Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibitory Concentration Assays
2.2. HO-AAVPA and VPA Effects on Breast Cancer Cells
2.3. Effects of HO-AAVPA and VPA on the Metabolic Pathways of Breast Cancer Cells
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Cell Culture
3.3. Inhibitory Concentration Assays
3.4. Cell Treatment and Metabolite Extraction
3.5. Protein Quantification
3.6. LC-MS Data Acquisition
3.7. LC-MS Data Processing
3.8. LC-MS/MS Data Acquisition and Metabolite Annotation
3.9. Effect on Metabolic Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Glozak, M.A.; Seto, E. Histone Deacetylases and Cancer. Oncogene 2007, 26, 5420–5432. [Google Scholar] [CrossRef] [PubMed]
- Peserico, A.; Simone, C. Physical and Functional HAT/HDAC Interplay Regulates Protein Acetylation Balance. J. Biomed. Biotechnol. 2011, 2011, 371832. [Google Scholar] [CrossRef] [PubMed]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef]
- Gil, J.; Ramírez-Torres, A.; Encarnación-Guevara, S. Lysine Acetylation and Cancer: A Proteomics Perspective. J. Proteom. 2017, 150, 297–309. [Google Scholar] [CrossRef]
- Park, S.; Jun, J.; Jeong, K.; Heo, H.; Sohn, J.; Lee, H.; Park, C.; Kang, J. Histone Deacetylases 1, 6 and 8 Are Critical for Invasion in Breast Cancer. Oncol. Rep. 2011, 25, 1677–1681. [Google Scholar] [CrossRef]
- Parbin, S.; Kar, S.; Shilpi, A.; Sengupta, D.; Deb, M.; Rath, S.K.; Patra, S.K. Histone Deacetylases. J. Histochem. Cytochem. 2013, 62, 11–33. [Google Scholar] [CrossRef]
- Aldana-Masangkay, G.I.; Sakamoto, K.M. The Role of HDAC6 in Cancer. J. Biomed. Biotechnol. 2011, 2011, 875824. [Google Scholar] [CrossRef]
- Hull, E.E.; Montgomery, M.R.; Leyva, K.J. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BioMed Res. Int. 2016, 2016, 8797206. [Google Scholar] [CrossRef]
- Conte, M.; Palma, R.D.; Altucci, L. HDAC Inhibitors as Epigenetic Regulators for Cancer Immunotherapy. Int. J. Biochem. Cell Biol. 2018, 98, 65–74. [Google Scholar] [CrossRef]
- Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; et al. Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer. Anticancer Res. 2017, 37, 35–46. [Google Scholar] [CrossRef]
- West, A.C.; Johnstone, R.W. New and Emerging HDAC Inhibitors for Cancer Treatment. J. Clin. Investig. 2014, 124, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.W. Histone-Deacetylase Inhibitors: Novel Drugs for the Treatment of Cancer. Nat. Rev. Drug Discov. 2002, 1, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy. Nutrients 2018, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Linares, A.; Dalenc, F.; Balaguer, P.; Boulle, N.; Cavailles, V. Manipulating Protein Acetylation in Breast Cancer: A Promising Approach in Combination with Hormonal Therapies? J. Biomed. Biotechnol. 2011, 2011, 856985. [Google Scholar] [CrossRef]
- Ali, S.R.; Humphreys, K.J.; McKinnon, R.A.; Michael, M.Z. Impact of Histone Deacetylase Inhibitors on MicroRNA Expression and Cancer Therapy: A Review. Drug Dev. Res. 2015, 76, 296–317. [Google Scholar] [CrossRef]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef]
- Sixto-López, Y.; Bello, M.; Correa-Basurto, J. Exploring the Inhibitory Activity of Valproic Acid against the HDAC Family Using an MMGBSA Approach. J. Comput. Aided Mol. Des. 2020, 34, 857–878. [Google Scholar] [CrossRef] [PubMed]
