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Abstract: Recently, degradable biopolymers have become increasingly important as potential envi-
ronmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial
exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found
applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectron-
ics, and environmental remediation. One of the important commercial polysaccharides produced on
an industrial scale is xanthan. In recent years, the range of its application has expanded significantly.
Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to
the great prospects for their practical application, the development of their highly efficient production
remains an important task. The present review summarizes the strategies for the cost-effective pro-
duction of such important biomacromolecules as xanthan and BC and demonstrates for the first time
common approaches to their efficient production and to obtaining new functional materials for a wide
range of applications, including wound healing, drug delivery, tissue engineering, environmental
remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of
xanthan and BC production and the line of future research.

Keywords: biopolymers; biomacromolecules; bacterial exopolysaccharides; xanthan; bacterial
cellulose; functional materials

1. Introduction

Bacterial exopolysaccharides (EPSs) are valuable extracellular eco-friendly biopoly-
mers used in various fields of science, industry, medicine, and technology due to their
biocompatibility, nontoxicity, biodegradability, and functional characteristics. Recently,
several reviews have provided a comprehensive overview of the fundamentals of bacterial
EPSs, including their classification, source, properties, biosynthetic pathways, functions
in the microbial community, and applications [1–9]. EPSs are cost-effective alternatives
to plant and animal-derived polysaccharides because bacteria can produce them in large
quantities by biotechnological processes using low-cost substrates such as industrial wastes
in a short time regardless of the season and climate. They exhibit the presence of a great
number of functional groups (hydroxyl, carboxyl, carbonyl, acetate, etc.), which enable
the modification of their molecules using chemical and physical techniques to obtain
composites and materials with improved functional properties [5,10–12].

EPS-producing bacteria are ubiquitous and can be isolated from aquatic and terrestrial
environments, such as marine water, wastewater, soils, plants, fruits, vegetables, gut micro-
biome, and fermented food [2,13]. For example, many BC-producing strains were isolated
from the kombucha community [14–18], vinegar [19], fruit, and fruit juices [20–22]. Revin
and Liyaskina et al. obtained the highly productive strain Paenibacillus polymyxa 2020, first
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isolated from wasp honeycombs [23]. A recent review by Netrusov et al. (2023) summa-
rized the current research progress on BC, xanthan, and levan-producing bacterial strains,
including their characteristics and isolation sources [2]. The review by Ibrahim et al. (2022)
focuses on the exopolysaccharides obtained from several extremophilic microorganisms,
their synthesis, and manufacturing optimization for better cost and productivity [13]. Re-
cently, several reviews on EPSs produced by lactic acid bacteria have been reported [24–27].
For example, the review by Jurášková et al. (2022) discussed and summarized the latest
advances on the biosynthesis, structure, and properties of EPSs derived from Lactobacillus,
Leuconostoc,Streptococcus, Lactococcus, Lactiplantibacillus, Limosilactobacillus, and Weis-
sella genera [24]. EPSs play an important role in bacterial physiology and ecology. They
protect cells against extreme temperature, unfavorable pH values, osmotic stress, salinity,
aridity, UV-rays, phagocytosis, and chemical agents, and play an important role in bacterial
aggregation, adhesion, and biofilm formation [28–34]. Some of the most-used EPSs are
alginate from the Azotobacter, Pseudomonas genera, xanthan from Xanthomonas sp., dextran
from the Leuconostoc, Lactobacillus, Streptococcus genera, curdlan from Alcaligenes faecalis,
Rhizobium radiobacter, Agrobacterium sp., gellan from the Sphingomonas and Pseudomonas gen-
era, hyaluronan from Streptococcus sp., levan from Bacillus sp., Paenibacillus sp., Halomonas
sp., Zymomonas sp., BC from Komagataeibacter sp., and others [2]. In recent years, a large
number of new strains of EPS-producing bacteria have been isolated, among them the
Gram-negative bacteria Komagataeibacter sp. and Xanthomonas sp., the main producers of
BC and xanthan, which deserve special attention since their metabolism is well studied and
many complete genome sequences were obtained, which is the basis for obtaining highly
productive strains using genetic and metabolic engineering [2].

Bacterial EPSs are classified into two types: homopolysaccharides, which are either un-
branched or branched and composed of a single type of monosaccharides such as D-glucose,
D-fructose, or D-galactose linked through glycosidic bonds; and heteropolysaccharides,
which contain two or more units of different sugars, such as pentose (D-ribose, D-arabinose,
D-xylose), hexose (D-glucose, D-galactose, D-mannose), N-acetylated monosaccharides
(N-acetyl-glucosamine and N-acetyl-galactosamine), or uronic acids (D-glucuronic acid,
D-galacturonic acid), and may be branched or unbranched [6,7,24]. There are four general
mechanisms for bacterial EPS biosynthesis: the Wzx/Wzy-dependent pathway, where indi-
vidual repeating units are assembled by several glycosyltransferases, the ATP-binding cas-
sette (ABC) transporter-dependent pathway, the synthase-dependent pathway, and extra-
cellular biosynthesis by glucan sucrases [1,7,9]. Homopolysaccharides are commonly syn-
thesized using synthase and extracellular synthesis pathways, while heteropolysaccharides
are produced by the Wzx/Wzy-dependent pathway and the ABC transporter-dependent
pathway. For example, heteropolysaccharide xanthan is synthesized through a Wzy-
dependent pathway and homopolysaccharide BC through the synthase pathway [35–37].
The biosynthesis of xanthan and BC begins with the synthesis of exopolysaccharide precur-
sors UDP-glucose for BC and UDP-glucose, GDP-mannose, and UDP-glucuronic acid for
xanthan. Bacterial EPSs have many unique beneficial properties such as biocompatibility,
biodegradability, non-toxicity, a high degree of polymerization, the ability for gelation, high
adhesive ability, viscoelasticity, pseudo-plasticity, a thixotropic nature, renewable sourcing,
and easy modification. In addition, some bacterial EPSs also have extensive bioactivities,
including antibacterial, antifungal, antiviral, antioxidant, anti-inflammatory, antitumor,
antidiabetic, antiulcer, anticoagulant, immunomodulatory, prebiotic, wound healing, and
cholesterol-lowering activities [1,3,25,27,35–43]. Therefore, they have extensive commercial
applications in biomedicine, food, pharmaceuticals, cosmetics, electronics, environmental
remediation, and the oil and gas industries [1–9]. Among bacterial EPSs, the homopolysac-
charide BC and the heteropolysaccharide xanthan rank high. They exhibit many unique
properties. For example, BC is a 3D nanostructured material with high crystallinity and a
large surface area, and xanthan, along with other valuable properties, has pseudo-plasticity,
a thixotropic nature, and is resistant to various environmental factors [2]. Over the last
years, there have been obtained a great number of xanthan and BC-based biocomposite
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materials with additional valuable properties, including antimicrobial activity, antioxidant
activity, electromagnetic properties, catalytic activity, and others [5,10–12].

In recent years, such EPSs as BC and xanthan have attracted special attention. One
of the main exopolysaccharides produced nowadays is xanthan, with a production of
50,000 tons per year [44]. The global xanthan market has increased significantly (the rate
being 5.6%) since 2019. Moreover, its market value is expected to reach USD 1.2 billion by
2030 [9]. Its demand increase is due to applications in the food, agrochemical, cosmetics,
driller fluid, and foam stabilizer segments. In addition, in recent years, the range of its
application has expanded significantly. Over the past few decades, BC production has also
exponentially increased. The BC market was valued at USD 207.36 million in 2016 and is
expected to surpass a valuation of USD 700 million in 2026 [45]. Xanthan is one of the most
expensive EPSs due to the use of only glucose and sucrose as carbon sources and the cost
of the downstream process (approximately 50% of the final cost), since a high purity level
is required when it is used in the food industry [9]. BC is also an expensive EPS due to
the use of glucose, fructose, and sucrose as carbon sources and low productivity strains
(usually not more than 10 g/L) [46].

Therefore, the aim of this review is to summarize the strategies for the cost-effective
production of such important industrial exopolysaccharides as xanthan and BC. By the
example of these two bacterial EPSs, which differ in their chemical structure and properties,
we aim at demonstrating common approaches to their efficient production and obtain-
ing new functional materials based on them for a wide range of applications. Section 1
presents a general idea of the subject highlighting the specific features of xanthan and
cellulose compared to other bacterial EPSs. Section 2 provides information on properties,
biosynthesis, as well as BC and xanthan producers. Section 3 summarizes strategies for
the cost-effective production of xanthan and BC, including their production from wastes,
EPS-producing bacteria co-cultivation, biocatalytic technologies, and genetic and metabolic
engineering. Section 4 introduces the recent advances in obtaining new functional ma-
terials for a wide range of applications, including wound healing, drug delivery, tissue
engineering, environmental remediation, nanoelectronics, and 3D bioprinting. At the end
of the review, we recommend further studies and investigation for highly efficient BC and
xanthan production and for obtaining new functional materials based on them.

