Oxidative Damage as a Fundament of Systemic Toxicities Induced by Cisplatin—The Crucial Limitation or Potential Therapeutic Target?
Abstract
:1. Introduction
1.1. Definition of Oxidative Damage
1.2. Cisplatin and Its Mechanism of Action
2. Oxidative Damage in Systemic Toxicity Induced by Cisplatin
2.1. Role of Cisplatin-Induced Oxidative Stress in Tissue Injury
2.2. Mitochondrial Dysfunction and Inflammatory Responses Induced by Cisplatin
3. Clinical Implications
3.1. Limitations of Cisplatin as a Therapeutic Agent
3.2. Potential Strategies to Minimize Oxidative Damage
4. Animal Experimental Models
Overview of Recent Relevant Animal Models
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carocho, M.; Ferreira, I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Gomberg, M. An Instance of Trivalent Carbon: Thiphenylmethyl. J. Am. Chem. Soc. 1900, 22, 757–771. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Halliwell, B. Free Radicals and Antioxidants—Quo Vadis? Trends Pharmacol. Sci. 2011, 32, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Đukić, M.M. Oksidativni Stres—Slobodni Radikali, Prooksidansi i Antioksidansi; Mono i Manjana: Belgrade, Serbia, 2008; ISBN 978-86-7804-156-3. [Google Scholar]
- Gruhlke, M.C.H.; Slusarenko, A.J. The Biology of Reactive Sulfur Species (RSS). Plant Physiol. Biochem. 2012, 59, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive Oxygen Species in Living Systems: Source, Biochemistry, and Role in Human Disease. Am. J. Med. 1991, 91, S14–S22. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Lelarge-Trouverie, C.; Mhamdi, A. The Metabolomics of Oxidative Stress. Phytochemistry 2015, 112, 33–53. [Google Scholar] [CrossRef]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants—An Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- World Health Organization. Comparative Table of Medicines on the WHO Essential Medicines Lists from 1977–2011 (XLS); World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Katanić, J.; Matić, S.; Pferschy-Wenzig, E.-M.; Kretschmer, N.; Boroja, T.; Mihailović, V.; Stanković, V.; Stanković, N.; Mladenović, M.; Stanić, S.; et al. Filipendula Ulmaria Extracts Attenuate Cisplatin-Induced Liver and Kidney Oxidative Stress in Rats: In Vivo Investigation and LC-MS Analysis. Food Chem. Toxicol. 2017, 99, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Chirino, Y.I.; Pedraza-Chaverri, J. Role of Oxidative and Nitrosative Stress in Cisplatin-Induced Nephrotoxicity. Exp. Toxicol. Pathol. 2009, 61, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ruiz, S.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluderović, G.N. On the Discovery, Biological Effects, and Use of Cisplatin and Metallocenes in Anticancer Chemotherapy. Bioinorg. Chem. Appl. 2012, 2012, 140284. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.M.P. Cisplatin in Cancer Treatment. Biochem. Pharmacol. 2022, 206, 115323. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. [Google Scholar] [CrossRef]
- Vukovic, R.; Kumburovic, I.; Joksimovic Jovic, J.; Jovicic, N.; Katanic Stankovic, J.S.; Mihailovic, V.; Djuric, M.; Velickovic, S.; Arnaut, A.; Selakovic, D.; et al. N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules 2019, 9, 892. [Google Scholar] [CrossRef]
- Crul, M.; Schellens, J.H.; Beijnen, J.H.; Maliepaard, M. Cisplatin Resistance and DNA Repair. Cancer Treat. Rev. 1997, 23, 341–366. [Google Scholar] [CrossRef]
- Bugarčić, Ž.D.; Bogojeski, J.; Petrović, B.; Hochreuther, S.; van Eldik, R. Mechanistic Studies on the Reactions of Platinum(II) Complexes with Nitrogen- and Sulfur-Donor Biomolecules. Dalt. Trans. 2012, 41, 12329–12345. [Google Scholar] [CrossRef]
- Kelland, L. The Resurgence of Platinum-Based Cancer Chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Rosic, G.; Joksimovic, J.; Selakovic, D.; Jakovljevic, V.; Zivkovic, V.; Srejovic, I.; Djuric, M.; Djuric, D. The Beneficial Effects of Sulfur-Containing Amino Acids on Cisplatin-Induced Cardiotoxicity and Neurotoxicity in Rodents. Curr. Med. Chem. 2017, 25, 391–403. [Google Scholar] [CrossRef]