- Giordano, F.; Paolì, A.; Forastiero, M.; Marsico, S.; Amicis, F.D.; Marrelli, M.; Naimo, G.D.; Mauro, L.; Panno, M.L. Valproic Acid Inhibits Cell Growth in Both MCF-7 and MDA-MB231 Cells by Triggering Different Responses in a Cell Type-Specific Manner. J. Transl. Med. 2023, 21, 165. [Google Scholar] [CrossRef] [PubMed]
- Ozman, Z.; Iptec, B.O.; Sahin, E.; Eskiler, G.G.; Ozkan, A.D.; Kaleli, S. Regulation of Valproic Acid Induced EMT by AKT/GSK3β/β-Catenin Signaling Pathway in Triple Negative Breast Cancer. Mol. Biol. Rep. 2021, 48, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, N.; Bertino, S.; Costantino, L.; Bosco, O.; Vercellinatto, I.; Catalano, M.G.; Boccuzzi, G. Valproic Acid Is a Selective Antiproliferative Agent in Estrogen-Sensitive Breast Cancer Cells. Cancer Lett. 2008, 259, 156–164. [Google Scholar] [CrossRef]
- Mawatari, T.; Ninomiya, I.; Inokuchi, M.; Harada, S.; Hayashi, H.; Oyama, K.; Makino, I.; Nakagawara, H.; Miyashita, T.; Tajima, H.; et al. Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int. J. Oncol. 2015, 47, 2073–2081. [Google Scholar] [CrossRef]
- Wardell, S.E.; Ilkayeva, O.R.; Wieman, H.L.; Frigo, D.E.; Rathmell, J.C.; Newgard, C.B.; McDonnell, D.P. Glucose Metabolism as a Target of Histone Deacetylase Inhibitors. Mol. Endocrinol. 2009, 23, 388–401. [Google Scholar] [CrossRef]
- Fang, E.; Wang, J.; Hong, M.; Zheng, L.; Tong, Q. Valproic Acid Suppresses Warburg Effect and Tumor Progression in Neuroblastoma. Biochem. Biophys. Res. Commun. 2019, 508, 9–16. [Google Scholar] [CrossRef]
- Geng, H.-W.; Yin, F.-Y.; Zhang, Z.-F.; Gong, X.; Yang, Y. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy. Front. Mol. Biosci. 2021, 8, 634874. [Google Scholar] [CrossRef]
- Chittur, S.V.; Sangster-Guity, N.; McCormick, P.J. Histone Deacetylase Inhibitors: A New Mode for Inhibition of Cholesterol Metabolism. BMC Genom. 2008, 9, 507. [Google Scholar] [CrossRef]
- Marcos, X.; Sixto-López, Y.; Pérez-Casas, S.; Correa-Basurto, J. Computational Study of DMPC Liposomes Loaded with the N-(2-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) and Determination of Its Antiproliferative Activity in Vitro in NIH-3T3 Cells. J. Biomol. Struct. Dyn. 2021, 40, 11448–11459. [Google Scholar] [CrossRef]
- López-Bautista, M.C.; Avendaño-Alejo, M.; Castañeda, L.; Peralta-Ángeles, J.A.; Reyes-Esqueda, J.A. Study of Nonlinear Properties of N-(2-Hydroxyphenyl)-2-Propylpentanamide in Polymeric Solution. Optik 2019, 180, 724–732. [Google Scholar] [CrossRef]
- Sixto-López, Y.; Rosales-Hernández, M.C.; de Oca, A.C.-M.; Fragoso-Morales, L.G.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Abarca-Rojano, E.; Correa-Basurto, J. N-(2′-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Inhibits HDAC1 and Increases the Translocation of HMGB1 Levels in Human Cervical Cancer Cells. Int. J. Mol. Sci. 2020, 21, 5873. [Google Scholar] [CrossRef] [PubMed]
- Correa-Basurto, A.M.; Romero-Castro, A.; Correa-Basurto, J.; Hernández-Rodríguez, M.; Soriano-Ursúa, M.A.; García-Machorro, J.; Tolentino-López, L.E.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E. Pharmacokinetics and Tissue Distribution of N-(2-Hydroxyphenyl)-2-Propylpentanamide in Wistar Rats and Its Binding Properties to Human Serum Albumin. J. Pharm. Biomed. Anal. 2019, 162, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Mendieta-Wejebe, J.; Silva-Trujillo, A.; Bello, M.; Mendoza-Figueroa, H.L.; Galindo-Alvarez, N.; Albores, A.; Tamay-Cach, F.; Rosales-Hernández, M.; Romero-Castro, A.; Correa-Basurto, J. Exploring the Biotransformation of N-(2-hydroxyphenyl)-2-propylpentanamide (an Aryl Valproic Acid Derivative) by CYP2C11, Using in Silico Predictions and in Vitro Studies. J. Pharm. Pharmacol. 2020, 72, 938–955. [Google Scholar] [CrossRef] [PubMed]