2. Properties and Biosynthesis of BC and Xanthan

Xanthan was one of the first bacterial EPSs utilized for industrial production. Com-
pared to other microbial polysaccharides, it is cost-competitive, and therefore the best
option both in terms of performance and economically [47]. The global xanthan market
is estimated to experience a 15% increase by 2027, which will result in about USD 455.9
million [48]. The main xanthan gum manufacturers are Jungbunzlauer, ADM, Cargill, CP
Kelco, Deosen Biochemicals, Fufeng Group, IFF (Dupont), and Meihua Group [49]. The
global BC market was valued at USD 250 million in 2017 and estimated to reach USD 680
million by the end of 2025 [7]. The BC market price is about USD 25/kg for the packaged
final product [45]. The market price of xanthan is of the next lower order and amounts to
about USD 1500–4000/ton [47].

The BC and xanthan chemical structures are comparable. They have cellobiose as a
repeating unit. BC is a linear homopolysaccharide with D-glucose residues interconnected
by β-1,4-glycosidic bonds (Figure 1A). A cellulose macromolecule is composed of thousands
of glucose residues. BC is characterized by a high degree of polymerization, which ranges
from 16,000 to 20,000, while for a plant-derived cellulose it is approximately 13,000 [50].
The molecular weight of BC is approximately 2300 kDa in static culture and slightly
lower in 10 L and 50 L bubble column bioreactor cultivation, about 1800 and 1700 kDa,
respectively [51]. The order in which cellulose macromolecules are arranged is maintained
mainly due to the forces of intramolecular and intermolecular hydrogen bonds. In the
cellulose structure, each glucose unit is presented with three hydroxyl groups, hydrogen
bonds being very important. They have an impact on BC physical, physicochemical, and
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chemical properties and provide the fibers with high mechanical strength and insolubility
in most solvents. In spite of the similar chemical composition, BC structure and properties
differ sufficiently from those of plant cellulose [52,53]. Bacteria produce extracellular
biodegradable and completely non-toxic cellulose with high purity. BC molecules are
arranged strictly parallel to each other to form crystalline microfibrils 100 times thinner
than plant cellulose microfibrils. This unique three-dimensional network structure of BC
is responsible for most of its properties, such as high tensile strength, high degrees of
polymerization and crystallinity (up to 90%), superior mechanical properties (Young’s
modulus about 15–35 GPa and tensile strength of 200–300 MPa), a large surface area
(>150 m2/g), high elasticity, and water retention [37,54–58].

Xanthan is a heteropolysaccharide containing a cellulose-like backbone of β-1,4-linked
glucose units substituted alternately with a trisaccharide side chain composed of two man-
nose units separated by a glucuronic acid. The internal mannose is mostly O-acetylated,
and the terminal mannose can be substituted by a pyruvic acid residue (Figure 1B). Due to
the presenting glucuronic and pyruvic acid in the side chain, xanthan represents a highly
charged polysaccharide with a very rigid polymer backbone. The content of pyruvate
in xanthan ranges from 2.5–4.4%; this suggests that not every residue of the terminal D-
mannopyranose in the side chain carries a pyruvate ketal group. Wu M. et al. obtained a
genetically engineered X. campestris strain CGMCC 15155, which produces high-viscosity
xanthan with a pyruvate content of 8.69% [59]. The low content of the pyruvyl group
decreases the viscosity, while the high pyruvyl content contributes to the gel viscosity [60].
The ratio of acetate in the xanthan molecule can also vary depending on the polymer
sample. Higher acetyl content decreases the gelling capacity of xanthan gum in an aqueous
solution [60]. In addition, the hydrogen of the acetyl, pyruvic, and carboxyl groups in the
D-glucuronic acid residue can be replaced by any cation. Thus, the pyranose sugar blocks
in xanthan are not always structurally identical to each other, and the present acetic and
pyruvic acids form an anionic polysaccharide. Xanthan has a high molecular mass of about
2 × 106 to 2 × 107 Da, which is influenced both by bacterium strains and fermentation
conditions [48]. The conformation of a polysaccharide macromolecule changes differently
depending on pH, temperature, ionic strength, fermentation duration, medium composi-
tion, production method, etc. [61]. Xanthan, in contrast to BC, is a water-soluble bacterial
EPS and has high solubility in both cold and hot water. Xanthan molecules in aqueous
solutions are prone to self-association, and a gel forms with an increase in the ionic strength
of the solution or the concentration of the polysaccharide. It is a three-dimensional network
formed from double helixes of xanthan linked by intermolecular hydrogen bonds [62].
Xanthan has a pseudoplastic nature; that is, the viscosity inversely changes with the shear
rate of a xanthan solution. Xanthan molecular structure and conformational state are closely
associated with its rheology, stability, and function [63,64]. These properties enable it to
be used as a thickening, dispersant, emulsifier, and viscous aqueous solution at low con-
centrations (0.05–1%). Xanthan has a high tolerance to deviations in the pH range of 2–12
and a high resistance to temperature changes. These properties confer industrial relevance
and can explain the wide commercial EPS acceptance [65]. The commercial demand is
a key point stimulating studies to increase xanthan production on an industrial scale by
sustainable processes to exploit the microorganism potential [66,67].

Xanthan is produced by bacteria of the genus Xanthomonas belonging to the class
Gammaproteobacteria of the phylum Proteobacteria. The strain type is X. campestris ATCC
33913T [2]. The Xanthomonas spp. differentiates further into pathovars depending on the
host plant [68]. Although X. campestris is most commonly employed for the industrial
production of xanthan, there are several other strains of genus Xanthomonas which can pro-
duce xanthan, including X. pelargonii, X. phaseoli, X. malvacearum, X. arbicola, X. axonopodis,
and X. citri [2,69–71]. BC, unlike xanthan, can be produced by bacteria of different genera,
such as Gram-negative bacteria of the genera Komagataeibacter (Gluconacetobacter) [14,72],
Gluconobacter [73], Acetobacter [74], Achromobacter [75], Agrobacterium [76], Enterobacter [77],
Pseudomonas [78], Rhizobium [79], Salmonella [80], and others, as well as Gram-positive bac-
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teria of the genera Bacillus [81], Sarcina, and Rhodococcus [82]. The most common and highly
productive BC producers are acetic bacteria species of the Komagataeibacter genus belonging
to the Acetobacteraceae family, class Alphaproteobacteria, phylum Proteobacteria [2].
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machinery of BC (C) and xanthan (D). Adapted from Refs. [36,83] (open access).

BC producers Komagataeibacter sp. and xanthan producers Xanthomonas sp. are Gram-
negative bacteria that have the periplasmic space between the bacterial cytoplasmic and
outer membranes, where important steps in EPS biosynthesis occur (Figure 1C,D). The
biosynthesis of BC and xanthan begins intracellularly with the synthesis of exopolysac-
charide precursors uridine diphosphate glucose (UDP)-glucose for BC and UDP-glucose,
GDP-mannose, and UDP-glucuronic acid for xanthan. BC biosynthesis involves three
stages, including UDP-glucose synthesis through a series of enzymatic reactions, cellulose
molecular chain synthesis under the function of cellulose synthase (CS), and cellulose
crystallization and polymerization. In Gram-negative bacteria, CS is composed of four
polypeptide subunits, including a catalytic BcsA subunit, an inner membrane-anchored
BcsB subunit having a carbohydrate-binding domain, a BcsC subunit (secretion of a glu-
can chain through the outer membrane), and a BcsD subunit (crystallization subunit)
(Figure 1C) [83]. One of the well-characterized mechanisms regulating BC biosynthesis is
the allosteric activation of BcsA with a cyclic di-GMP (c-di-GMP) molecule, a universal
bacterial second messenger discovered by Moshe Benziman and his group in 1987 after
many years of studying the mechanism and regulation of BC biosynthesis in the bacterium
Acetobacter xylinum (K. xylinus) [84,85]. The CS complex is encoded by cellulose synthase
operons known as bcs operons, which regulate intracellular biosynthesis, extracellular
transport across the cellular membranes, and the in vitro assembly of cellulose fibrils into
highly ordered structures [37]. In the past few decades, extensive work has been carried
out to characterize BC biosynthesis [83–88]. Xanthan is produced using a Wzy-dependent
pathway which has several steps, including the synthesis of exopolysaccharide precursors,
repeat-unit assembly on a lipidcarrier located at the cytoplasmic membrane, membrane
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translocation to the periplasmic face, polymerization by a block-transfer mechanism in-
volving Wzy polymerase, and export (Figure 1D) [36].