- Longo, V.; Gervasi, P.G.; Lubrano, V. Cisplatin Induced Toxicity in Rat Tissues: The Protective Effect of Lisosan G. Food Chem. Toxicol. 2011, 49, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Rabik, C.A.; Dolan, M.E. Molecular Mechanisms of Resistance and Toxicity Associated with Platinating Agents. Cancer Treat. Rev. 2007, 33, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Katanic Stankovic, J.S.; Selakovic, D.; Mihailovic, V.; Rosic, G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics—A Review. Int. J. Mol. Sci. 2020, 21, 7753. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, T.; Steyger, P.S. An Integrated View of Cisplatin-Induced Nephrotoxicity and Ototoxicity. Toxicol. Lett. 2015, 237, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pabla, N.; Dong, Z. Cisplatin Nephrotoxicity: Mechanisms and Renoprotective Strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef]
- Fong, C.W. Platinum Anti-Cancer Drugs: Free Radical Mechanism of Pt-DNA Adduct Formation and Anti-Neoplastic Effect. Free Radic. Biol. Med. 2016, 95, 216–229. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef]
- Dugbartey, G.J.; Peppone, L.J.; de Graaf, I.A.M. An Integrative View of Cisplatin-Induced Renal and Cardiac Toxicities: Molecular Mechanisms, Current Treatment Challenges and Potential Protective Measures. Toxicology 2016, 371, 58–66. [Google Scholar] [CrossRef]
- Hosohata, K. Role of Oxidative Stress in Drug-Induced Kidney Injury. Int. J. Mol. Sci. 2016, 17, 1826. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-Induced Peripheral Neurotoxicity (CIPN): An Update. Crit. Rev. Oncol. Hematol. 2012, 82, 51–77. [Google Scholar] [CrossRef]
- Cho, S.I.; Lee, J.-E.; Do, N.Y. Protective Effect of Silymarin against Cisplatin-Induced Ototoxicity. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Mihailović, V.; Matić, S.; Stanković, V.; Stanković, N.; Boroja, T.; Mladenović, M.; Stanić, S.; Kreft, S.; Mihailović, M. The Ameliorating Effect of Filipendula Hexapetala Extracts on Hepatorenal Toxicity of Cisplatin. J. Funct. Foods 2015, 18, 198–212. [Google Scholar] [CrossRef]
- Boroja, T.; Katanić, J.; Rosić, G.; Selaković, D.; Joksimović, J.; Mišić, D.; Stanković, V.; Jovičić, N.; Mihailović, V. Summer Savory (Satureja hortensis L.) Extract: Phytochemical Profile and Modulation of Cisplatin-Induced Liver, Renal and Testicular Toxicity. Food Chem. Toxicol. 2018, 118, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wang, N.; Tan, H.Y.; Li, S.; Cheung, F.; Feng, Y. Multi-Component Herbal Products in the Prevention and Treatment of Chemotherapy-Associated Toxicity and Side Effects: A Review on Experimental and Clinical Evidences. Front. Pharmacol. 2018, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, E.S.E.; Moustafa, Y.M.; Abo-Elmatty, D.M.; Radwan, A. Cisplatin-Induced Cardiotoxicity: Mechanisms and Cardioprotective Strategies. Eur. J. Pharmacol. 2011, 650, 335–341. [Google Scholar] [CrossRef]
- Yildirim, C.; Cangi, S.; Orkmez, M.; Yilmaz, S.G.; Bozdayı, M.A.; Yamaner, H.; Cevik, S. Sinapic Acid Attenuated Cisplatin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and İnflammation with GPX4-Mediated NF-KB Modulation. Cardiovasc. Toxicol. 2023, 23, 10–22. [Google Scholar] [CrossRef]
- Portilla, D.; Dai, G.; McClure, T.; Bates, L.; Kurten, R.; Megyesi, J.; Price, P.; Li, S. Alterations of PPARα and Its Coactivator PGC-1 in Cisplatin-Induced Acute Renal Failure. Kidney Int. 2002, 62, 1208–1218. [Google Scholar] [CrossRef]
- Amador-Martínez, I.; Hernández-Cruz, E.Y.; Jiménez-Uribe, A.P.; Sánchez-Lozada, L.G.; Aparicio-Trejo, O.E.; Tapia, E.; Barrera-Chimal, J.; Pedraza-Chaverri, J. Mitochondrial Transplantation: Is It a Feasible Therapy to Prevent the Cardiorenal Side Effects of Cisplatin? Future Pharmacol. 2021, 1, 3–26. [Google Scholar] [CrossRef]
- Manohar, S.; Leung, N. Cisplatin Nephrotoxicity: A Review of the Literature. J. Nephrol. 2018, 31, 15–25. [Google Scholar] [CrossRef]
- Guégan, J.-P.; Ezan, F.; Théret, N.; Langouët, S.; Baffet, G. MAPK Signaling in Cisplatin-Induced Death: Predominant Role of ERK1 over ERK2 in Human Hepatocellular Carcinoma Cells. Carcinogenesis 2013, 34, 38–47. [Google Scholar] [CrossRef]