- Cristóbal-Luna, J.; Correa-Basurto, J.; Mendoza-Figueroa, H.L.; Chamorro-Cevallos, G. Anti-Epileptic Activity, Toxicity and Teratogenicity in CD1 Mice of a Novel Valproic Acid Arylamide Derivative, N-(2-Hydroxyphenyl)-2-Propylpentanamide. Toxicol. Appl. Pharm. 2020, 399, 115033. [Google Scholar] [CrossRef] [PubMed]
- Contis-Montes de Oca, A.; Rodarte Valle, E.; Rosales-Hernández, M.C.; Abarca-Rojano, E.; Rojas-Hernández, S.; Fragoso-Vázquez, M.J.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Vázquez-Moctezuma, I.; Correa-Basurto, J. N-(2′-Hydroxyphenyl)-2-propylpentanamide (OH-VPA), a histone deacetylase inhibitor, induces the release of nuclear HMGB1 and modifies ROS levels in HeLa cells. Oncotarget 2018, 9, 33368–33381. [Google Scholar] [CrossRef] [PubMed]
- Prestegui-Martel, B.; Bermúdez-Lugo, J.A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J.R.; Pérez-González, O.A.; Padilla-Martínez, I.I.; Fragoso-Vázquez, M.J.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; et al. N-(2-Hydroxyphenyl)-2-Propylpentanamide, a Valproic Acid Aryl Derivative Designed in Silico with Improved Anti-Proliferative Activity in HeLa, Rhabdomyosarcoma and Breast Cancer Cells. J. Enzym. Inhib. Med. Chem. 2016, 31, 140–149. [Google Scholar] [CrossRef]
- Subramani, R.; Poudel, S.; Smith, K.D.; Estrada, A.; Lakshmanaswamy, R. Metabolomics of Breast Cancer: A Review. Metabolites 2022, 12, 643. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Zolla, L. Proteomics and Metabolomics in Cancer Drug Development. Expert Rev. Proteom. 2013, 10, 473–488. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Wishart, D.S. Emerging Applications of Metabolomics in Drug Discovery and Precision Medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Estrada-Pérez, A.R.; Rosales-Hernández, M.C.; García-Vázquez, J.B.; Bakalara, N.; Fromager, B.; Correa-Basurto, J. Untargeted LC-MS/MS Metabolomics Study on the MCF-7 Cell Line in the Presence of Valproic Acid. Int. J. Mol. Sci. 2022, 23, 2645. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Wang, X.; Jiang, G.; Shan, C.; Liu, S. Metabolomics Reveals the Effect of Valproic Acid on MCF-7 and MDA-MB-231 Cells. Xenobiotica 2019, 50, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Granit, A.; Mishra, K.; Barasch, D.; Peretz-Yablonsky, T.; Eyal, S.; Kakhlon, O. Metabolomic Profiling of Triple Negative Breast Cancer Cells Suggests That Valproic Acid Can Enhance the Anticancer Effect of Cisplatin. Front. Cell Dev. Biol. 2022, 10, 1014798. [Google Scholar] [CrossRef] [PubMed]
- Wawruszak, A.; Luszczki, J.J.; Grabarska, A.; Gumbarewicz, E.; Dmoszynska-Graniczka, M.; Polberg, K.; Stepulak, A. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines—An Isobolographic Analysis. PLoS ONE 2015, 10, e0143013. [Google Scholar] [CrossRef]
- Hsu, K.-W.; Huang, C.-Y.; Tam, K.-W.; Lin, C.-Y.; Huang, L.-C.; Lin, C.-L.; Hsieh, W.-S.; Chi, W.-M.; Chang, Y.-J.; Wei, P.-L.; et al. The Application of Non-Invasive Apoptosis Detection Sensor (NIADS) on Histone Deacetylation Inhibitor (HDACi)-Induced Breast Cancer Cell Death. Int. J. Mol. Sci. 2018, 19, 452. [Google Scholar] [CrossRef]