3. Strategies for Cost-Effective Production of Xanthan and BC

Like other EPSs, xanthan and BC yield and quality depend on many parameters
and variables, including culture medium composition, temperature, pH, oxygen transfers,
agitation rate, inoculum volume, cultivation method, fermentation duration, etc. Statis-
tical methods have been applied systematically to optimize xanthan and BC production
parameters [89–98]. A recent interesting review by Rocha et al. (2023) presents the main
BC biosynthesis processes and strategies to optimize its production at industrial scale
for the purposes of bioeconomy [99]. Xanthan is produced through submerged aerobic
fermentation under dynamic conditions. The optimum temperature and pH for xanthan
production is 28–30 ◦C and pH 7–8, respectively. Various types of bioreactors have been
used for xanthan production, but mechanically stirred bioreactors are the most common.
In stirred reactors, the rate of oxygen mass transfer is affected by the air flow rate and
stirrer speed. The air flow rate is usually maintained at a constant level, typically 1 L/L
min. The stirrer speed usually varies during culture from lower values (200–300 rpm) at the
beginning of the fermentation to higher values (400–600 rpm) later on. The fermentation
is to be followed by the thermal inactivation of the bacterium X. campestris, since the bac-
terium is phytopathogenic. The next step is xanthan precipitation, which proceeds using
a solvent, like ethanol, methanol, isopropyl alcohol, acetone, etc. Precipitated xanthan
should be dried and ground to obtain a powder. Figure 2A shows xanthan production
in agitated conditions. BC is also produced by aerobic fermentation, although, unlike
xanthan, under both dynamic and static conditions (Figure 2B,C). The method selection
depends on the final BC applications as well as the required morphological, mechanical,
and physicochemical characteristics [100]. The static cultivation method is a traditional
approach for BC production, and it has become widespread. According to the method,
bacteria are grown in the containers with a growth medium, usually for 7–14 days at
28–30 ◦C and a pH of 4–7. A BC gel film forms on the medium surface, its size depending
on the surface area of the medium (Figure 2(Ba)). After purification with sodium hydroxide
by heating and further washing deionized water until the pH became neutral, the film
becomes colorless and transparent (Figure 2(Bb)). Figure 2(Bc) shows BC micromorphology,
which exhibits a nanoporous three-dimensional network structure with a random arrange-
ment of ribbon-shaped fibrils. The high cost and low rate of production are the two main
problems in static culture systems. However, BC produced using static conditions has more
advantages in biomedical fields due to having a higher crystallinity, a linear structure, good
flexibility, and elasticity. Agitated cultivation is the preferred method for BC industrial
production. Less space is required in agitated cultivation compared to the static condition,
and the aeration rate is higher during BC production. Different types of bioreactors are
utilized for this purpose, including stirred tank bioreactors, airlift bioreactors, rotating
disk reactors, rotary biofilm contactor reactors, and reactors with silicone membranes [100].
BC obtained under dynamic conditions has a high water-holding capacity but usually a
lower crystallinity. Figure 2C shows BC produced by K. sucrofermentans B-11267 in dynamic
conditions using HS medium (a), whey (b), and thin stillage (TS) (c), and an AFM image of
the cellulose microfibrils is shown.
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3.1. BC and Xanthan Production from Wastes

Recently, many studies have focused on cheap nutrient sources, diverse strains of
producing microorganisms, as well as on improving their culture conditions for the purpose
of cost-effective xanthan and BC production [45,100–105]. The high cost of fermentation
media is the limiting factor for the economic production of BC and xanthan. Nearly 30%
of the process cost is likely to be the cost of a nutrient medium [106]. Among culture
media, the most frequently used one is a chemically defined media. For example, the
standard medium for obtaining BC is the Hestrin–Schramm (HS) medium, which contains
expensive components, e.g., glucose, peptone, yeast extract, citric acid, and disodium
phosphate. Other carbon sources such as fructose, maltose, xylose, sucrose, galactose,
and others can be an alternative to glucose in the HS medium to optimize and increase
BC production [107,108]. However, they are not economically viable for industrial scale
production either [98]. Many researchers point out that the most promising medium for
producing xanthan is sucrose supplemented with salts [92,109]. Also, starches (corn starch,
potato starch), which have a relatively high cost, can serve as a source of carbon for xanthan
production [110].

Whereas cost is a limiting factor in EPS production, many investigations are intent
on using industrial wastes and by-products as a cost-effective substrate to produce BC
and xanthan [45,101–105]. Kadier et al. (2021) divided industrial wastes into six groups:
(1) brewery and beverages industries wastes; (2) agro-industrial wastes; (3) lignocellulosic
biorefineries, pulp mills, and sugar industries wastes; (4) textile mills; (5) micro-algae indus-
try wastes; and (6) biodiesel industry wastes [101]. Currently, several reviews on BC and
xanthan production from food and agro-industrial wastes have been reported [45,101–105].
So, a recent review by Khan et al. (2023) has discussed the possibility of producing BC from
different foods and agro-industrial wastes, describing various fermentation methods used
for BC production as well as the biochemical and molecular regulation of BC production
during its microbial synthesis [102]. Figure 3 shows a schematic overview of BC and
xanthan production from different food and agro-industrial wastes.
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Figure 3. Schematic overview of BC and xanthan production from different food and agro-industrial
wastes.
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The main results on the use of some food and agro-industrial wastes for BC production
by Komagataeibacter sp. are summarized in Table 1. Table 2 summarizes some of the food
and agro-industrial wastes that serve as a potential source of xanthan production.

Table 1. Food and agro-industrial wastes utilized as feedstocks for BC production by Komagataeibacter sp.

Bacterial Strains Nutrient Source Production Titer (g/L) Reference
Komagataeibacter sp. PAP1 soya bean whey 4.10 [98]

K. xylinus CCM 3611 sour whey + cane
sugar + black tea 18.5–23 [111]

K. sucrofermentans B-11267
cheese whey 5.45 [112]
thin stillage 6.19

sugar beet molasses 2.9 [113]
G. xylinus PTCC 1734 cheese whey treated with β-galactosidase 3.55 [114]

K. xylinus K2G30 acid whey 2.99 [115]
G. xylinus FC01 molasses 0.572 [116]

K. melomenusus AV436T grape pomace hydrolysate 1.24 [117]
G. liquefaciens jaggery 17.79 [118]

Komagataeibacter sp. CCUG73629
and Komagataeibacter sp.

CCUG73630
corncob and sugarcane bagasse 1.2–1.6 [119]

K. sucrofermentans DSM 15973 confectionery wastes 5.7 [120]

K. sucrofermentans DSM 15973 winery waste streams (grape pomace,
stalks, wine lees) 8–11.6 [121]

K. xylinus BCRC12334 olive oil mill wastewater 0.65–5.33 [122]
G. xylinus ATCC 23770 wheat straw 8.3 [123]

K. sucrofermentas ATCC 700178 alkali lignin 3.2 [124]
G. xylinus CH001 durian shell 2.67 [125]

K. rhaeticus cashew crop residues 2.3–6 [126]
K. xylinus DSM 6513 red grapes bagasse 0.548 [127]

K. rhaeticus M12 peer peal and pomace 10.94 [128]
K. xylinus pineapple waste 3.82 [129]
G. swingsii pineapple peel 2.8 [130]

K. medellinensis NBRC 3288 rotten banana waste 3.23 [131]
K. europaeus SGP37 sweet lime pulp 26.2 [132]

G. xylinus 0416 MARDI date 5.8 [133]
K. hansenii GA2016 citrus peels 0.392 [134,135]

G. xylinus ATCC 700178 carob and haricot bean 1.8–3.2 [136]
G. xylinus 1.1812 sweet potato 11.35 [137]

G. xylinus BPR2001 sweet potato peel 2.3–4.2 [138]
K. xylinus TISTR 1011 yam bean 0.47 [139]

G. xylinus BPR2001 okara 2.3 [140]
G. aceti ATCC 23770 konjac powder 2.12 [141]

K. rhaeticus K15 kitchen waste 4.76 [142]
Komagataeibacter sp. PAP1 noodle wastewater 11.76 [143]

G. hansenii UAC09 coffee cherry husk 8.2 [144]

G. xylinus KCCM 41431 (ATCC
11142)

pure glycerol
crude glycerol

3.4
2.93 [145]
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Table 2. Food and agro-industrial wastes utilized as feedstocks for xanthan production.

Bacterial Strains Nutrient Source Production Titer (g/L) Reference

X. campestris orange peels hydrolysate 30.19 [146]

X. campestris
carrot peels extract 40.88

[104]
pumpkin peels extract 31.4

X. campestris NCIM 2954 tapioca pulp hydrolysate 7.1 [147]

X. campestris NRRL B-1459 date juice 43.35 [148]

X. campestris pv. vesicatoria waste bread hydrolysate 14.3 [149]

X. campestris LRELP-1 kitchen waste hydrolysate 4.09–6.46 [150]

X. campestris NCIM 2961 jackfruit seed powder 51.62 [151]

Xanthomonas sp. 629 hemicellulose fractions from the alkaline
extraction of corncob 8.37 [152]

X. campestris pv. campestris 1866 cocoa husks 4.48 [153]

X. campestris pv. campestris 1867 acid hydrolyzed broomcorn stem 3.89
[91]X. campestris 8.9

X. campestris CCTCC M2015714 glycerol 11.0 [154]

X. campestris Xp 3–1 crude glycerol 7.67 [155]

X. campestris pv. mangiferaeindicae
2103 crude glycerol 5.59 [156]

X. citri/NIGEB-386 cheese whey 22.7 [157]

X. campestris cheese whey 16.4
[158]X. pelargonii 12.8

X. campestris M 28 molasses 28 [159]

X. campestris ATCC 13951

wastewaters during the washing operations of
the crusher 4.004

[160]
wastewaters during the washing operations of

the press 7.596

wastewaters during the washing operations of
the tanks after clarification of must 10.67

wastewaters during the washing operations of
the fermentation 7.488

X. campestris pv. manihotis 1182 2% concentration of the shrimp shell used in
the aqueous extract

2.64
[161]X. campestris pv. campestris 254 2.60

X. campestris pv. campestris 629 1.95

After the industrial processing of fruits in juice factories, a huge amount of fruit peels
remain, such as the peels of pomegranate, mango, pineapple, banana, citrus, and other
fruits [162]. They are inexpensive raw materials for obtaining bacterial EPS. For exam-
ple, Hasanin et al. (2023) reported about the sustainable BC production by Achromobacter
using mango peel waste [75]. In addition, there were reports on BC production using
pineapple and watermelon peels [163], citrus peel and pomace [134,164,165], and banana
peel [166]. Abdelraof et al. (2019) reported about the production of BC from potato peel
waste [162]. Xanthan was also produced from fruit and vegetable peels. So, Mohsin et al.
(2018) optimized xanthan biosynthesis in a 15-L fermenter to achieve maximum polysac-
charide production from 30.19 g/L of orange peels [146]. Shiram et al. (2021) reported
a xanthan yield of 40.88 g/L and 31.4 g/L using food wastes and carrot and pumpkin
peels, respectively [104]. This year, Chaiyachet et al. (2023) reported on BC production
from K. xylinus TISTR 1011 and K. nataicola TISTR 975 using yam bean juice as a nutrient
source [139]. Gorgieva et al. (2023) first reported on utilizing a grape pomace hydrolysate
without enzymatic treatment as a sole culture medium for efficient BC production with the
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recently described species K. melomenusus AV436T [117]. The membranes were synthesized
in only 4 days of bacteria culturing with a BC yield of 1.24 g/L.

