
Citation: Schimmel, S.; El Sayed, B.;

Lockard, G.; Gordon, J.; Young, I.;

D’Egidio, F.; Lee, J.Y.; Rodriguez, T.;

Borlongan, C.V. Identifying the

Target Traumatic Brain Injury

Population for Hyperbaric Oxygen

Therapy. Int. J. Mol. Sci. 2023, 24,

14612. https://doi.org/10.3390/

ijms241914612

Academic Editor: Giuseppe

Lazzarino

Received: 31 August 2023

Revised: 25 September 2023

Accepted: 26 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Identifying the Target Traumatic Brain Injury Population for
Hyperbaric Oxygen Therapy
Samantha Schimmel 1, Bassel El Sayed 1, Gavin Lockard 1 , Jonah Gordon 1 , Isabella Young 2 ,
Francesco D’Egidio 3 , Jea Young Lee 3 , Thomas Rodriguez 4 and Cesar V. Borlongan 3,*

1 Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA;
samanthaschimmel@usf.edu (S.S.); belsayed@usf.edu (B.E.S.); gavinlockard@usf.edu (G.L.);
jonahgordon@usf.edu (J.G.)

2 University of Arkansas, Fayetteville, AR 72701, USA; iyoung00@icloud.com
3 Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani

College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA;
francescodegidio@usf.edu (F.D.); jeayoung@usf.edu (J.Y.L.)

4 School of Medicine, Loma Linda University, 11175 Campus St., Loma Linda, CA 92350, USA;
trodriguez862@gmail.com

* Correspondence: cborlong@usf.edu

Abstract: Traumatic brain injury (TBI) results from direct penetrating and indirect non-penetrating
forces that alters brain functions, affecting millions of individuals annually. Primary injury following
TBI is exacerbated by secondary brain injury; foremost is the deleterious inflammatory response. One
therapeutic intervention being increasingly explored for TBI is hyperbaric oxygen therapy (HBOT),
which is already approved clinically for treating open wounds. HBOT consists of 100% oxygen
administration, usually between 1.5 and 3 atm and has been found to increase brain oxygenation
levels after hypoxia in addition to decreasing levels of inflammation, apoptosis, intracranial pressure,
and edema, reducing subsequent secondary injury. The following review examines recent preclinical
and clinical studies on HBOT in the context of TBI with a focus on contributing mechanisms and
clinical potential. Several preclinical studies have identified pathways, such as TLR4/NF-kB, that are
affected by HBOT and contribute to its therapeutic effect. Thus far, the mechanisms mediating HBOT
treatment have yet to be fully elucidated and are of interest to researchers. Nonetheless, multiple
clinical studies presented in this review have examined the safety of HBOT and demonstrated
the improved neurological function of TBI patients after HBOT, deeming it a promising avenue
for treatment.

Keywords: traumatic brain injury; chronic impairments; hyperbaric oxygen therapy

1. Introduction to TBI

Traumatic brain injury (TBI) may involve direct penetrating and indirect non-penetrating
force to the head [1–3]. While direct penetrating TBI consists of a direct mechanical blow
to the head, indirect non-penetrating TBI occurs when an external force, not necessarily
acting directly on the head, is partly absorbed by the brain because of sudden acceleration–
deceleration phenomena, such as in blast shock waves, high-speed car collisions, concus-
sions, among others [1–3]. In addition to this primary penetrating and non-penetrating
brain injury, TBI triggers secondary brain injury comprising a constellation of pathologies,
including focal intracranial hemorrhages and cerebral edema, which may exacerbate the
primary brain injury [4,5]. Accordingly, when a patient requires neurocritical care after a
TBI, both primary and secondary brain injuries should be given utmost consideration [4].
As defined above, the primary brain injury may involve either direct penetrating or indirect
non-penetrating forces that occur at the time of the traumatic impact on the brain tissue [1–3].
These forces and the injury they cause to the brain tissue initiate a cascade of cell death
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events, altogether referred to as secondary brain injury, over time. The impact of secondary
brain injury caused by dysautoregulation of brain vessels and blood–brain barrier (BBB)
disruption may magnify the primary brain injury, culminating in the development of brain
edema, elevated intracranial pressure, and finally, reduced cerebral perfusion pressure [5,6].
Both primary and secondary brain injury processes are accompanied by many clinical
factors, such as the depolarization and disturbance of ionic homeostasis, neurotransmitter
release (e.g., glutamate excitotoxicity), mitochondrial dysfunction, neuronal apoptosis, lipid
degradation, and the initiation of inflammatory and immune responses [5,6]. This extremely
complex nature of primary and secondary brain injury mechanisms makes it difficult to
simply and clearly differentiate between these pathological factors in patients with TBI [7,8].
The clinical presentation of TBI varies greatly, but common symptoms include altered mental
status, headache, nausea, vomiting, and even focal deficits such as hemiparesis (paralysis
affecting one side of the body), decreased sensation, and cranial nerve dysfunction. Follow-
ing a primary survey (airway, breathing, circulation), patients should have their severity
categorized utilizing the Glasgow Coma Scale (GCS) [6,7], which assesses brain function by
examining the eyes, speech, and motor. A mild TBI is a GCS 13–15; moderate TBI 9–12; and
a severe TBI ≤ 8, which typically indicates the need for endotracheal intubation.