- Cody, J.J.; Markert, J.M.; Hurst, D.R. Histone Deacetylase Inhibitors Improve the Replication of Oncolytic Herpes Simplex Virus in Breast Cancer Cells. PLoS ONE 2014, 9, e92919. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A Web-Based Metabolomics Tool for Pathway Analysis and Visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef]
- Zhao, Y.; Butler, E.B.; Tan, M. Targeting Cellular Metabolism to Improve Cancer Therapeutics. Cell Death Dis. 2013, 4, e532. [Google Scholar] [CrossRef]
- Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The Diversity and Breadth of Cancer Cell Fatty Acid Metabolism. Cancer Metab. 2021, 9, 2. [Google Scholar] [CrossRef]
- Schiliro, C.; Firestein, B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Burg, T.; Rossaert, E.; Moisse, M.; Damme, P.V.; Bosch, L.V.D. Histone Deacetylase Inhibition Regulates Lipid Homeostasis in a Mouse Model of Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 11224. [Google Scholar] [CrossRef] [PubMed]
- Koundouros, N.; Poulogiannis, G. Reprogramming of Fatty Acid Metabolism in Cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef]
- Gomes, L.; Viana, L.; Silva, J.L.; Mermelstein, C.; Atella, G.; Fialho, E. Resveratrol Modifies Lipid Composition of Two Cancer Cell Lines. BioMed Res. Int. 2020, 2020, 5393041. [Google Scholar] [CrossRef] [PubMed]
- Urias, B.S.; Pavan, A.R.; Albuquerque, G.R.; Prokopczyk, I.M.; Alves, T.M.F.; de Melo, T.R.F.; Sartori, G.R.; da Silva, J.H.M.; Chin, C.M.; Santos, J.L.D. Optimization of Resveratrol Used as a Scaffold to Design Histone Deacetylase (HDAC-1 and HDAC-2) Inhibitors. Pharmaceuticals 2022, 15, 1260. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, S.; Berger, A.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Schleicher, S.; Mayer, M.; Weiss, T.S.; et al. Resveratrol as a Pan-HDAC Inhibitor Alters the Acetylation Status of Jistone Proteins in Human-Derived Hepatoblastoma Cells. PLoS ONE 2013, 8, e73097. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Y.; Ma, Y.; Liu, T.; Zhao, M.; Wang, Z.; Zhao, L. Lipidomic Profiling Reveals Disruption of Lipid Metabolism in Valproic Acid-Induced Hepatotoxicity. Front. Pharmacol. 2019, 10, 819. [Google Scholar] [CrossRef]
- Shimshoni, J.A.; Basselin, M.; Li, L.O.; Coleman, R.A.; Rapoport, S.I.; Modi, H.R. Valproate Uncompetitively Inhibits Arachidonic Acid Acylation by Rat Acyl-CoA Synthetase 4: Relevance to Valproate’s Efficacy against Bipolar Disorder. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2011, 1811, 163–169. [Google Scholar] [CrossRef]
- Borin, T.F.; Angara, K.; Rashid, M.H.; Achyut, B.R.; Arbab, A.S. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int. J. Mol. Sci. 2017, 18, 2661. [Google Scholar] [CrossRef]
- Rosario, S.R.; Long, M.D.; Affronti, H.C.; Rowsam, A.M.; Eng, K.H.; Smiraglia, D.J. Pan-Cancer Analysis of Transcriptional Metabolic Dysregulation Using the Cancer Genome Atlas. Nat. Commun. 2018, 9, 5330. [Google Scholar] [CrossRef] [PubMed]
- Sostare, J.; Guida, R.D.; Kirwan, J.; Chalal, K.; Palmer, E.; Dunn, W.B.; Viant, M.R. Comparison of Modified Matyash Method to Conventional Solvent Systems for Polar Metabolite and Lipid Extractions. Anal. Chim. Acta 2018, 1037, 301–315. [Google Scholar] [CrossRef]