Many studies have focused on using crude glycerol, which is a by-product of the
biodiesel industry, to produce valuable products. It will both reduce the cost of xanthan
and BC and resolve the excess glycerol problem. However, crude glycerol contains various
impurities (namely: methanol, ethanol, inorganic salts, metals, long chain fatty acids, and
soaps) to which producing microorganisms must be tolerant [155]. The article by Rončević
et al. (2020) confirmed the possibility of xanthan production on a crude glycerol-based
medium as a sole carbon source using different X. campestris strains [155]. The results
obtained indicate that all the strains considered can be used as xanthan-producing mi-
croorganisms on a crude glycerol-based medium, and the highest xanthan concentration
(7.67 g/L) was obtained using the Xp 3–1 strain. Wang et al. (2017) produced xanthan by a
mutant strain X. campestris CCTCC M2015714 with glycerol as the sole carbon source [167].
The strain that could use glycerol to produce high-transparency and low-viscosity xanthan
was obtained by adaptive evolution, and the yield of xanthan reached 11.0 g/L [154]. BC is
the only commercially important exopolysaccharide whose synthesis on glycerol has been
performed for a relatively long time, and therefore there is an abundance of accumulated
data [168]. The review by Zikmanis et al. (2021) summarized the current knowledge on
using glycerol to obtain BC, including information about producer cultures, composition
of culture media, cultivation conditions, and productivity of bioprocesses [168]. Glycerin
easily penetrates into producers’ cells by facilitated diffusion, while other renewable and
cost-efficient feedstocks, such as molasses or cheese whey, require an enzymatic or chemical
hydrolysis of relevant disaccharides (sucrose and lactose, respectively). The efficiency
of using glycerol is also determined by the fact that the necessary enzymatic stages of
its catabolism are well represented in the metabolic network of BC producers [169]. Al-
though glycerol consumption is lower than that of glucose, it better contributes to BC
production, since 48% of glycerol is used for the biosynthesis of this polymer, whereas
glucose contribution to this process reaches 40% [170]. This factor is likely explained by the
non-accumulation of organic acids when glycerol is used as a carbon and energy source for
microorganism growth. Glycerol can be used in a purified and in a crude, unpurified form.
Purified glycerol is predominantly a part of the composition of nutrient media, although a
sufficiently high BC yield is also achieved when using crude glycerol [145,169,171,172]. So,
Dikshit and Kim (2020) reported the highest BC production (3.40 g/L) to be observed at
50 g/L of initial pure glycerol concentration and 2.93 g/L with the same amount of crude
glycerol [145].

Dairy, sugar, and alcohol industrial wastes such as whey, molasses, and stillage were
also studied and considered as alternative substrates to enhance EPS production. Recently,
several reviews on the production of biodegradable microbial polymers from whey have
been reported [173–175]. This byproduct of the dairy industry has a high biochemical
oxygen demand (BOD) that causes various environmental problems. On the other hand, it
contains about 55% of the nutrients from the original milk, including carbohydrates such
as lactose (45–50 g/L) and small amounts of galactose, glucose, arabinose, and lactulose, as
well as soluble proteins (6–8 g/L), lipids (4–5 g/L), mineral salts (8–10% of dried extract),
amino acids, vitamins, and organic acids such as lactic acid and citric acid [176–178]. Some
researchers have studied the effect of whey on BC production. For example, Carreira
et al. (2011) and Tsouko et al. (2015) observed a low BC yield from cheese whey [179,180].
However, Suwanposri et al. (2014) obtained BC in the amount of 4.10 g/L on day 7 of
the static cultivation of Komagataeibacter sp. PAP1 using soya bean whey [98]. In addition,
Revin et al. (2018) obtained BC in the amount of 5.45 g/L on the third day of cultivation
of K. sucrofermentans B-11267 under agitated conditions using cheese whey without any
pretreatment or adding other nitrogen sources [112]. The crystallinity of BC was 50.2%.
Recently, Salari et al. (2019) and Brugnoli et al. (2023) have investigated the cheese whey
treated with β-galactosidase as potential feedstock for producing BC [114,175]. So, Salari
et al. obtained BC in the amount of 3.55 g/L on day 14 of the static cultivation of G. xylinus
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PTCC 1734 [114]. Brugnoli et al. observed the highest BC yield of 0.3 g BC/g of a carbon
source consumed culturing Komagataeibacter sp. K2G39 isolated from green tea kombucha
using cheese whey with an initial lactose concentration of 40.12 g/L, which was almost
completely hydrolyzed after being treated with β-galactosidase [175]. The crystallinity
of BC was 53.55%. Most of Xanthomonas wild species do not consume lactose because of
their low β-galactosidase activity. To solve the problem, several efforts have been made
to transfer the β-galactosidase genes by plasmid or phage vectors to the Xanthomonas
genome and force the bacteria into lactose consumption [181]. Mutagenesis methods have
also been used to develop mutated strains for lactose consumption [182,183]. But genetic
modification is usually associated with some disadvantages, including the production of
antibiotic-resistant strains and strain instability [182]. The risk of genetically modified
organisms in food industries may also be a suppressing factor. To solve the problem,
the best option is to use the native strains which have the natural ability to use lactose
for xanthan production. So, Ramezani et al. showed the highest amount of produced
xanthan by the X. citri NIGEB-K37 strain in a lactose-based medium (lactose 10%) to be
14.26 g/L [71]. Moravej et al. (2020) increased the amount of xanthan to 18.4 g/L in the
cheese whey medium without adding more lactose using the X. citri NIGEB-K37 [157].

Molasses is one of the most studied waste products for EPS production [113,116,159,184–188].
It is a by-product of the final stage of crystallization in sugar production and contains about
50% total sugars by dry weight. Sucrose cannot be transported across the cell membrane
and is hydrolyzed in a periplasm to glucose and fructose by α-glucosidase, which may
have different activities depending on the producer. Therefore, such substrates are usually
subjected to hydrolytic treatment using enzymes or less expensive chemical hydrolysis
with mineral acids. Bae and Shoda [184] and Çakar et al. [185] reported that BC produc-
tion can be increased drastically by H2SO4-heat treatment of sugar beet molasses. Also,
Abol-Fotouh et al. (2020) suggested the preliminary thermal acid treatment of molasses
to break down the contained sucrose to glucose and fructose [186]. Bae and Shoda found
that the highest production of BC was obtained at 20 g/L of total sugar concentration of
sugar beet molasses [184], while the medium containing 5% (w/v) total sugar in sugar
beet molasses led to the highest BC production in the study by Jung et al. [189]. Salari
et al. (2019) showed that sugar beet molasses without any supplementation can be used
as a single cheap carbon source for BC production by G. xylinus. The maximum BC
production was 4.56 g/L in sugar beet molasses with an initial sugar concentration of
20 g/L after 14-day fermentation under static conditions, which was higher than that on the
standard HS medium (3.26 g/L) [114]. Revin et al. (2021) reported that BC production by
K. sucrofermentans H-110 was 2.9 g/L in sugar beet molasses with an initial sugar con-
centration of 25 g/L after 5 days of cultivation under static conditions, which is almost
two times as high compared to the standard HS medium (1.6 g/L) [113]. The crystallinity
of BC formed on the molasses medium was 83.02%, which was higher than on the HS
medium. Moreover, Revin et al. (2021) obtained the highly efficient strain X. campestris M
28, which produced up to 28 g/L of xanthan on a molasses medium [159]. Öz and Kalender
developed a new static cultivation system called a series static culture to eliminate the
air limitation problems encountered in a conventional static culture [190]. Fermentation
experiments were carried out using G. xylinus NRRL B-759 and sugar beet molasses at
30 ◦C and an initial pH of 5.