Though imaging is important in diagnostics, neuroprotective measures should be
pursued foremost to avoid secondary brain injuries such as blood brain barrier (BBB) disrup-
tion, including actively managing blood oxygen and carbon dioxide, glucose, temperature,
and blood pressure. The prognosis of these patients depends on the initial severity. Some
80–90% of patients with mild TBIs experience complete recovery within 2 weeks, though
post-concussion syndrome can result in lingering symptoms [8]. Some 90% of patients with
moderate TBIs improve, but 44% continue to suffer from moderate disability. Unfortunately,
10% decline to severe TBI [9]. Those with severe TBIs face up to 35% mortality rate, though
this rate decreases with early transfer to neurocritical units [10]. Ultimately, TBIs present
with a constellation of symptoms deriving from various etiologies, and prognoses range
from recovery, chronic symptoms affecting quality of life, and up to death.

2. HBOT in the Setting of Brain Injury

Hyperbaric oxygen therapy (HBOT) is defined as the administration of 100% oxygen
at a pressure above 1 ATM and is being increasingly utilized in the treatment of several
medical conditions. The central mechanism of HBOT revolves around enhanced oxygen
delivery to tissues, thereby increasing the production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and, in turn, leading to diminished inflammatory
responses, improved neovascularization, increased wound growth factor synthesis, and
enhanced antibacterial effects [11,12]. In the context of TBI, HBOT has a theoretical role
in improving the hypoxia causing secondary brain injury; with insufficient oxygenation,
metabolic homeostasis is lost within neurons leading to the accumulation of free oxygen
radicals and membrane degradation [13]. Research into the applications of HBOT in
TBI dates back to the 1960s, when Coe and Hayes reported neuroprotective effects in
rats subjected to experimental brain injury [14]. Subsequent studies have since found
benefits related to a reduction in cerebral edema, intracranial pressure (ICP), apoptosis,
and inflammation while increasing brain tissue pO2, cerebral glucose utilization, vascular
density, and synaptic remodeling, each of which has effects on improved functional and
cognitive outcomes [14–28].

Research has also centered on the potential therapeutic time window of HBOT follow-
ing TBI and suggests a role in both the acute and chronic setting. Within 24 h of injury, HBOT
appears to promote neuroprotection through the regulation of mitochondrial permeability
and reduction of neuroinflammation [18,19]. Further, multiple sessions administered up to
48 h following injury, rather than a single session, significantly reduce acquired neurological
deficits [29]. Other studies have demonstrated that repetitive long-term HBOT improves
motor function recovery in rat models, and even when initiated at 50 days following injury
enhances hippocampal recovery and overall cognitive function [23,26]. Pre-clinical work
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has also begun to demonstrate translational applicability to clinical medicine. Two Phase I
trials found sustained improvement in intracranial pressure after HBOT in both comatose
and non-comatose samples, with improvement in awareness and motor activity in the
trial involving comatose patients [30,31]. Phase II trials have yielded less clear results,
with some studies reporting improved Glasgow Outcome Scale (GOS) scores, length of
hospital stay, behavior, disability rates, and mortality rates [32–35], while another found no
significant difference in GOS scores [36]. However, even without an improvement in GOS
scores, this particular study still reported a 50% relative reduction in mortality [36]. The
overall evidence for HBOT remains compelling despite previous inconsistent clinical find-
ings, and thus research continues into the potential role of enhancing oxygen delivery for
improvement in metabolic function and intracranial hypertension following TBI (Table 1).
A comprehensive review of pertinent military-funded clinical trials is detailed in Table 2.

Table 1. Clinical and pre-clinical trials evaluating HBOT in TBI patients. Most of the clinical trials
utilized 1.5 ATM for 40 HBOT sessions (“dives”) and determined that while HBOT is safe for patients
with mild, moderate, and severe TBI, it is only effective in moderate to severe TBI patients. In
contrast, a few preclinical studies utilized 1.5 ATM and applied fewer dives to each TBI patient. These
preclinical studies deemed HBOT as safe and effective in mild, moderate, and severe TBI patients
and postulated that HBOT exerts its effects by modulating inflammation creating an anti-oxidative
environment, repairing mitochondria, and stimulating stem cell proliferation.