- Bi, H.; Krausz, K.W.; Manna, S.K.; Li, F.; Johnson, C.H.; Gonzalez, F.J. Optimization of Harvesting, Extraction, and Analytical Protocols for UPLC-ESI-MS-Based Metabolomic Analysis of Adherent Mammalian Cancer Cells. Anal. Bioanal. Chem. 2013, 405, 5279–5289. [Google Scholar] [CrossRef] [PubMed]
- Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality Assurance Procedures for Mass Spectrometry Untargeted Metabolomics. a Review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, C.Z.; Yost, R.A.; Chen, J.; Mathews, C.E.; Garrett, T.J. Liquid Chromatography-Mass Spectrometry Metabolic and Lipidomic Sample Preparation Workflow for Suspension-Cultured Mammalian Cells Using Jurkat T Lymphocyte Cells. J. Proteom. Bioinform. 2015, 8, 126–132. [Google Scholar] [CrossRef]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In The Protein Protocols Handbook; Humana Press Inc.: Totowa, NJ, USA, 1996; pp. 11–14. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Xu, J.; Liu, X.; Wang, X.; Pang, J.; Song, Y.; Yu, M.; Song, W.; Luo, X.; et al. Proteomic Analysis of Taenia Solium Cyst Fluid by Shotgun LC-MS/MS. J. Parasitol. 2021, 107, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, J.; Xu, Y.; Liao, G.; Jia, Q.; Pan, Y.; Wang, T.; Qian, Y. Integrated Non-Targeted Lipidomics and Metabolomics Analyses for Fluctuations of Neonicotinoids Imidacloprid and Acetamiprid on Neuro-2a Cells. Environ. Pollut. 2021, 284, 117327. [Google Scholar] [CrossRef]
- Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and Considerations for the Use of System Suitability and Quality Control Samples in Mass Spectrometry Assays Applied in Untargeted Clinical Metabolomic Studies. Metabolomics 2018, 14, 72. [Google Scholar] [CrossRef]
- Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The Importance of Experimental Design and QC Samples in Large-Scale and MS-Driven Untargeted Metabolomic Studies of Humans. Bioanalysis 2012, 4, 2249–2264. [Google Scholar] [CrossRef]
- Estrada-Pérez, A.R.; Bakalara, N.; García-Vázquez, J.B.; Rosales-Hernández, M.C.; Fernández-Pomares, C.; Correa-Basurto, J. LC–MS Based Lipidomics Depict Phosphatidylethanolamine as Biomarkers of TNBC MDA-MB-231 over NTNBC MCF-7 Cells. Int. J. Mol. Sci. 2022, 23, 12074. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making Metabolomics More Meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Web-Based Inference of Biological Patterns, Functions and Pathways from Metabolomic Data Using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, gkab382. [Google Scholar] [CrossRef] [PubMed]
MCF-7 | MDA-MB-231 | |||
---|---|---|---|---|
IC50 | IC15 | IC50 | IC15 | |
HO-AAVPA | 476.1 µM | 313.8 µM | 291.8 µM | 175.6 µM |
VPA | 7.11 mM | 1.64 mM | 7.29 mM | 3.48 mM |
Metabolite | Change in Regulation | |||
---|---|---|---|---|
HO-AAVPA | Fold Change | VPA | Fold Change | |
Sphinganine | Up * | 2.583 | Up * | 2.295 |
4,5-Dihydro-1-benzoxepin-3(2H)-one | Down * | −16 | Up * | 16 |
N-trans-Feruloyloctopamine | Up * | 16 | Down * | −16 |
PC(18:4(6Z,9Z,12Z,15Z)/14:0) | ND | - | Up * | 16 |
PE(15:0/14:0) | Down * | −16 | Up * | 11.739 |
PE(14:0/15:0) | Down * | −16 | Up * | 14.129 |
PS(18:0/18:0) | Down * | −4.61 | Down | −1.06 |
PC(14:0/14:0) | Down * | −148.631 | Up * | 16 |
TG(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | Down * | −16 | Up * | 16 |
TG(15:0/20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | Down * | −34.84 | Up * | 16 |
TG(14:0/22:4(7Z,10Z,13Z,16Z)/14:0) | Up * | 2.138 | Up | 1.539 |
Cer(d18:0/26:1(17Z)) | Down * | −3.127 | Down | −1.312 |