- Tsvetkova, D.; Ivanova, S. Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases. Molecules 2022, 27, 2466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Guo, Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022, 11, 3383. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems Biology of Cisplatin Resistance: Apast, Present and Future. Cell Death Dis. 2014, 5, e1257. [Google Scholar] [CrossRef] [PubMed]
- Kartalou, M.; Essigmann, J.M. Mechanisms of Resistance to Cisplatin. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2001, 478, 23–43. [Google Scholar] [CrossRef]
- Yao, J.; Ma, C.; Feng, K.; Tan, G.; Wen, Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022, 12, 1565. [Google Scholar] [CrossRef]
- Mioskoski, C.; Gall, T.L.; Desage, M.; Meunier, S.; Diego, S.; Taran, F.; Nowaczyk, S. Lactone Compounds Which Can Be Used as Antioxidant Agents in Pharmaceutical, Cosmetic or Food Compositions and Their Method of Preparation. U.S. Patent US20110098351A1, 28 April 2011. [Google Scholar]
- Lopachin, R.; Geohegan, B.C. Nucleophilic Chemicals Useful in the Treatment of Cisplatin-Induced Sensory Neuropathy and Ototoxicity. U.S. Patent US20220016051A1, 20 January 2022. [Google Scholar]
- Yang, T. Use of Nitrated Lipids for Treatment of Side Effects of Toxic Medical Therapies. U.S. Patent US20110196037A1, 11 September 2014. [Google Scholar]
- Gómez-Sierra, T.; Eugenio-Pérez, D.; Sánchez-Chinchillas, A.; Pedraza-Chaverri, J. Role of Food-Derived Antioxidants against Cisplatin Induced-Nephrotoxicity. Food Chem. Toxicol. 2018, 120, 230–242. [Google Scholar] [CrossRef]
- Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-Induced Gastrointestinal Toxicity: An Update on Possible Mechanisms and on Available Gastroprotective Strategies. Eur. J. Pharmacol. 2018, 827, 49–57. [Google Scholar] [CrossRef]
- Ryu, H.M.; Kim, D.J.; Byun, J.S.; Sohn, K.C.; Ku, S.K. Composition Containing Herbal Medicine Extracts of Pinellia and Scutellaria for Reducing Side Effects due to Anticancer Drugs 2016. U.S. Patent US20180289763A1, 11 October 2018. [Google Scholar]
- Shin, H.K.; Jung, Y.; Ha, K.; Seob, C.; Kim, Y.J. Composition comprising natural substance extract as active ingredient for preventing or treating acute renal failure 2016. U.S. Patent US9433655B2, 6 September 2016. [Google Scholar]
- Lee, M.-M.; Huang, G.-J. Use of Brown Flammulina Velutipes Extract for Inhibiting Acute Kidney Injury Caused by Cisplatin 2023. U.S. Patent US20230173005A1, 8 June 2023. [Google Scholar]
- Hu, F.; Wei, F.; Wang, Y.; Wu, B.; Fang, Y.; Xiong, B. EGCG Synergizes the Therapeutic Effect of Cisplatin and Oxaliplatin through Autophagic Pathway in Human Colorectal Cancer Cells. J. Pharmacol. Sci. 2015, 128, 27–34. [Google Scholar] [CrossRef]
- Leonetti, C.; Biroccio, A.; Gabellini, C.; Scarsella, M.; Maresca, V.; Flori, E.; Bove, L.; Pace, A.; Stopacciaro, A.; Zupi, G.; et al. A-Tocopherol Protects against Cisplatin-Induced Toxicity without Interfering with Antitumor Efficacy. Int. J. Cancer 2003, 104, 243–250. [Google Scholar] [CrossRef]
- Leekha, A.; Gurjar, B.S.; Tyagi, A.; Rizvi, M.A.; Verma, A.K. Vitamin C in Synergism with Cisplatin Induces Cell Death in Cervical Cancer Cells through Altered Redox Cycling and P53 Upregulation. J. Cancer Res. Clin. Oncol. 2016, 142, 2503–2514. [Google Scholar] [CrossRef]
- Sadowitz, P.D.; Hubbard, B.A.; Dabrowiak, J.C.; Goodisman, J.; Tacka, K.A.; Aktas, M.K.; Cunningham, M.J.; Dubowy, R.L.; Souid, A. Kinetics of Cisplatin Binding to Cellular DNA and Modulations by Thiol-Blocking Agents and Thiol Drugs. Drug Metab. Dispos. 2002, 30, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Custódio, J.B.A.; Cardoso, C.M.P.; Santos, M.S.; Almeida, L.M.; Vicente, J.A.F.; Fernandes, M.A.S. Cisplatin Impairs Rat Liver Mitochondrial Functions by Inducing Changes on Membrane Ion Permeability: Prevention by Thiol Group Protecting Agents. Toxicology 2009, 259, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.X.; Liu, F.F.-C.; Lip, H.; Liu, J.; Zhang, Q.; Wu, X.Y. Pharmaceutical Nanoformulation Strategies to Spatiotemporally Manipulate Oxidative Stress for Improving Cancer Therapies—Exemplified by Polyunsaturated Fatty Acids and Other ROS-Modulating Agents. Drug Deliv. Transl. Res. 2022, 12, 2303–2334. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, M.; Jadidi, Y.; Moayedi, K.; Farrokhi, V.; Afrisham, R. Ameliorative Impacts of Polymeric and Metallic Nanoparticles on Cisplatin-Induced Nephrotoxicity: A 2011–2022 Review. J. Nanobiotechnol. 2022, 20, 504. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, X.; Chen, Y.; Xu, K.; Yu, D.; Wu, H. An Enhanced Antioxidant Strategy of Astaxanthin Encapsulated in ROS-Responsive Nanoparticles for Combating Cisplatin-Induced Ototoxicity. J. Nanobiotechnol. 2022, 20, 268. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Z.; Sun, W.; Yu, B.; Liu, J.; Jiang, C.; Lu, L. Engineering a Synergistic Antioxidant Inhibition Nanoplatform to Enhance Oxidative Damage in Tumor Treatment. Acta Biomater. 2023, 158, 625–636. [Google Scholar] [CrossRef]
- Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems—The Current State. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef]
- Rauf, M.A. Stability and Release of Bioactives from Liposomes; Elsevier Inc.: Amsterdam, The Netherlands, 2022; ISBN 9780128239353. [Google Scholar]
- Curcio, M.; Cirillo, G.; Amato, R.; Guidotti, L.; Amantea, D.; De Luca, M.; Nicoletta, F.P.; Iemma, F.; Garcia-Gil, M. Encapsulation of Alpha-Lipoic Acid in Functional Hybrid Liposomes: Promising Tool for the Reduction of Cisplatin-Induced Ototoxicity. Pharmaceuticals 2022, 15, 394. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Shafaa, M.W.; Khedr, M.H.; Rashed, R.F. Comparative Study between Lutein and Its Liposomal Form on Cisplatin-Induced Retinal Injury in Rabbits. Cutan. Ocul. Toxicol. 2019, 38, 279–285. [Google Scholar] [CrossRef]
- Perše, M. Cisplatin Mouse Models: Treatment, Toxicity and Translatability. Biomedicines 2021, 9, 1406. [Google Scholar] [CrossRef]
- Perše, M.; Večerić-Haler, Ž. Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics and Challenges. BioMed Res. Int. 2018, 2018, 1462802. [Google Scholar] [CrossRef] [PubMed]
- Authier, N.; Balayssac, D.; Marchand, F.; Ling, B.; Zangarelli, A.; Descoeur, J.; Coudore, F.; Bourinet, E.; Eschalier, A. Animal Models of Chemotherapy-Evoked Painful Peripheral Neuropathies. Neurotherapeutics 2009, 6, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Sarin, N.; Engel, F.; Rothweiler, F.; Cinatl, J.; Michaelis, M.; Frötschl, R.; Fröhlich, H.; Kalayda, G.V. Key Players of Cisplatin Resistance: Towards a Systems Pharmacology Approach. Int. J. Mol. Sci. 2018, 19, 767. [Google Scholar] [CrossRef]
- Tong, D.; Xu, E.; Ge, R.; Hu, M.; Jin, S.; Mu, J.; Liu, Y. Aspirin Alleviates Cisplatin-Induced Acute Kidney Injury through the AMPK-PGC-1α Signaling Pathway. Chem. Biol. Interact. 2023, 380, 110536. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Shi, X.; Zang, Y.; Zhao, X.; Liu, X.; Wang, W.; Shi, W.; Wong, C.T.T.; Sheng, L.; Chen, X.; et al. 7-Hydroxycoumarin-β-D-Glucuronide Protects against Cisplatin-Induced Acute Kidney Injury via Inhibiting P38 MAPK-Mediated Apoptosis in Mice. Life Sci. 2023, 327, 121864. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Liu, X.X.; Zhang, J.J.; Zhang, S.; Jiang, C.; Zheng, S.W.; Wang, Z.; Li, D.Y.; Li, W.; Shi, D.F. Amelioration of Cisplatin-Induced Kidney Injury by Arabinogalactan Based on Network Pharmacology and Molecular Docking. J. Funct. Foods 2023, 104, 105504. [Google Scholar] [CrossRef]
- Potočnjak, I.; Šimić, L.; Batičić, L.; Križan, H.; Domitrović, R. Sinomenine Mitigates Cisplatin-Induced Kidney Injury by Targeting Multiple Signaling Pathways. Food Chem. Toxicol. 2023, 171, 113538. [Google Scholar] [CrossRef]
- Gao, X.; Yin, Y.; Liu, S.; Dong, K.; Wang, J.; Guo, C. Fucoidan-Proanthocyanidins Nanoparticles Protect against Cisplatin-Induced Acute Kidney Injury by Activating Mitophagy and Inhibiting MtDNA-CGAS/STING Signaling Pathway. Int. J. Biol. Macromol. 2023, 245, 125541. [Google Scholar] [CrossRef]
- Yan, Q.; Li, M.; Dong, L.; Luo, J.; Zhong, X.; Shi, F.; Ye, G.; Zhao, L.; Fu, H.; Shu, G.; et al. Preparation, Characterization and Protective Effect of Chitosan—Tripolyphosphate Encapsulated Dihydromyricetin Nanoparticles on Acute Kidney Injury Caused by Cisplatin. Int. J. Biol. Macromol. 2023, 245, 125569. [Google Scholar] [CrossRef]