Stillage is the byproduct resulting from ethanol production. For every liter of ethanol
produced, molasses-based distilleries usually generate about 8–15 L of stillage characterized
by high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) [191].
The thin stillage (TS) is the aqueous byproduct generated from the distillation of ethanol
following the fermentation of starch or sugar crops during the ethanol production process.
The fermentation and distillation processes of the feedstocks generate the whole stillage,
which contains solids from the grain along with added yeast. The whole stillage is then
centrifuged to separate the liquid component, called thin stillage, and the solid component,
called wet distillers’ grain [192]. TS contains organic and inorganic compounds, some of
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which may be valuable products for EPS production. Ratanapariyanuch et al. studied the
composition of the wheat thin stillage by HPLC and demonstrated it to contain dextrin
(8.47–11.65 g/L), glycerol (2.39–7.87 g/L), lactic acid (5.07–7.41 g/L), acetic acid
(0.56–2.72 g/L), succinic acid (0.63–0.93 g/L), ethanol (0.23–1.31 g/L), maltotriose
(0.14–1.10 g/L), maltose monohydrate (0.03–1.05 g/L), glycerophosphorylcholine
(0.91–1.11 g/L), and betaine (0.8–1.03 g/L) [193]. The availability of TS to increase the BC
yield was studied [112,194,195]. Organic acids, glycerol, and ethanol are known from the
literature to have a positive effect on BC production [99,112]. For instance, rice wine stillage
containing organic acids was applied as an additive to the HS medium to increase cellulose
yield. The largest BC amount (6.31 g/L) was obtained in the HS medium diluted with
50% stillage [194]. Revin et al. used wheat TS without any pretreatment or adding other
nitrogen sources to reduce BC cost [112]. The studies showed that the maximum BC yield
(6.19 g/L) was observed in the TS for 3 cultivation days under agitated conditions, and that
was nearly three times as high compared to the BC yield in the HS medium (2.14 g/L).

To reduce the cost of BC production, a number of researchers also assessed the avail-
ability of using wastewater from acetone–butanol–ethanol (ABE) fermentation. ABE fer-
mentation wastewater contains fermentable sugars, organic acids, and alcohol compounds.
Typically, organic acids such as acetic acid and butyric acid are the main by-products
of ABE fermentation, while the presence of alcohol compounds is associated with the
incomplete distillation of the ABE fermentation broth. Xiong et al. (2015) analyzed ABE
fermentation wastewater by HPLC and demonstrated that xylose and glucose were the two
main residual sugars in it, their concentrations being 0.61 and 0.26 g/L, respectively [196].
As for organic acids, acetic acid and butyric acid were the two main kinds of them, and their
concentrations were 1.70 and 1.00 g/L, respectively. Furthermore, some alcohol compounds
(g/L, ethanol 1.00, and butanol 1.15) were also present in the wastewater. The total nitrogen
concentration in the wastewater was extremely low (merely about 48.3 mg/L). Overall, the
ABE fermentation wastewater had a high COD value (18,050 mg/L). The previous literature
reports demonstrated the secondary substrates or supplements (organic acids, ethanol,
butanol) to be essential to facilitate BC production [99,112,196,197]. Huang et al. (2015)
used the wastewater generated by fermentation broth distillation after ABE fermentation
without any pretreatment or adding nutrients as the substrate for BC production using
G. xylinus [197]. After 7-day fermentation in static culture, the highest BC yield (1.34 g/L)
was obtained. The carbon sources, including sugars (glucose and xylose), organic acids
(acetic acid and butyric acid), and alcohol compounds (ethanol and butanol), were utilized
by G. xylinus simultaneously during fermentation.

Nowadays, lignocellulosic wastes are in focus as renewable and abundant substrates
to produce various EPSs [198]. However, microorganisms cannot utilize them directly as
a carbon source; therefore, pretreatment and hydrolysis of lignocellulosic materials are
necessary [199]. The cellulolytic and hemicellulosic fractions used for EPS production are
promising due to their high carbon content [153]. Corncob is a low-cost substrate with a
high potential to provide fermentable sugars (glucan, xylan, arabinan) [152,200]. Different
fractions (cellulose, hemicellulose, and lignin) extracted from corncob can be alkaline.
The hemicellulosic fraction extracted by alkali is cheaper compared to corn starch. Jesus
et al. (2023) evaluated the potential of the hemicellulosic fractions obtained by the alkaline
hydrolysis of corncob and used as a carbon source, macro, and micro-nutrients in xanthan
production, using different strains of X. campestris (629, 1078, 254, and S6) [152]. The
findings indicate that strain 629 provides the higher yield (8.37 g/L) when using a fermen-
tation medium containing saccharose (1.25%), hemicellulose fractions (3.75%), and salts.
Soleimanpour et al. (2018) proposed a broomcorn stem hydrolyzed by sulphuric acid as a
low-cost and widely available carbon source for xanthan production. The maximum yield
of the polysaccharide was 8.9 g/L [91]. There were several studies reported on the feasibility
of using different wastes with a lignocellulosic content in BC production, including corncob
and sugarcane bagasse [119], oat hull-derived enzymatic hydrolyzates [201,202], enzymatic
hydrolysate of wheat straw [123], pulp mills, and lignocellulosic wastes [203,204]. Bagasse
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is a fibrous biomass generated from sugarcane processing, and it is the material that remains
after extracting juice from the sugarcane stalks. It is composed of cellulose, hemicellulose,
and lignin, making it a good candidate for EPS production. Microcrystalline cellulose is
present in different agro-industrial wastes such as walnut shells, corncob, and sugarcane
bagasse [205]. Moreover, to make xanthan production cost-effective, agricultural and food
wastes such as tapioca pulp [147], waste bread [149], kitchen waste [150], jackfruit seed
powder [151], cocoa husk [153], fermenting shrimp shell [161], sugarcane bagasse [206], rice
bran [207], chicken feathers [208], coconut shell, potato crop [209], winery wastewater [210],
and demerara sugar [92] were used.

3.2. Technologies for Cost-Effective Production of Xanthan and BC
3.2.1. Co-Cultivation of EPS-producing Bacteria

Another strategy for efficient EPS production can be the co-cultivation of EPS-producing
bacteria. A number of publications point out the positive effect of some water-soluble
polysaccharides on BC yield [211,212]. For example, Seto et al. (2006) first reported
that the co-cultivation of the two bacteria G. xylinus and Lactobacillus mali in corn steep
liquor/sucrose liquid medium resulted in a threefold higher cellulose yield when com-
pared to monoculture [211]. Liu et al. (2019) examined a novel fermentation process
which consists of co-culturing G. hansenii ATCC 23769 with Escherichia coli ATCC 700728
under static conditions and producing BC pellicles with enhanced mechanical proper-
ties [213]. The authors suggested the mannose-rich EPS synthesized by E. coli to be in-
corporated into the BC network and affect the aggregation of co-crystallized microfibrils.
The BC pellicles exhibited a Young’s modulus of 4874 ± 1144 MPa and stress at a break of
80.7 ± 21.1 MPa. Nazarova et al. (2022) reported that the co-cultivation of the bacte-
rial cellulose producer strain K. sucrofermentans B-11267 and the dextran producer strain
L. mesenteroides VKM B-2317D doubled the yield of BC compared to monoculturing from
2.64 g/L to 5.99 g/L, respectively [214]. The increase in BC yield is likely due to the fact
that the dextransucharase, which is formed by bacteria of the genus Leuconostoc, enables
the quick breaking down of the sugars contained in molasses. Dextran formed by bacteria
can also contribute to BC formation. The increase in product yield might be associated with
fructose, which is formed when sucrose is broken down by the enzyme. Fructose is known
to be a good source of carbon to cultivate BC producers [14]. According to the literature
data, as a result of fructose metabolism, fewer organic acids are formed and there is no
strong acidification of the environment as when using glucose, which is converted into glu-
conic acid. The co-cultivation of EPS-producing bacteria can also be considered as a method
for obtaining biocomposite materials. Including additives in the culture media during BC
biosynthesis is a traditional method to produce BC-based composites. Brugnoli et al. (2023)
developed a co-culture system combining BC producers of the genus Komagataeibacter
and hyaluronic acid producers of the Lactocaseibacillus genus and highlighted a higher BC
yield and the incorporation of hyaluronic acid into the composite [215]. The presence of
hyaluronic acid improved the water-holding capacity of the composites, resulting in a
decrease of BC crystallinity.

3.2.2. Biocatalytic Technologies

Biocatalytic technologies seem to be promising to obtain bacterial EPS. Efremenko et al.
(2022) summarized in their review the information on the currently known biocatalytic
synthesis of microbial polysaccharides and discussed the prospective research development
in the field of biocatalysis [216]. The degree of carbohydrate substrate conversion into
a biopolymer can grow by improving the specific activity of enzymes involved in the
synthesis and regulating the pathways in EPS precursor biosynthesis. Immobilized cells
can significantly increase the productivity and stability of biocatalysts [216]. An important
advantage of cell immobilization is the capability of their long-term functioning, which
enables a significant increase in the overall efficiency of EPS production. In addition, immo-
bilized cells, when in the QS state, can withstand high concentrations of toxic substances
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compared to free cells. QS activates EPS synthesis [216–220] as protective and stabilizing
and reserves substances for highly concentrated microbial populations, as it is a natural
mechanism to increase the amount of the biopolymers and can be used as a nature-like
technology in their industrial production. Several studies have been carried out on the use
of immobilized cells for EPS biosynthesis in which the high efficiency of the approach has
been proven. Examples of immobilization of EPS-producing cells among lactic acid bacteria
of the genus Lactobacillus are known [221,222]. The productivity of such cells exceeded
the productivity of free cells. The immobilization of bacteria of the genus Xanthomonas
on granules based on calcium alginate also showed a higher xanthan yield compared to
free cells [158]. The capability of cell immobilization of BC producers A. xylinum in Ca-
alginate gel [223] and K. xylinum B-12429 in cryogel based on polyvinyl alcohol (PVA) [224]
was demonstrated. K. xylinum B-12429 cells immobilized in PVA cryogel synthesized BC
1.6 times more than in the suspension culture. At the same time, the BC films had a higher
tensile strength, a 30% greater thickness, and a higher polymerization degree. Rahman
et al. (2021) reported for the first time on BC production using a natural loofah sponge as a
scaffold for G. kombuchae immobilization [225]. The fermentation was carried out using free
cells and immobilized cells under shaking and static cultivation for 15 days. The maximum
BC concentration of 15.5 ± 1.65 g/L was obtained in a medium containing immobilized
cells with shaking.