Cer(d18:0/26:0) | Down * | −2.734 | Down | −1.219 |
TG(20:2n6/18:0/20:2n6) | Up * | 2.145 | Up | 1.362 |
Aspidospermatine | Up * | 26.008 | ND | - |
Arachidonic acid | Down | −1.876 | Up * | 4.491 |
PA(16:0/16:0) | Down * | −16 | Up * | 16 |
PE(14:0/22:5(4Z,7Z,10Z,13Z,16Z)) | Down * | −3.773 | Up | 1.697 |
PE(20:0/14:0) | Down * | −16 | Up * | 16 |
Metabolite | Change in Regulation | |||
---|---|---|---|---|
HO-AAVPA | Fold Change | VPA | Fold Change | |
LysoPC(14:0) | Up * | 3.569 | Up | 1.012 |
LysoPC(16:0) | Up * | 3.198 | Up | 1.116 |
PC(14:0/14:0) | Up | 1.374 | Up | 1.091 |
PC(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) | Up * | 3.073 | Down * | −2.196 |
CL(18:1(9Z)/16:0/18:1(9Z)/18:0) | Up * | 3.145 | Down * | −2.198 |
PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)) | Up * | 2.428 | Down * | −2.189 |
PC(18:2(9Z,12Z)/18:3(6Z,9Z,12Z)) | Up * | 2.845 | Down * | −2.167 |
PC(18:3(6Z,9Z,12Z)/16:0) | Up | 1.696 | Down * | −2.201 |
PE(14:0/22:5(4Z,7Z,10Z,13Z,16Z)) | Up | 1.706 | Down * | −2.129 |
PE(22:5(7Z,10Z,13Z,16Z,19Z)/14:0) | Down * | −2.883 | Up | 1.098 |
PE(20:3(8Z,11Z,14Z)/14:0) | Down * | −2.820 | Down | −1.220 |
Cohibin D | Down * | −2.297 | Up | 1.054 |
PC(16:0/15:0) | Down * | −2.311 | Down | −1.223 |
PC(14:1(9Z)/15:0) | Down * | −1.964 | Down | −1.078 |
CL(18:1(9Z)/18:0/18:2(9Z,12Z)/18:0) | Down * | −2.034 | Down | −1.118 |
PE(20:2(11Z,14Z)/14:0) | Down * | −2.742 | Down * | −2.310 |
PC(18:3(6Z,9Z,12Z)/18:0) | Down * | −2.363 | Down * | −2.261 |
PC(18:3(6Z,9Z,12Z)/15:0) | Down * | −2.335 | Down * | −2.078 |
PC(20:5(5Z,8Z,11Z,14Z,17Z)/15:0) | Down * | −2.358 | Up * | 2.086 |
PC(15:0/18:3(9Z,12Z,15Z)) | Down | −1.501 | Up * | 2.053 |
PC(18:1(9Z)/18:1(9Z)) | Down * | −2.322 | Down * | −2.243 |
PC(16:1(9Z)/15:0) | Down | −1.831 | Down * | −2.049 |
Ceramide (d18:1/16:0) | Up * | 5.668 | Down * | −2.323 |
PC(18:2(9Z,12Z)/15:0) | Down * | −2.479 | Down * | −2.321 |
PC(18:2(9Z,12Z)/20:1(11Z)) | Down * | −2.170 | Up | 1.063 |
PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:0) | Down * | −2.915 | Up | 1.005 |
PE(24:1(15Z)/18:4(6Z,9Z,12Z,15Z)) | Down * | −2.496 | Down | −1.149 |
PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:1(13Z)) | Down * | −2.299 | Up | 1.005 |
PC(18:2(9Z,12Z)/20:0) | Down * | −2.582 | Up | 1.011 |
SM(d18:0/26:1(17Z)) | Down * | −2.185 | Up | 1.113 |
Cer(d18:1/24:1(15Z)) | Up * | 2.078 | Down | −1.322 |
Cer(d18:1/24:0) | Up * | 3.452 | Down | −1.427 |
Glucosylceramide (d18:1/26:0) | Down * | −4.280 | Up | 1.012 |
PE(18:0/24:1(15Z)) | Down * | −3.980 | Up | 1.080 |
Cer(d18:1/26:0) | Down * | −2.594 | Up | 1.265 |
TG(18:4(6Z,9Z,12Z,15Z)/16:0/18:4(6Z,9Z,12Z,15Z)) | Up * | 16 | ND | - |
TG(14:1(9Z)/16:0/14:1(9Z)) | Up * | 4.823 | Down | −1.645 |
CL(18:1(9Z)/16:1(9Z)/18:1(9Z)/16:1(9Z)) | Down * | −3.829 | Down | −1.068 |
TG(14:0/14:0/20:4(5Z,8Z,11Z,14Z)) | Up * | 5.439 | Down | −2.203 |
TG(14:1(9Z)/15:0/16:1(9Z)) | Up * | 2.788 | Down | −1.519 |
TG(16:1(9Z)/14:0/18:3(9Z,12Z,15Z)) | Up * | 10.634 | Down | −1.531 |
TG(20:3n6/14:0/18:3(9Z,12Z,15Z)) | Up * | 7.207 | Down | −1.182 |
Ubisemiquinone | Down * | −3.178 | Down | −1.199 |
TG(16:1(9Z)/14:1(9Z)/18:1(9Z)) | Up * | 3.491 | Down | −1.421 |
SM(d18:1/26:0) | Up * | 8.390 | Down | −1.036 |
TG(14:0/22:4(7Z,10Z,13Z,16Z)/14:0) | Up * | 5.237 | Down | −1.340 |
LysoPE(0:0/18:0) | Up * | 3.069 | Up | 1.136 |
LysoPE(0:0/16:0) | Up * | 2.538 | Up | 1.378 |