- Santos, D.D.; Sasso, G.R.S.; Belote, N.M.; da Silva, R.A.; Lice, I.; Correia-Silva, R.D.; Borges, F.T.; Carbonel, A.A.F.; Gil, C.D. Galectin-3 Is a Key Hepatoprotective Molecule against the Deleterious Effect of Cisplatin. Life Sci. 2023, 318, 121505. [Google Scholar] [CrossRef]
- Gao, Z.X.; Zhang, Z.S.; Qin, J.; Zhang, M.Z.; Cao, J.L.; Li, Y.Y.; Wang, M.Q.; Hou, L.L.; Fang, D.; Xie, S.Q. Aucubin Enhances the Antitumor Activity of Cisplatin through the Inhibition of PD-L1 Expression in Hepatocellular Carcinoma. Phytomedicine 2023, 112, 154715. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.E.M.; Hassanein, E.H.M.; El-Bahrawy, A.H.; Hemeda, M.S.; Atwa, A.M. Neuroprotective Effect of Lansoprazole against Cisplatin-Induced Brain Toxicity: Role of Nrf2/ARE and Akt/P53 Signaling Pathways. J. Chem. Neuroanat. 2023, 132, 102299. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.M.A.; El Henafy, H.M.A.; Khalil, I.A.; Bakr, A.F.; Fahmy, M.I.; Younis, N.S.; El-Shiekh, R.A. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. Toxics 2023, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Saral, S.; Topçu, A.; Alkanat, M.; Mercantepe, T.; Şahin, Z.; Akyıldız, K.; Karataş, K.S.; Yıldız, L.; Tümkaya, L.; Yazıcı, Z.A. Agomelatine Attenuates Cisplatin-Induced Cognitive Impairment via Modulation of BDNF/TrkB Signaling in Rat Hippocampus. J. Chem. Neuroanat. 2023, 130, 102269. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, K.; Luo, W.; Jiang, H. Knockdown and Mutation of Pou4f3 Gene Mutation Promotes Pyroptosis of Cochleae in Cisplatin-Induced Deafness Mice by NLRP3/Caspase-3/GSDME Pathway. Toxicology 2022, 482, 153368. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Kang, W.; Huang, L.; Gong, S.; Zhang, T.; Huang, X.; He, F.; Ye, Y.; Tang, Y.; et al. MiR-34a/DRP-1-Mediated Mitophagy Participated in Cisplatin-Induced Ototoxicity via Increasing Oxidative Stress. BMC Pharmacol. Toxicol. 2023, 24, 16. [Google Scholar] [CrossRef]
- Zheng, Z.; Nan, B.; Liu, C.; Tang, D.; Li, W.; Zhao, L.; Nie, G.; He, Y. Inhibition of Histone Methyltransferase PRMT5 Attenuates Cisplatin-Induced Hearing Loss through the PI3K/Akt-Mediated Mitochondrial Apoptotic Pathway. J. Pharm. Anal. 2023, 13, 590–602. [Google Scholar] [CrossRef]
- Jeon, H.; Song, I.S.; Park, J.G.; Lee, H.; Han, E.; Park, S.; Lee, Y.; Song, C.-m.; Hur, W.; Lee, I.G.; et al. Protective Effects of Esomeprazole against Cisplatin-Induced Ototoxicity: An in Vitro and in Vivo Study. Aquat. Toxicol. 2023, 260, 106573. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Jin, Y.; Wang, J.; Wang, R.; Yang, X.; Zhang, S.; Yan, T.; Jia, Y. Wei-Tong-Xin Ameliorated Cisplatin-Induced Mitophagy and Apoptosis in Gastric Antral Mucosa by Activating the Nrf2/HO-1 Pathway. J. Ethnopharmacol. 2023, 308, 116253. [Google Scholar] [CrossRef]
- Mirhadi, E.; Gheybi, F.; Mahmoudi, N.; Hemmati, M.; Soleymanian, F.; Ghasemi, A.; Askarizadeh, A.; Iranshahi, M.; Jaafari, M.R.; Alavizadeh, S.H. Amino Acid Coordination Complex Mediates Cisplatin Entrapment within PEGylated Liposome: An Implication in Colorectal Cancer Therapy. Int. J. Pharm. 2022, 623, 121946. [Google Scholar] [CrossRef]
- Dinc, K.; Ozyurt, R.; Coban, T.A.; Yazici, G.N.; Suleyman, Z.; Yavuzer, B.; Suleyman, H. The Effect of Carvacrol on the Proinflammatory Cytokines, Histology, and Fertility Outcome of Cisplatin-Related Ovarian Change in a Rat Model. Taiwan. J. Obstet. Gynecol. 2023, 62, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.Y.; Shaker, N.A.; Hussein, S.; Tohamy, A.; Fathi, M.; Rizk, H.; Wally, Y.R. Cisplatin-Induced Azoospermia and Testicular Damage Ameliorated by Adipose-Derived Mesenchymal Stem Cells. Biol. Res. 2023, 56, 2. [Google Scholar] [CrossRef] [PubMed]