Cell-free systems for EPS biosynthesis also show great development prospects [226–228].
The cell-free systems may be a possible solution to the limitations faced by traditional EPS
production processes, such as low yield and productivity, the production of byproducts and
secondary metabolites, and high downstream processing costs. In addition, cell-free sys-
tems expand the possibilities of obtaining biocomposite materials in situ, for example, when
obtaining materials with antibacterial properties, since antibiotics and other substances
with antibacterial action will inhibit the growth of bacterial cells. A recent review by Ullah
et al. (2023) presents a comprehensive overview of the development of cell-free systems,
ranging from crude cellular extracts of various organisms to advanced cell-free designs,
based on the principles of synthetic biology and using genetic and metabolic engineering
approaches [228]. The review provides information on developing a cost-effective cell-free
system, including the cost of cofactors, enzymes, raw materials, process efficiency and
scalability, and potential directions for its large-scale implementation in the future.

3.2.3. Genetic and Metabolic Engineering

Another strategy for the cost-effective production of xanthan and BC is to isolate new
bacterial strains from natural sources and obtain highly productive strains by genetic and
metabolic engineering. With the help of genetic engineering, new strains with modified or
introduced enzymatic activity can be developed, which can expand the range of inexpen-
sive substrates available for production, increasing their degree of transformation into EPSs.
A growing number of studies focused on investigating the mechanisms involved in BC and
xanthan biosynthesis, metabolic modeling, and genetic analysis have been applied to enable
improving its production on a large scale [35,37,99,154,229–235]. Currently, several reviews
on the genetic modification of BC-producing bacteria have been reported [84–86,229–232].
Singhania et al. (2021) reported various mechanisms for genetic modifications to achieve the
desired changes in BC production as well as its characteristics [230]. The authors conveyed
the lack of studies on a genetic modification for BC production to be due to the limited
information on the complete genome and genetic toolkits; however, over the past few years,
the number of studies in this area has increased, since the whole genome sequencing of
several bacterial strains has been obtained. Genetic modification can improve BC produc-
tion either by blocking genes responsible for the synthesis of metabolic by-products or
by overexpressing the genes involved in polysaccharide biosynthesis. In addition to the
above-mentioned advantages, there are some challenges, including methodological prob-
lems of transformation and problems concerning the complexity of the regulatory process
when each gene can express a protein having more than one function [230]. However, there
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have been several efforts made in genetic engineering aimed at BC-producing bacteria. For
example, Kuo et al. created a G. xylinus mutant by knocking out the membrane-bound
glucose dehydrogenase gene, which led to BC synthesis from glucose without generating
gluconic acid and a 40% increase in polysaccharide production [232]. A new, stable, and
efficient plasmid-based expression system of recombinant BC in the E. coli DH5_ platform
has recently been developed [233]. The review by Buldum et al. (2021) presented the poten-
tial of ‘modern genetic engineering tools’ and ‘model-driven approaches’ on improving
the yield of BC, altering the properties, and adding new functionality [86]. Until recently,
efficient techniques for the generation of markerless modifications in the genome of BC-
producing strains were not available. Most genetic studies were conducted by transposon
mutagenesis, which can limit the interpretability of the results due to polar effects and other
artefacts [86]. The markerless deletion system for a high-yield cellulose-producing bacteria
has advantages over transposon mutagenesis as it avoids possible polar effects and allows
better biotechnological tuning of BC production in the future [87]. Recently, Bimmer et al.
(2023) reported the construction of various mutants, their phenotypical, transcriptomic, and
proteomic characterization, as well as the quantification and analysis of the synthesized BC
by scanning electron microscopy and physicochemical parameters [87]. Furthermore, Yang
et al. (2023) constructed a recombinant strain of K. xylinus ATCC 23770 for the production
of BC from mannose-rich resources [234]. This strategy aimed at the modification of the
mannose catabolic pathway via the genetic engineering of bacterium through the expres-
sion of mannose kinase and phosphomannose isomerase genes from the E. coli K-12 strain.
The comparison showed that with mannose as the sole carbon source, the BC yield from the
recombinant strain increased by 84%, and its tensile strength and elongation were increased
1.7 fold, while Young’s modulus was increased 1.3 fold. Jang et al. demonstrated that the
K. xylinum strain overexpressing the E. coli glucose 6-phosphate isomerase gene produced
3.15 g/L of BC, which was 115.8% higher as compared to the 1.46 g/L obtained from the
control strain [235]. Using genetic engineering for EPS production is a promising alternative
to improve production on an industrial scale. However, it should be noted that despite
numerous investigations to develop productive strains, none of them has so far resulted in
mutant strains which could comply with the requirements of large-scale biotechnological
production [216]. In addition, using genetically modified microorganisms on an industrial
scale generally has a number of considerable limitations—chiefly, environment-associated
limitations.

4. Applications of BC and Xanthan

Despite a number of differences in their structure and properties, xanthan and BC
have found wide application in similar fields of medicine, technology, and industry
(Figure 4). Their promotion is due to their unique beneficial properties such as biocompati-
bility, biodegradability, non-toxicity, a high degree of polymerization, water retention, and
the ability for gelation. Thus, they can be commercially applied in food, pharmaceutical,
cosmetic, chemical, textile, oil, and gas industries as thickeners, emulsifiers and suspension
stabilizers, flocculants, and additives to improve the quality of different products. The
biocompatibility and functional characteristics of BC and xanthan are key factors promot-
ing their application in biomedicine, e.g., tissue engineering, wound dressing, and drug
delivery systems. Recently, many reviews describing the use of BC [7,37,52–57,236–242]
and xanthan [48,63,89,243–245] in various fields have been published.

Xanthan, which was discovered in the 1950s, belongs to one of the earliest marketed
bacterial exopolysaccharides certified for food use in the USA [246]. This polymer is envi-
ronmentally friendly and non-toxic and therefore is used in the food industry as a thickener,
stabilizer, and suspending agent in many foods and in the structure of biodegradable
food packaging [48,79,243–246]. BC is also used as an additional thickener, a suspending
or stabilizing agent in foods, or directly in food as an ingredient in fiber-enriched low-
calorie and low-cholesterol diets, as well as the material for food packaging [247–252]. In
1992, the Food and Drug Administration (FDA) approved BC to be safe, and in 2019, the
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species K. sucrofermentans was included in the list of Qualified Presumption of Safety (QPS)
recommended biological agents and intentionally added to food [249].
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BC and xanthan are promising materials for biomedical applications since they are
biocompatible polymers and not cytotoxic. BC-based materials for medicine have been
produced for a relatively long time. Back in the early 1980s, the American pharmaceu-
tical company Johnson & Johnson proposed using BC films to treat superficial wounds.
Recently, several commercial medical BC-based materials have been obtained: Biofill®

(Curitiba, Brazil) and Bioprocess® (Curitiba, Brazil) for burns and ulcer therapy, Gengiflex®

(Curitiba, Brazil) to treat periodontal diseases, Dermafill® (Londrina, Brazil) for effec-
tive wound and ulcer healing, Membracel® (Curitiba, Brazil) to treat venous leg ulcers
and lacerations, xCell® (New York, NY, USA) for chronic wounds therapy, EpiProtect®

(Royal Wootton Bassett, UK) for burn wounds, and Nanoskin® incorporated with silver
ions (São Carlos, Brazil) [236,253]. BC and xanthan have great potential to be used in
medicine as a biomaterial for wound dressing [254–266], drug delivery systems [267–289],
and tissue engineering [290–328]. Recently, many reviews on BC-based materials for
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biomedical applications have been reported. This year, reviews by Qian et al. (2023)
and Jadczak et al. (2023) summarized the state-of-the-art application of functional BC-
based materials in biomedical fields [52,241]. Also, the recent review by Tang et al. (2022)
discussed some of the biomedical applications that use BC, including wound healing,
drug delivery, tissue engineering, and tumor cell and cancer therapy [242]. The publi-
cations on using xanthan to obtain medical materials have appeared relatively recently.
So, in the last two decades, researchers have taken an interest in its future use in drug
delivery, tissue engineering, as well as biocomposites with regenerative and antibacterial
properties [261–266,274–278,284–289,321–328].