Clinical and Pre-Clinical Studies on HBOT

Clinical Studies Preclinical Studies

1.5 atms, 40 dives 1.5 atms, few dives

Safe: Mild, Moderate, Severe TBI Safe: Mild, Moderate, Severe TBI

Effective: Moderate-Severe TBI only Effective: Mild, Moderate, Severe TBI

Mechanisms:
Anti-inflammation

Anti-oxidative stress
Mitochondrial repair

Stem cell proliferation
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Table 2. Current Clinical Studies on HBOT in TBI Populations. This table summarizes clinical trials investigating the use of HBOT in various TBI populations.
TBI = traumatic brain injury, HBOT = hyperbaric oxygen therapy, PI = principal investigator, PPCS = persistent post-concussion syndrome, HBO2T = hyperbaric
oxygen therapy, PCS = post-concussive symptoms, mTBI = mild traumatic brain injury, SPECT = single-photon emission computed tomography, HBO2 = hyperbaric
oxygen therapy, MRI = magnetic resonance imaging, DTI = diffusion tensor imaging.

Trial Status Trial Details (PI,
Main Country) Population Primary Outcome Primary Outcome

Measurement Primary Results Treatment

The Role of
Hyperbaric Oxygen
and Neuropsycho-
logical Therapy in

Cognitive Function
Following TBI

Terminated
Dr. Tsang-Tang

Hsieh,
Taiwan

Mild and moderate
TBI

Neuropsychological
function

Neuropsychological
evaluation

Terminated due to
the COVID-19

pandemic
30 HBOT sessions,

60 min each

HBOT to Treat Mild
TBI/PPCS Completed

Dr. Paul G. Harch,
United States of

America
Mild TBI

Working memory
Neurobehavioral

symptoms

Neuropsychological
evaluation

Neuro-behavioral
symptom inventory

HBOT group showed
persistent

improvement in
outcomes [37]

40 HBOT sessions,
45 min each

HBO2T for PCS
After mTBI Completed

Dr. David X. Cifu &
Dr. Brett Hart,

United States of
America

Mild TBI Post-concussive
symptoms

Symptom
assessment Battery
for post-concussive

symptoms

There was no
significant difference
in PCS between the

sham and HBOT
groups [38–43]

40 HBOT sessions,
60 min each

Hyperbaric
Treatment of TBI Completed

Dr. Barry Miskin,
United States of

America

All TBI stages with
loss of

consciousness
Cerebral blood flow

Single-photon
emission

Computerized
tomography

(SPECT) imaging

Missing
120 HBOT

sessions, 60 min
each

Hyperbaric Oxygen
for Traumatic and

Non-Traumatic
Brain Injury

Completed
Dr. Lindell K.

Weaver, United
States of America

Symptomatic brain
injury

Neurobehavioral
symptoms

Reported
symptoms

HBOT was associated
with improved sleep
quality, PCS, PTSD,

and cognition but not
eye movements

[44–46]

40 HBOT sessions,
60 min each
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Table 2. Cont.

Trial Status Trial Details (PI,
Main Country) Population Primary Outcome Primary Outcome

Measurement Primary Results Treatment

Hyperbaric Oxygen
Therapy and SPECT

Brain Imaging in
TBI

Unknown
Dr. Paul G. Harch,
United States of

America
All TBI stages Cerebral blood flow SPECT imaging Missing HBOT sessions

Hyperbaric Oxygen
Brain Injury

Treatment Trial
(HOBIT)

Recruiting

Dr. Gaylan L
Rockswold, Dr.

William Barsan, Dr.
Byron Gajewski, Dr.
Frederick K. Korley,

United States of
America

Severe TBI Consciousness Glasgow Outcome
Scale extended Actively recruiting

Up to 10 HBOT
sessions,

60 min each

HBO2 for Persistent
Post-concussive
Symptoms after
mTBI (HOPPS)

Completed
Dr. Scott Miller,
United States of

America
Mild TBI Post-concussive

symptoms

Rivermead
post-concussion

symptom
questionnaire

HBO2 did not
produce a benefit in

PCS and was not
related to serious

adverse events
[47–49]

40 HBOT sessions,
60 min each

Comparison
Between Different
Types of Oxygen

Treatment
Following TBI

Completed
Dr. Gary L.