- Hung, G.Y.; Wu, C.L.; Motoyama, C.; Horng, J.L.; Lin, L.Y. Zebrafish Embryos as an in Vivo Model to Investigate Cisplatin-Induced Oxidative Stress and Apoptosis in Mitochondrion-Rich Ionocytes. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2022, 259, 109395. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Z.; Tang, M.; Xing, C.; Chen, H.; Zheng, K.; Zhao, Z.; Zhou, S.; Zhao, A.Z.; Li, F.; et al. Endogenous Production of ω-3 Polyunsaturated Fatty Acids Mitigates Cisplatin-Induced Myelosuppression by Regulating NRF2-MDM2-P53 Signaling Pathway. Free Radic. Biol. Med. 2023, 201, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Boukelmoune, N.; Taniguchi, C.; West, A.P.; Heijnen, C.J.; Dantzer, R. Resolution of Cisplatin-Induced Fatigue Does Not Require Endogenous Interleukin-10 in Male Mice. Behav. Brain Res. 2023, 444, 114381. [Google Scholar] [CrossRef]
- Ali, F.E.M.; Hassanein, E.H.M.; Abd El-Ghafar, O.A.M.; Rashwan, E.K.; Saleh, F.M.; Atwa, A.M. Exploring the Cardioprotective Effects of Canagliflozin against Cisplatin-Induced Cardiotoxicity: Role of INOS/NF-ΚB, Nrf2, and Bax/Cytochrome C/Bcl-2 Signals. J. Biochem. Mol. Toxicol. 2023, 37, e23309. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Sayed, G.A.; Alzoghaibi, A.M.; Alammar, A.S.; Abdel-Wahab, B.A.; Abd El-Ghafar, O.A.M.; Mahdi, S.E.; Atwa, A.M.; Alzoghaibi, M.A.; Mahmoud, A.M. Azithromycin Mitigates Cisplatin-Induced Lung Oxidative Stress, Inflammation and Necroptosis by Upregulating SIRT1, PPARγ, and Nrf2/HO-1 Signaling. Pharmaceuticals 2023, 16, 52. [Google Scholar] [CrossRef]
- Mahmoud, N.A.; Hassanein, E.H.M.; Bakhite, E.A.; Shaltout, E.S.; Sayed, A.M. Apocynin and Its Chitosan Nanoparticles Attenuated Cisplatin-Induced Multiorgan Failure: Synthesis, Characterization, and Biological Evaluation. Life Sci. 2023, 314, 121313. [Google Scholar] [CrossRef]
- Nakatomi, C.; Hitomi, S.; Yamaguchi, K.; Hsu, C.C.; Harano, N.; Iwata, K.; Ono, K. Effect of Cisplatin on Oral Ulcer-Induced Nociception in Rats. Arch. Oral Biol. 2022, 144, 105572. [Google Scholar] [CrossRef]
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly Used Animal Models. In Principles of Animal Research for Graduate and Undergraduate Students; Elsevier: Amsterdam, The Netherlands, 2017; Volume 7, pp. 117–175. ISBN 9786024517199. [Google Scholar]
- Sun, C.-Y.; Nie, J.; Zheng, Z.-L.; Zhao, J.; Wu, L.-M.; Zhu, Y.; Su, Z.-Q.; Zheng, G.-J.; Feng, B. Renoprotective Effect of Scutellarin on Cisplatin-Induced Renal Injury in Mice: Impact on Inflammation, Apoptosis, and Autophagy. Biomed. Pharmacother. 2019, 112, 108647. [Google Scholar] [CrossRef]
- Saifi, M.A.; Sangomla, S.; Khurana, A.; Godugu, C. Protective Effect of Nanoceria on Cisplatin-Induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro-Inflammatory Mechanisms. Biol. Trace Elem. Res. 2019, 189, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.T.; Ko, J.L.; Liu, T.C.; Chao, P.T.; Ou, C.C. Protective Effect of D-Methionine on Body Weight Loss, Anorexia, and Nephrotoxicity in Cisplatin-Induced Chronic Toxicity in Rats. Integr. Cancer Ther. 2018, 17, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Verma, V.K.; Mutneja, E.; Malik, S.; Nag, T.C.; Dinda, A.K.; Arya, D.S.; Bhatia, J. Mangiferin Attenuates Cisplatin-Induced Acute Kidney Injury in Rats Mediating Modulation of MAPK Pathway. Mol. Cell. Biochem. 2019, 452, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Tomar, A.; Puthanmadhom Narayanan, S.; Nag, T.C.; Arya, D.S.; Bhatia, J. Pitavastatin Attenuates Cisplatin-Induced Renal Injury by Targeting MAPK and Apoptotic Pathways. J. Pharm. Pharmacol. 2019, 71, 1072–1081. [Google Scholar] [CrossRef]
- Domitrović, R.; Cvijanović, O.; Pernjak Pugel, E.; Blagojević Zagorac, G.; Mahmutefendić, H.; Škoda, M. Luteolin Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Platinum Accumulation, Inflammation and Apoptosis in the Kidney. Toxicology 2013, 310, 115–123. [Google Scholar] [CrossRef]
- Domitrović, R.; Cvijanović, O.; Pernjak-Pugel, E.; Škoda, M.; Mikelić, L.; Crnčević-Orlić, Ž. Berberine Exerts Nephroprotective Effect against Cisplatin-Induced Kidney Damage through Inhibition of Oxidative/Nitrosative Stress, Inflammation, Autophagy and Apoptosis. Food Chem. Toxicol. 2013, 62, 397–406. [Google Scholar] [CrossRef]
- Domitrović, R.; Potočnjak, I.; Crnčević-Orlić, Ž.; Škoda, M. Nephroprotective Activities of Rosmarinic Acid against Cisplatin-Induced Kidney Injury in Mice. Food Chem. Toxicol. 2014, 66, 321–328. [Google Scholar] [CrossRef]