Wounds need an appropriate wound dressing to help prevent bacterial infection
and accelerate wound closure. Wound dressing materials fabricated using biocompatible
polymers have become quite relevant in medical applications [267]. BC is a biopolymer that
is commonly used for wound dressings due to its high biocompatibility, good flexibility,
strong water-holding capacity, vapor permeability, elasticity, and non-toxicity [254,255].
Recently, a review by Horue et al. (2023) provided information on BC-based materials
as dressings for wound healing [53]. The authors reported the main characteristics of
different BC structures such as films, membranes, fibers, etc., as well as recent advances
in BC-based composites. Furthermore, the review by de Amorim et al. (2022) offers a
summary of advances in the use of BC in composites and polymeric blends for drug
delivery systems and wound healing [258]. The review by Meng et al. (2023) introduces
recent advances in BC-based antibacterial composites for the treatment of wound infection,
including classification and preparation methods of composites, the mechanism of wound
treatment, and commercial applications [259]. Pasaribu et al. (2023) developed bioactive
BC-based wound dressings for burns by impregnating collagen via an in situ method
followed by immersing chitosan via an ex situ method into BC fibers [260]. In vivo tests
indicated that BC/collagen/chitosan wound dressing supported the wound healing process
for second degree burns. Tang et al. (2022) developed hydrogel wound dressings using
xanthan gum and polyacrylamide [261]. With the combination of the polyacrylamide
network and the xanthan network, the composite hydrogels showed high tensile strength,
stretchability, excellent water uptake efficiency, outstanding biocompatibility, universal
adhesion, and self-healing ability [261]. Singh et al. (2022) developed polyvinyl alcohol
copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal
dressings functionalized with biogenic nanostructured materials for antibacterial and
wound healing applications [262]. Recently, Gutierrez-Reyes et al. (2023) investigated novel
hydrogels of semi-interpenetrating polymeric networks based on collagen and xanthan
gum for wound healing applications [263]. The increment of xanthan in the hydrogel
(up to 20 wt.%) allows for improvement in the storage module, resistance to thermal
degradation, and the slowing of the rate of hydrolytic and proteolytic degradation, allowing
the encapsulation and controlled release of molecules such as ketorolac and methylene
blue. Recently, Unalan et al. (2023) developed three-dimensional (3D)-printed sodium
alginate–xanthan gum hydrogels containing phytotherapeutic agents with antioxidant and
antibacterial activity as multifunctional wound dressings [264]. Liang et al. (2023) prepared
3D-printed antibacterial hydrogels with benzyl isothiocyanate using xanthan gum, locust
bean gum, konjac glucomannan, and carrageenan for burn wound healing [265]. Alves
et al. produced a thermo-reversible hydrogel composed of xanthan–konjac glucomannan
(Figure 5B) [266]. The authors demonstrated the potential of composite hydrogels to
improve the wound healing process by promoting fibroblast migration, adhesion, and
proliferation [266].

Drug delivery systems are used for the targeted delivery and/or controlled release of
therapeutic drugs and have the advantage of reducing side effects, improving therapeutic
effects, and possibly reducing drug doses [267,268]. Recently, EPSs have been considered
as the ideal candidates for drug delivery systems due to their good biocompatibility, low
immunogenicity, biodegradability, renewable sourcing, and easy modification [269]. In
recent years, interesting reviews have been published characterizing the EPS-based materi-
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als used in drug delivery systems [269–272]. For example, the review by Qiu et al. (2022)
introduced a variety of polysaccharide-based nanocarriers such as nanoparticles, nanolipo-
somes, nanomicelles, nanoemulsions, and nanohydrogels for diabetes treatment [270]. The
review by Huo et al. (2022) summarized the latest research work on nanocellulose-based
materials used in drug delivery [271]. The review by Lunardi et al. (2021) provides a
comprehensive overview of the procedures for modifying and functionalizing nanocellu-
lose to obtain carriers in drug delivery systems [272]. Chung et al. produced BC loaded
with antibodies for optimizing checkpoint-blocking antibody delivery (Figure 5C) [273].
Recently, the review by Jadav et al. (2023) provided a comprehensive summary of current
advances in xanthan modification to be used as an excipient in pharmaceutical formulation
development, highlighting xanthan applicability to deliver various therapeutic agents such
as drugs, genetic materials, proteins, and peptides [274]. The important characteristics of
xanthan for drug delivery systems are high stability at a low pH, which helps protect a drug
in gastric fluid from degradation, and the ability to control the drug release rate by chang-
ing the pH and ionic strength of the release medium. Different forms of xanthan, such as
hydrogels, matrix tablets, films, microspheres, and mucoadhesive patches, are synthesized
to deliver drugs in various diseases [274]. The review by Jadav et al. provides information
on xanthan-based systems for the delivery of anti-diabetic drugs, anti-spasmodic drugs,
immunosuppressive drugs, and drugs to treat inflammation, rheumatoid arthritis, gout,
skin diseases, central nervous system-related disorders, obesity, glaucoma, and pulmonary
diseases [274]. Xanthan-based materials are used to deliver antibacterial [275,276], antivi-
ral [277], and antifungal [278] drugs. Moreover, BC has been used to deliver antibacterial
and antiseptic agents [279]. BC and xanthan have been shown to be promising biomaterials
for cancer treatment [280–288]. For example, Cacicedo et al. combined a BC hydrogel and
nanostructured lipid carriers to use as an implant for the local drug delivery of doxoru-
bicin in cancer therapy [281]. Zhang et al. developed BC-based composites with Fe3O4
magnetic doxorubicin-coated nanoparticles for breast cancer therapy [282]. Microspheres,
hydrogels [284–286], pH-responsive nanoparticles [287], and nanogels [288] of xanthan
were prepared for the delivery of anticancer drugs used to treat different cancers, including
colon cancer. Recently, Anghel et al. (2023) developed novel xanthan-based materials as a
delivery carrier for heparin [289].

Recently, the fabrication of xanthan and BC-based scaffolds, including composites
and blends with nanomaterials, and other biocompatible polymers has received particular
attention owing to their desirable properties for tissue engineering. BC has a huge potential
in tissue engineering due to its favorable mechanical properties, biocompatibility, high
hydrophilicity, crystallinity, purity, high degree of polymerization, and ultrafine porous
fibrous collagen-like structure [290–292]. In the past few decades, many papers have been
published on the use of BC in tissue engineering. Recently, the review by Raut et al. (2023)
presented the latest modified/functionalized BC-based composites and blends as advanced
materials in tissue engineering and summarized the latest updates on the production strate-
gies and characterization of BC and its composites and blends [292]. BC-based composites
have proven to be promising materials in cartilage [293–300], bone [301–305], soft tissue
engineering such as blood vessels, adipose tissue, nerves, the liver, and skin [306–320]. The
review by Jabbari et al. (2022) discussed the importance and essential role of BC-based
biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular
behaviors [312]. The review by Chen et al. (2022) summarized the application prospects
of cellulose and its derivative-based hydrogels in biomedical tissue engineering [313]. A
recent review by Fooladi et al. (2023) discussed the application of BC-based materials
for cardiovascular tissue engineering [314]. Dydak et al. developed BC-coated Titanium-
Aluminium-Niobium bone scaffold implants with low cytotoxicity against osteoblast and
fibroblast cell cultures (Figure 5E) [320]. Zuliani et al. demonstrated that it is possible
to differentiate stem cells from human amniotic fluid into chondrocytes when seeded
directly in an efficient and low-cost chitosan-xanthan scaffold (Figure 5D) [321]. Bueno
et al. obtained xanthan–hydroxyapatite hydrogel nanocomposites by precipitating hydrox-



Int. J. Mol. Sci. 2023, 24, 14608 20 of 38

yapatite in a xanthan aqueous solution. Nanocomposite hydrogels presented a porous
structure and proved to be suitable for osteoblast growth [322]. Recently, Barbosa et al.
(2023) produced chitosan–xanthan composite membranes, incorporating hydroxyapatite
to be used in guided tissue and bone regeneration, in particular for periodontal tissue
regeneration [323]. Souza et al. (2022) developed a chitosan–xanthan membrane associ-
ated with hydroxyapatite and different concentrations of graphene oxide for guided bone
regeneration [324]. Furthermore, Souza et al. (2023) synthesized polymeric scaffolds of
chitosan/xanthan/hydroxyapatite-graphene oxide nanocomposites associated with mes-
enchymal stem cells for regenerative dentistry applications [325]. Recently, Singh et al.
(2023) fabricated biomaterial composed of xanthan and diethylene glycol dimethacrylate
with impregnation of graphite nanopowder filler in their matrices for effective bone tissue
regeneration purposes with improved biomineralization [326]. Piola et al. developed a
crosslinked 3D-printable hydrogel based on biocompatible natural polymers, gelatin, and
xanthan gum at different percentages to be used both as a scaffold for human keratinocyte
and fibroblast cell growth and as a wound dressing (Figure 5F) [327]. In another study,
Decarli et al. (2023) reported a reproducible bioprinting process followed by a success-
ful post-bioprinting chondrogenic differentiation procedure using human mesenchymal
stromal cell spheroids encapsulated in a xanthan gum–alginate hydrogel [328]. These
results demonstrated a promising procedure to obtain 3D models for cartilage research
and ultimately an in vitro proof-of-concept of their potential use as stable chondral tissue
implants. Figure 5 shows a schematic overview of biomedical applications of xanthan and
BC-based composites.