LysoPE(18:1(9Z)/0:0) | Up * | 2.122 | Up | 1.092 |
LysoPE(18:0/0:0) | Up * | 2.813 | Up | 1.281 |
PS(18:1(9Z)/16:0) | Up * | 3.219 | Up | 1.086 |
Cer(d18:1/14:0) | Up * | 9.224 | Down | −1.176 |
PE(18:1(9Z)/14:0) | Down * | −2.021 | Up | 1.031 |
PE(14:1(9Z)/20:1(11Z)) | Down * | −2.732 | Down | −1.222 |
PE(14:1(9Z)/22:2(13Z,16Z)) | Down * | −2.439 | Down | −1.132 |
Cer(d18:0/14:0) | Up * | 16.862 | Down | −1.185 |
PE(22:2(13Z,16Z)/14:1(9Z)) | Down * | −3.042 | Down | −1.112 |
PE(16:1(9Z)/24:1(15Z)) | Down * | −2.701 | Down | −1.008 |
1,1’-(1,4-Dihydro-4-nonyl-3,5-pyridinediyl)bis [1-decanone] | Up * | 2.518 | Down | −1.265 |
PE(14:0/22:2(13Z,16Z)) | Down * | −2.718 | Down | −1.266 |
PE(24:0/14:0) | Down * | −3.026 | Down | −1.131 |
Cer(d18:0/16:0) | Up * | 4.630 | Down | −1.096 |
PE-NMe(18:1(9Z)/18:1(9Z)) | Down * | −2.462 | Down | −1.224 |
‘PE(22:2(13Z,16Z)/16:1(9Z))’ | Down * | −2.020 | Up | 1.204 |
PE(18:1(11Z)/24:1(15Z)) | Down * | −2.565 | Down | −1.001 |
2-O-(4,7,10,13,16,19-Docosahexaenoyl)-1-O-hexadecylglycero-3-phosphocholine | Down * | −2.393 | Down | −1.235 |
PE(16:0/22:2(13Z,16Z)) | Down * | −2.691 | Down | −1.069 |
1-[1,4-Dihydro-4-nonyl-5-(1-oxodecyl)-3-pyridinyl]-1-dodecanone | Up * | 3.533 | Down | −1.016 |
PE(24:1(15Z)/14:0) | Down * | −2.070 | Down | −1.055 |
PE(24:1(15Z)/16:1(9Z)) | Down * | −2.355 | Down | −1.321 |
1,1’-(1,4-Dihydro-4-nonyl-3,5-pyridinediyl)bis[1-dodecanone] | Up * | 3.586 | Up | 1.236 |
Campesteryl linoleate | Up * | 2.700 | Down | −1.092 |
PE-NMe2(16:0/18:1(9Z)) | Up * | 2.601 | Up | 1.043 |
PE(24:1(15Z)/18:1(9Z)) | Down * | −3.303 | Down | −1.332 |
Cer(d18:0/24:1(15Z)) | Up * | 3.664 | Down | −1.398 |
PE(24:1(15Z)/18:0) | Down * | −3.529 | Down | −1.073 |
CL(18:2(9Z,12Z)/18:0/18:2(9Z,12Z)/16:1(9Z)) | Down * | −2.271 | Down | −1.359 |
Aprobarbital | Down * | −2.059 | Down | −1.104 |
Dihydroandrosterone | Up * | 2.259 | Down | −1.115 |
Kanzonol O | Down * | −7.933 | Down | −1.309 |
LysoPC(16:1(9Z)) | Up * | 4.319 | Down | −1.171 |
1-Nitroheptane | Up * | 2.624 | Down * | −2.132 |
Styrene | Down * | −2.178 | Down | −1.128 |
(S)-Homostachydrine | Up * | 2.317 | Down | −1.242 |
Buprenorphine | Up * | 5.704 | Down | −1.141 |
7-Methylguanosine | Up * | 2.178 | Up | 1.147 |
L-Hexanoylcarnitine | Up * | 15.273 | Down | −1.139 |
cis-4-Decenedioic acid | Up * | 16 | ND | - |
5-Aminoimidazole-4-carboxamide | Down * | −9.820 | Down | −1.832 |
5-Butyltetrahydro-2-oxo-3-furancarboxylic acid | Down * | −2.074 | Down | −1.133 |
4-Hydroxy-2-butenoic acid gamma-lactone | Down * | −2.895 | Down | −1.077 |
Leucyl-Proline | Down * | −2.079 | Down | −1.134 |
Pyro-L-glutaminyl-L-glutamine | Up * | 16 | ND | - |
3’-O-Methyladenosine | Up * | 23.771 | Up | 1.006 |
N-Ethylglycine | Down * | −2.040 | Down | −1.029 |
N-Acetylglutamine | Down * | −6.166 | Up | 1.094 |
3-Acetamidobutanal | Up * | 2.356 | Up | 1.010 |
Phenol sulphate | Down * | −2.135 | Up | 1.027 |
2-Methyl-3-ketovaleric acid | Down * | −2.801 | Up | 1.064 |
Palmitoyl glucuronide | Down * | −3.696 | Down | −1.604 |
Pyrogallol-2-O-sulphate | Down * | −4.339 | Up | 1.237 |
Valdiate | Down * | −2.344 | Down | −1.010 |
2,6-Di-tert-butyl-1,4-benzenediol | Down * | −2.020 | Up | 1.108 |
1-Hydroxy-2-pentanone | Down * | −2.406 | Down | −1.179 |
Uracil | Down * | −2.504 | Down | −1.095 |
3’-Hydroxy-3,4,5,4’-tetramethoxystilbene | Down * | −9.469 | Down | −1.040 |