- Badary, O.A.; Abdel-Maksoud, S.; Ahmed, W.A.; Owieda, G.H. Naringenin Attenuates Cisplatin Nephrotoxicity in Rats. Life Sci. 2005, 76, 2125–2135. [Google Scholar] [CrossRef]
- Faraji, A.H.; Wipf, P. Nanoparticles in Cellular Drug Delivery. Bioorganic Med. Chem. 2009, 17, 2950–2962. [Google Scholar] [CrossRef]
- Richmond, A.; Su, Y. Mouse Xenograft Models vs GEM Models for Human Cancer Therapeutics. Dis. Model Mech. 2008, 1, 78–82. [Google Scholar] [CrossRef]
- Podratz, J.L.; Knight, A.M.; Ta, L.E.; Staff, N.P.; Gass, J.M.; Genelin, K.; Schlattau, A.; Lathroum, L.; Windebank, A.J. Cisplatin Induced Mitochondrial DNA Damage in Dorsal Root Ganglion Neurons. Neurobiol. Dis. 2011, 41, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, T.; Nakagawa, T.; Hayashi, M.; Koyanagi, M.; Yonezawa, A.; Omura, T.; Nakagawa, S.; Kitada, N.; Imai, S.; Matsubara, K. Improvement of Peripheral Vascular Impairment by a Phosphodiesterase Type 5 Inhibitor Tadalafil Prevents Oxaliplatin-Induced Peripheral Neuropathy in Mice. J. Pharmacol. Sci. 2019, 141, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Carozzi, V.A.; Reed, N.; Mi, R.; Marmiroli, P.; Cavaletti, G.; Hoke, A. Ethoxyquin Provides Neuroprotection against Cisplatin-Induced Neurotoxicity. Sci. Rep. 2016, 6, 28861. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, S.; Dalkilic, N.; Akif Dunbar, M.; Keles, B. Comparative Effects of Alpha Lipoic Acid and Melatonin on Cisplatin-Induced Neurotoxicity. Int. J. Neurosci. 2010, 120, 655–663. [Google Scholar] [CrossRef]
- Abdelkader, N.F.; Saad, M.A.; Abdelsalam, R.M. Neuroprotective Effect of Nebivolol against Cisplatin-Associated Depressive-like Behavior in Rats. J. Neurochem. 2017, 141, 449–460. [Google Scholar] [CrossRef]
- Kumburovic, I.; Selakovic, D.; Juric, T.; Jovicic, N.; Mihailovic, V.; Stankovic, J.K.; Sreckovic, N.; Kumburovic, D.; Jakovljevic, V.; Rosic, G. Antioxidant Effects of Satureja hortensis L. Attenuate the Anxiogenic Effect of Cisplatin in Rats. Oxid. Med. Cell. Longev. 2019, 2019, 8307196. [Google Scholar] [CrossRef]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef]
- dos Santos, N.A.G.; Ferreira, R.S.; dos Santos, A.C. Overview of Cisplatin-Induced Neurotoxicity and Ototoxicity, and the Protective Agents. Food Chem. Toxicol. 2020, 136, 111079. [Google Scholar] [CrossRef]
- Robinson, N.B.; Krieger, K.; Khan, F.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The Current State of Animal Models in Research: A Review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of Animal Models in Biomedical Research: A Review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef]
Cisplatin-Induced Damage | Used Animal Model | Treatment | Ref. |
---|---|---|---|
Nephrotoxicity (acute kidney injury) | Male Kunming mice (6–8 weeks old) | Aspirin (5/10/20/40 mg/kg dissolved in saline) daily for 5 days + a single intraperitoneal (i.p.) injection of cisplatin (20 mg/kg) on day 2 | [73] |
Nephrotoxicity (acute kidney injury) | Male C57BL/6 J mice | 7-hydroxycoumarin-β-D-glucuronide (7.5, 15, 30 mg/kg) daily for 3 days + cisplatin (10 mg/kg i.p.) on day 3 | [74] |
Nephrotoxicity (acute kidney injury) | Male ICR mice (8 weeks old) | Network pharmacology analysis + Arabinogalactan (per oral—p.o.—200 and 400 mg/kg, respectively once daily for ten days, 7 days before and 3 days after cisplatin injection) + cisplatin (20 mg/kg i.p.). | [75] |
Nephrotoxicity (acute kidney injury) | Male BALB/cN mice (12–14 weeks old) | cisplatin (13 mg/kg, i.p.) + inomenine (5 mg/kg, p.o.) on the third and the fourth day after cisplatin | [76] |
Nephrotoxicity (acute kidney injury) | Male Kunming mice | cisplatin (20 mg/kg) once on the first day + Fucoidan-proanthocyanidins nanoparticles (50 and 100 mg/kg, p.o.) once a day for 3 days | [77] |
Nephrotoxicity (acute kidney injury) | ICR mice (6 weeks) | CS-DMY-NPs (300, 200, and 100 mg/kg/day) for 5 days + cisplatin (10 mg/kg, i.p.) | [78] |
Hepatotoxicity | Male Wistar rats (60–70 days) | MCP on days 1–7 (100 mg/kg/day) + cisplatin on days 8, 9 and 10 (10 mg/kg/day, i.p.) | [79] |
Hepatocellular carcinoma (in vivo tumorigenesis) | Male BALB/c mice | a dorsal subcutaneous injection of 2 × 106 H22 cells. At day 7, aucubin (5 and 10 mg/kg i.p.) or/and cisplatin (5 mg/kg i.p.) once daily for 1 week. | [80] |