BC has many advantages when used as an adsorbent, including a large surface area,
high mechanical properties, biodegradability, and high reactivity due to the presence of
hydroxyl groups on the surface, which enables its chemical modification to interact with
various pollutants, depending on its nature [46,329]. A number of BC-based adsorbents
have been obtained for removing hazardous metals [330–333], fluorine [113], and organic
pollutants, including dyes, pharmaceutical compounds, and petroleum products [334–339].
So, Salama et al. (2021) provided a comprehensive overview of the latest research results
on nanocellulose-based materials for wastewater treatment, including adsorption, absorp-
tion, flocculation, photocatalytic decomposition, disinfection, etc., and discussed various
approaches to their chemical modification [329]. Parizadeh et al. (2023) developed an
effective colorimetric sensor that detects copper (Cu(II)) ions in solutions and solid states
using anthocyanin extract from black eggplant peels embedded in BC nanofibers [340].
Xanthan functional groups are also able to bind heavy metals from aqueous solutions and
effectively remove them. Xanthan can be used as a new green-based material to produce
superabsorbents and remediate contaminated waters [36,243,245]. A recent review by
Balíkova et al. has emphasized the prospects for using xanthan as an environmentally
friendly adsorbent for water disinfection [36]. Sorze et al. (2023) have developed novel
biodegradable hydrogel composites of xanthan and cellulose fibers that can be used both
as soil conditioners and ground covers to stimulate plant growth and protect forests [341].
Recently, Guimarães et al. (2023) received a superabsorbent BC film produced from in-
dustrial residues of cashew apple juice processing [342]. Furthermore, bacterial EPSs have
attracted interest for their applications, such as environmental bio-flocculants, because they
are degradable and nontoxic. So, Sudirgo et al. (2023) showed xanthan to be a promising
alternative as a coagulant aid for synthetic Congo red wastewater decolorization. The
carboxylate group in xanthan could interact with polyaluminium chloride as the main
coagulant, thus assisting the formation of larger flocs and resulting in improved coagulant
performance [343].
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Xanthan is widely used in enhanced oil recovery technology because of its high vis-
cosity, pseudoplastic behavior, salinity stability, temperature, and alkaline conditions [344].
Furthermore, BC can be used for the microbial enhancement of oil recovery [77]. Further-
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more, BC and xanthan can be used in nanoelectronics (sensors, optoelectronic devices,
flexible display screens, energy storage devices, and acoustic membranes) [345–356]. Ionic
conductive hydrogels have received widespread attention as ideal candidates for flexi-
ble electronic devices. Conductive polymers such as polypyrrole, polythiophene, and
polyaniline and nanomaterials such as carbon-based nanomaterials, metal nanoparticles,
or nanowires are used in the synthesis of conductive hydrogels. The recent review by
Prilepskii et al. (2023) presented some recent developments in electrically conductive
BC-based composites for applications in numerous areas, including electrically conduc-
tive scaffolds for tissue regeneration, implantable and wearable biointerfaces, flexible
batteries, sensors, and EMI shielding composites [352]. The recent review by Pan et al.
(2023) summarized the latest advances in BC hydrogel-based sensors, including strain,
pH, electroactive, and thermal sensors [353]. Recently, Zhou et al. (2023) developed
dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydro-
gels for flexible electronic devices [354]. Furthermore, Wu et al. (2022) prepared a novel
ionogel with semi-interpenetrating poly (ionic liquids)/xanthan gum for highly sensitive
pressure sensors [355]. Currently, Tomić et al. (2023) are developing self-healing and
self-adhesive conductive nanocomposite hydrogels by multiple and diverse coordination
connections between various polysaccharide-based modifiers (xanthan, arabic gum, sodium
carboxymethyl cellulose), the poly(vinyl alcohol) network, and different graphene-based
fillers [356]. Recently, xanthan and BC have received attention for their application in 3D
printing technology [327,357–365]. Biopolymers as bioinks tend to be more profitable in
terms of biocompatibility, nontoxicity, biodegradability, nonantigenicity, inertness, bio-
adhesiveness, and adequate hemostasis compared to synthetic polymers. Xanthan has the
required viscosity and shear thinning capacity, due to which it can function as a rheological
modifier, thus improving 3D printing potential [357,358]. Recently, Li et al. (2023) devel-
oped a gelatin methacryloyl/alginate/polyethylene glycol dimethacrylate/xanthan gum
hydrogel bioink system for extrusion bioprinting [361]. Xanthan improved the viscosity of
the hydrogel system and allowed easy extrusion at room temperature and demonstrated
solubility in ionic solutions such as cell culture medium, which is essential for biocom-
patibility. They have also developed an automated active mixing platform which allows
for the high-quality preparation of hydrogel bioinks [362]. The use of BC and xanthan as
bioinks for 3D printing has tremendous potential in tissue engineering and wound dress-
ings [264,265,328,363–365]. Recently, Unalan et al. (2023) and Liang et al. (2023) prepared
(3D)-printed hydrogels with xanthan for burn wound healing [264,265]. Cakmak et al.
developed a 3D-printed BC/polycaprolactone/gelatin/hydroxyapatite composite scaffold
for bone tissue engineering [364]. Aki et al. also developed a 3D-printed PVA/hexagonal
boron nitride/bacterial cellulose composite scaffold for bone tissue engineering [365].

5. Conclusions and Further Prospects

The present review summarizes strategies for the cost-effective production of impor-
tant industrial exopolysaccharides such as xanthan and BC and demonstrates for the first
time common approaches to their efficient production and to obtaining new functional
materials for a wide range of applications, including wound healing, drug delivery, tissue
engineering, environmental remediation, nanoelectronics, and 3D printing. Xanthan and
BC are eco-friendly biopolymers with unique beneficial properties, such as biodegradability,
biocompatibility, non-toxicity, a high degree of polymerization, the ability for gelation,
renewable sourcing, and easy modification. Therefore, they have extensive commercial
applications in biomedicine, food, pharmaceuticals, cosmetics, electronics, environmental
remediation, the oil and gas industries, etc. The global xanthan market is developing
rapidly due to applications in the food and agrochemical industries, cosmetics, driller fluid,
and foam stabilizer segments. In addition, in recent years, the range of its application has
expanded significantly, including biomedicine, environmental remediation, nanoelectron-
ics, and 3D printing. Over the past few decades, BC production has also exponentially
increased. The high cost of fermentation media is the limiting factor for BC and xanthan
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production. About 30% of the total cost accounts for the nutrient medium cost. Cost being
a limiting factor in EPS production, many research investigations have been launched to
use industrial wastes and by-products such as food and agro-industrial wastes, wastes
from the sugar, dairy, alcohol, and biodiesel industries, and ABE fermentation. Statisti-
cal methods have been applied systematically to optimize xanthan and BC production
parameters. Another strategy for efficient EPS production can be the co-cultivation of
EPS-producing bacteria. Some publications specified the positive effect of the co-cultivation
of EPS-producing bacteria on product yield. Biocatalytic techniques are promising for
obtaining bacterial EPSs. Carbohydrate substrate conversion into a biopolymer can be
improved by the activity of the enzymes involved in the synthesis and regulation of the
pathways for EPS precursor biosynthesis. Cell immobilization can significantly improve
the productivity and stability of biocatalysts. In recent years, valuable information has
emerged on QS mechanisms in EPS biosynthesis. This area requires further study in terms
of application for more efficient EPS production. Cell-free systems for EPS biosynthesis
also show great development prospects. The cell-free systems may be a possible solution to
the limitations faced by traditional EPS production, such as low yield and productivity, the
production of byproducts and secondary metabolites, and high downstream processing
costs. Another strategy for xanthan and BC cost-effective production is to isolate new
bacterial strains from natural sources and create highly productive strains by genetic and
metabolic engineering. With the help of genetic engineering, new strains with modified or
introduced enzymatic activity can be created, which can expand the range of inexpensive
substrates available for production and increase the degree of their transformation into
EPSs. A growing number of studies is focused on the mechanisms involved in BC and
xanthan biosynthesis, metabolic modeling, and genetic analysis applied to enable the im-
provement of its production on a large scale. Using genetic engineering for EPS production
is a promising alternative to improve production on an industrial scale. However, it should
be noted that despite numerous studies aimed at creating productive strains, none of them
has so far led to the development of mutant strains which comply with the requirements of
large-scale biotechnological production. Bacterial EPSs are characterized by a large num-
ber of functional groups which enable them to modify their molecules to give them new
valuable properties. Therefore, a great number of EPS-based biocomposite materials have
been obtained. The already-developed methodological approaches and the accumulated
data on their modification will enable the creation of an even greater number of different
functional materials with a wide range of applications in the future.

In conclusion, we would like to note that in our opinion, an integrated approach
is required to further improve BC and xanthan production, taking into account all the
strategies described in the review. Particular attention should be paid to genetic and
metabolic engineering in order to obtain highly productive strains meeting the requirements
of large-scale biotechnological production. Further research in the field of biocatalytic
technologies and a deeper understanding of QS mechanisms in EPS biosynthesis are needed
to produce BC and xanthan in the future. When solving the problems, there must be a clear
understanding of the relationship between EPS production processes, their properties, and
their possible uses for the targeted production of materials with specified properties.
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