Acetoxyacetone | Down * | −2.190 | Down | −1.304 |
Deoxyfructosazine | Down * | −11.270 | Down | −1.260 |
Portulacaxanthin II | Down * | −10.825 | Down | −1.309 |
Leucyl-Leucine | Down * | −3.482 | Up | 1.105 |
Homocysteinesulfinic acid | Down * | −2.240 | Down | −1.147 |
N-Acetyl-L-methionine | Down * | −2.109 | Up | 1.257 |
Pantothenic acid | Up * | 6.745 | Down | −1.004 |
Phenylalanyl-Glycine | Down * | −6.639 | Down | −1.099 |
Sakacin P | Down * | −5.802 | Up | 1.089 |
(±)-2,2’-Iminobispropanoic acid | Down * | −4.959 | Up | 1.089 |
Gamma-glutamyl-Phenylalanine | Down * | −3.403 | Up | 1.031 |
Racemethionine | Up * | 6.745 | Up | 1.073 |
L-Aspartate-semialdehyde | Down * | −6.639 | Up * | 2.012 |
Phenylalanylglutamine | Down * | −5.802 | Up * | 2.017 |
L-N-(3-Carboxypropyl)glutamine | Down * | −4.959 | Down | −1.067 |
Valyl-Alanine | Down * | −3.403 | Down | −1.069 |
Alanyl-Glycine | Down * | −4.922 | Down | −1.043 |
Glycyl-Hydroxyproline | Down * | −4.045 | Up | 1.269 |
Ethyl nitrite | Down * | −13.453 | Down | −1.076 |
Methoxyacetic acid | Down * | −2.156 | Up | 1.272 |
L-Asparagine | Up * | 16 | ND | - |
Acetophenazine | Down * | −2.405 | Down * | −2.083 |
Metabolic Pathway | MDA-MB-231 | MCF-7 | ||
---|---|---|---|---|
HO-AAVPA | VPA | HO-AAVPA | VPA | |
Glycerophospholipid metabolism | 0.34 | 0.34 | 0.22 | 0.20 |
Sphingolipid metabolism | 0.15 | 0.15 | 0.31 | 0.27 |
Arachidonic acid metabolism | 0.00 | 0.31 | 0.00 | 0.00 |
Linoleic acid metabolism | 0.00 | 0.00 | 0.00 | 0.00 |
alpha-linolenic acid metabolism | 0.00 | 0.00 | 0.00 | 0.00 |
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | 0.00 | 0.00 | 0.00 | 0.00 |
Glycerolipid metabolism | 0.01 | 0.01 | NA | NA |
Phosphatidylinositol signaling system | 0.00 | 0.00 | NA | NA |
Biosynthesis of unsaturated fatty acids | NA | 0.00 | NA | NA |
Pantothenate and CoA biosynthesis | NA | NA | 0.01 | NA |
Pentose and glucuronate interconversions | NA | NA | 0.14 | NA |
Beta-alanine metabolism | NA | NA | 0.00 | NA |
Alanine, aspartate, and glutamate metabolism | NA | NA | 0.00 | NA |
Pyrimidine metabolism | NA | NA | 0.07 | NA |
Aminoacyl-tRNA biosynthesis | NA | NA | 0.00 | NA |
Purine metabolism | NA | NA | 0.00 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Pérez, A.R.; García-Vázquez, J.B.; Mendoza-Figueroa, H.L.; Rosales-Hernández, M.C.; Fernández-Pomares, C.; Correa-Basurto, J. Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 14543. https://doi.org/10.3390/ijms241914543
Estrada-Pérez AR, García-Vázquez JB, Mendoza-Figueroa HL, Rosales-Hernández MC, Fernández-Pomares C, Correa-Basurto J. Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. International Journal of Molecular Sciences. 2023; 24(19):14543. https://doi.org/10.3390/ijms241914543
Chicago/Turabian StyleEstrada-Pérez, Alan Rubén, Juan Benjamín García-Vázquez, Humberto L. Mendoza-Figueroa, Martha Cecilia Rosales-Hernández, Cynthia Fernández-Pomares, and José Correa-Basurto. 2023. "Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines" International Journal of Molecular Sciences 24, no. 19: 14543. https://doi.org/10.3390/ijms241914543
APA StyleEstrada-Pérez, A. R., García-Vázquez, J. B., Mendoza-Figueroa, H. L., Rosales-Hernández, M. C., Fernández-Pomares, C., & Correa-Basurto, J. (2023). Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. International Journal of Molecular Sciences, 24(19), 14543. https://doi.org/10.3390/ijms241914543