Neurotoxicity | Male albino Wistar rats | Lansoprazole (50 mg/kg, p.o.) + cisplatin (10 mg/kg dose, i.p.) on the 5th day | [81] |
Neurotoxicity | Male albino Wistar rats | Hypericum nanoemulsion (100 mg/kg) for 21 days + cisplatin (10 mg/kg, i.p.) on day 14 | [82] |
Neurotoxicity | Male Sprague–Dawley rats (14 weeks) | Agomelatine (40 mg/kg/day, p.o.) and cisplatin (5 mg/kg/week, i.p.) for 4 weeks. | [83] |
Ototoxicity | Male C57BL/6 mice (8–12 weeks) and AAV2-mouse Pou4f3 wild type/mutant, sh-Pou4f3/sh-NC and sh-NLRP3/sh-NC | Cisplatin (20 mg/kg/day, i.p.) for 5 consecutive days | [84] |
Ototoxicity | Male C57BL/6 mice (6 weeks) | Cisplatin (3.0 mg/kg/day, i.p.) for 4 days, 10 days for recovery (total of three cycles) | [85] |
Ototoxicity | Wild-type adult C57BL/6 J mice (7–8 weeks) | Cisplatin (30 mg/kg, i.p.) + PRMT5 inhibitors | [86] |
Ototoxicity | Transgenic zebrafish (Brn3C:EGFP) embryos | Cisplatin (1000 μM, 5 days post-fertilization + esomeprazole (2, 20, or 200 μM) for 4 h | [87] |
Apoptosis in the gastric antral mucosa | Male Kunming mice | Wei-Tong-Xin (0.5, 1, 2 g/kg, p.o.) for 3 days + cisplatin (10 mg/kg i.p.) | [88] |
Colorectal cancer therapy | BALB/c mice (6–8 weeks) | A single bolus tail vein injection of various liposomal formulations and free cisplatin and cisplatin conjugates (3 mg/kg cisplatin equivalent) + 3.5 × 105 C26 cells | [89] |
Ovarian toxicity | Albino female Wistar rats | Carvacrol (50 and 100 mg/kg, i.p.) + cisplatin (2.5 mg/kg), all once a day for 14 days | [90] |
Testicular damage | Male New Zealand rabbits (8–10 months) | Cisplatin (0.7 mL/kg) injected as a single intra-testicular dose + ADMSCs three days later | [91] |
Oxidative stress and apoptosis in mitochondrion-rich ionocytes | Zebrafish (AB strain, 8–12 months) embryos | 50, and 100 μM cisplatin solutions (10 embryos in 1 mL of cisplatin solution per well) | [92] |
Myelosuppression | mfat-1 transgenic mice, C57BL/6 J mice | 7.5 mg/kg cisplatin (once a week for a total of two weeks), a diet containing arachidonic acid | [93] |
Fatigue | Male C57BL/6 J mice | cisplatin (2.83 or 2.3 mg/kg/day, i.p.) for five consecutive days | [94] |
Cardiotoxicity | Sprague–Dawley rats (8–10 weeks) | Sinapic acid (20 mg/kg/day, intragastrically) for five weeks + a single dose of cisplatin (3 mg/kg/week, i.p.) | [38] |
Cardiotoxicity | Wistar albino rats | CA (10 mg/kg/day, p.o.) for 10 days + cisplatin (7 mg/kg, i.p.) on the 5th day | [95] |
Acute lung injury | Male albino rats | Azithromycin (25 mg/kg/day) for 10 days + cisplatin (7 mg/kg, i.p.) on day 7 | [96] |
Multiorgan failure (hepatic, cardiac, and renal oxidative injury) | Male Wistar albino rats | Cisplatin (7 mg/kg, i.p.) Apocynin-chitosan nanoparticles (135.6 mg/kg, p.o.) for 5 days after | [97] |
Oral ulcer-induced nociception | Male Wistar rats (5–8 weeks) | Cisplatin (4 mg/kg/day i.p. twice at a 4-day interval) | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katanić Stanković, J.S.; Selaković, D.; Rosić, G. Oxidative Damage as a Fundament of Systemic Toxicities Induced by Cisplatin—The Crucial Limitation or Potential Therapeutic Target? Int. J. Mol. Sci. 2023, 24, 14574. https://doi.org/10.3390/ijms241914574
Katanić Stanković JS, Selaković D, Rosić G. Oxidative Damage as a Fundament of Systemic Toxicities Induced by Cisplatin—The Crucial Limitation or Potential Therapeutic Target? International Journal of Molecular Sciences. 2023; 24(19):14574. https://doi.org/10.3390/ijms241914574
Chicago/Turabian StyleKatanić Stanković, Jelena S., Dragica Selaković, and Gvozden Rosić. 2023. "Oxidative Damage as a Fundament of Systemic Toxicities Induced by Cisplatin—The Crucial Limitation or Potential Therapeutic Target?" International Journal of Molecular Sciences 24, no. 19: 14574. https://doi.org/10.3390/ijms241914574
APA StyleKatanić Stanković, J. S., Selaković, D., & Rosić, G. (2023). Oxidative Damage as a Fundament of Systemic Toxicities Induced by Cisplatin—The Crucial Limitation or Potential Therapeutic Target? International Journal of Molecular Sciences, 24(19), 14574. https://doi.org/10.3390/ijms241914574