in (a) x—direction for the circular hole, (b) y—direction for the circular hole, (c) x—direction for
the square hole, (d) y—direction for the square hole, (e) x—direction for the rhombus-type hole, and
(f) y—direction for the rhombus-type hole.
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Figure A2. Fitting curves for the normalized ultimate tensile strength of graphyne structures vs. as-
pect ratio in (a) x—direction for the circular hole, (b) y—direction for the circular hole, (c) x—direction
for the square hole, (d) y—direction for the square hole, (e) x—direction for the rhombus-type hole,
and (f) y—direction for the rhombus-type hole.
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Tables A1–A3 provide the values of the parameters obtained from the fitting process
for Equation (17) applied to the normalized Young’s modulus, ultimate tensile strength,
and tensile fracture strain data, respectively.

The presented tables, namely Tables A1–A4, provide crucial parameter values for
Equation (17), which is an analytical model used to predict the mechanical properties of
different types of graphyne materials with circular, square, and rhombic holes. Specifically,
Tables A1–A4 contain the parameter values for graphyne, graphdiyne, graphyne-3, and
graphyne-4, respectively. These tables provide valuable information for designing and
engineering materials with specific mechanical properties by controlling the hole shape
and the material type. The R2 values in the tables indicate the goodness of fit of the
analytical model and can be used to evaluate the reliability of the predicted mechanical
properties. Overall, these tables offer useful insights into the mechanical properties of
graphyne materials with different hole shapes, and their practical applications in material
science and engineering can be significant.

Table A1. Parameter values of Equation (17) for the analytical prediction of mechanical properties
of graphyne.

Ex Ey σux σuy εfx εfy

C
ir

cu
la

r
ho

le a −0.01328 −0.02175 0.31215 0.39201 0.70679 0.65288

b 1.01861 1.02460 0.68999 0.59942 0.28739 0.34707
c 0.39087 0.42385 0.15879 0.06569 0.06158 0.01771

R2 0.99000 0.99000 0.99000 0.98000 0.95000 0.98000

Sq
ua

re
ho

le a 0.19684 0.15620 0.47900 0.49592 0.78609 0.64616
b 0.80854 0.83635 0.52249 0.49939 0.21336 0.34956
c 0.27754 0.34094 0.10267 0.04676 0.02598 0.04227

R2 0.98 0.99 0.99 0.97 0.90 0.94

R
ho

m
bi

c
ho

le

a 0.32312 0.18802 0.35359 0.34209 0.67028 0.59384

b 0.6737 0.80686 0.65038 0.64546 0.32904 0.40612
c 0.17649 0.28148 0.09313 0.05726 0.02908 0.01662

R2 0.98 0.97 0.99 0.94 0.93 0.99
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Table A2. Parameter values of Equation (17) for the analytical prediction of mechanical properties
of graphdiyne.

Ex Ey σux σuy εfx εfy

C
ir

cu
la

r
ho

le

a 0.52877 0.56265 0.53169 0.41842 0.68781 0.51250

b 0.44434 0.43016 0.45601 0.57879 0.30756 0.48722
c 0.11159 0.08445 0.05557 0.03396 0.06053 0.02279

R2 0.82000 0.98000 0.87000 0.96000 0.94000 0.97000
Sq

ua
re

ho
le a −1.22782 0.30336 0.34185 0.48296 0.68108 0.68787

b 2.21081 0.68163 0.64310 0.50637 0.31021 0.31189
c 1.08266 0.22266 0.21818 0.05221 0.10768 0.02238

R2 0.96 0.96 0.94 0.89 0.95 0.98

R
ho

m
bi

c
ho

le

a 0.11455 61,266 0.29567 0.28294 −96,147 0.50061

b 0.89455 −61,265 0.7189 0.71424 96,148 0.49665
c 0.28715 −28,643 0.12369 0.08568 58,937 0.03542

R2 0.97 0.95 0.97 0.99 0.9 0.96

Table A3. Parameter values of Equation (17) for the analytical prediction of mechanical properties
of graphyne-3.

Ex Ey σux σuy εfx εfy

C
ir

cu
la

r
ho

le

a 0.47251 0.49490 0.39114 0.42952 0.58107 0.54080

b 0.51969 0.49912 0.60804 0.55934 0.42564 0.45870
c 0.16870 0.11669 0.16182 0.05451 0.26025 0.04193

R2 0.91 0.98 0.90 0.93 0.98 0.99

Sq
ua

re
ho

le a 0.01813 0.18307 −0.03830 0.36855 0.61464 0.72907
b 0.96220 0.81386 1.01187 0.62103 0.38556 0.26762
c 0.42336 0.25694 0.47241 0.11561 0.37605 0.04605

R2 0.91 0.99 0.91 0.97 0.98 0.95

R
ho

m
bi

c
ho

le

a 0.24141 −0.0613 0.46377 0.33207 1.38875 0.53561

b 0.76417 1.04379 0.5563 0.65178 −0.39214 0.46029
c 0.23271 0.36545 0.09018 0.07463 −0.62357 0.04771

R2 0.97 0.96 0.9 0.93 0.98 0.98

Table A4. Parameter values of Equation (17) for the analytical prediction of mechanical properties
of graphyne-4.

Ex Ey σux σuy εfx εfy

C
ir

cu
la

r
ho

le

a −2.31049 0.20093 0.32807 0.39183 0.58986 0.53511

b 3.30293 0.79905 0.65845 0.59124 0.43111 0.46471
c 1.57087 0.25039 0.19239 0.08284 0.12130 0.03638

R2 0.99000 0.93000 0.96000 0.94000 0.87000 0.99000

Sq
ua

re
ho

le a 2.34985 0.30658 0.43378 0.45300 14.08941 0.70433
b −1.36430 0.68101 0.56028 0.53464 −13.06307 0.29473
c −0.82667 0.17919 0.17312 0.07094 −7.71899 0.02722

R2 0.82 0.91 0.97 0.93 0.94 0.93

R
ho

m
bi

c
ho

le

a 0.34482 0.45448 0.51764 0.35273 0.62012 0.61046

b 0.63847 0.55286 0.47121 0.64212 0.37527 0.38635
c 0.19142 0.09276 0.06646 0.07679 0.04731 0.03378

R2 0.92 0.99 0.93 0.98 0.94 0.88
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