Rockswold, United
States of America

Mild or moderate
brain injury with

acute deterioration

Cerebral metabolic
rate of oxygen

(CMRO2)
Microdialysis

lactate
Brain tissue oxygen

(PtO2)
Intracranial

pressure (ICP)

Missing Missing HBOT

The Effect of HBOT
on Patients

Suffering From
Neurologic

Deficiency Due to
TBI

Completed Missing, Israel Mild TBI Neurological
function

Neurocognitive
assessment Missing 40 HBOT sessions,

60 min each

Treatment of TBI
with HBOT Completed

Dr. Leonardo C.
Profenna, United
States of America

Mild to moderate
TBI

Cognitive function
PTSD symptoms

Neurocognitive
assessment

PTSD checklist

HBO2 did not
produce a benefit in

PCS and was not
related to serious

adverse events
[43,50]

30 HBOT sessions,
3 30-min m
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Table 2. Cont.

Trial Status Trial Details (PI,
Main Country) Population Primary Outcome Primary Outcome

Measurement Primary Results Treatment

Cognitive Profile of
Patients at the Sagol

Center for
Hyperbaric

Medicine and
Research

Active, Not
Recruiting Missing, Israel

Chronic brain
injury or cognitive

impairment
Cognitive function Neurocognitive

assessment Active study
40–60 HBOT

sessions, 90 min
each

HBOT in Chronic
TBI/PCS and

TBI/PTSD
Completed

Dr. Paul G. Harch,
United States of

America
Mild to moderate

TBI Cognitive function Psychometric
testing

HBO2 had
improved cognitive

function when
compared to sham

[51]

40 or 80 HBOT
sessions, 60 min

each

HBOT Effect on
PCS in Children

(TBIPED)
Terminated Missing, Israel Mild TBI Cognitive function

Neurocognitive
assessment

(Neurotrax battery
test)

Terminated due to
recruitment issues
(refusal to undergo

sham controlled)

60 HBOT sessions,
60 min each

The Effects of
Hyperbaric Oxygen
on Non-Acute TBI

Recruiting Dr. Bing Xiong,
China

Moderate and
severe TBI

Consciousness
Cognitive

impairment

Glasgow Outcome
Scale

Disability rating
scale

Actively recruiting Missing

The Biomarkers in
the Hyperbaric
Oxygen Brain

Injury Treatment
Trial (BIOHOBIT)

Recruiting
Dr. Frederick

Korley, United
States of America

Severe TBI Neurological status Glasgow Outcome
Scale Actively recruiting Missing

Test of Chamber
Pressure on Divers

and Chamber
Attendants

(TOP-DIVER)

Completed
Dr. Lindell K.

Weaver, United
States of America

Scuba divers
Perception of depth

Perception of
breathing gas

Questionnaires

Experienced divers
are unable to
differentiate

between 1.2 and 1.5
atm [52]

Missing

MRI Brain Changes
Induced by HBOT

in Brain Injury
Patients

Unknown Missing, Israel Chronic TBI
Cerebral perfusion

White matter
microstructure

Perfusion MRI
DTI Missing Missing
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Table 2. Cont.

Trial Status Trial Details (PI,
Main Country) Population Primary Outcome Primary Outcome

Measurement Primary Results Treatment

Hyperbaric Oxygen
Effects on Persistent

Post-Concussive
Symptoms

(HOINPCS)

Recruiting

Dr. Olayinka D.
Ajayi, Dr. Marc
Basson, United

States of America

Mild TBI Neuropsychological
function

Neuropsychological
assessment Actively recruiting 40 HBOT sessions,

60 min each

HBOT in Chronic
TBI or PTSD
(NBIRR-1)

Terminated
Dr. Robert

Mozayeni, United
States of America

Mild to moderate
TBI Cognitive function Missing

Terminated due to
new regulatory
requirements

Missing

mTBI Mechanisms
of Action of HBO2

for Persistent
Post-Concussive

Symptoms (BIMA)

Completed
Dr. Lindell Weaver,

United States of
America

Mild TBI Adverse events Safety evaluations

HBOT was not
associated with
serious adverse

effects
[45,47,49,53–61]

40 HBOT sessions

Normative Datasets
for Assessments
Planned for Mild
Traumatic Brain

Injury (NORMAL)

Completed
Dr. Robert C. Price,

United States of
America

Mild TBI Neuropsychological
function

Neuropsychological
assessments Missing Missing

Hyperbaric Oxygen
Treatment to Treat

mTBI/PPCS
Unknown

Dr. Paul G. Harch,
United States of

America
Mild TBI

Neuropsychological
function

Neurobehavioral
symptoms

Missing Missing 40 HBOT sessions,
45 min each

HBOT for PCS Unknown Dr. David W.
Harrison, Canada PCS Post-concussion

symptoms
Post-concussion

symptoms
questionnaire

Missing
Missing number

of sessions, 90
min each

Hyperbaric Oxygen
Therapy for

Post-Concussion
Syndrome

Recruiting
Dr. Shanti Pino,
United States of

America
Mild TBI Post-concussion

symptoms
Post-concussion

symptoms
questionnaire

Actively recruiting 20 HBOT sessions,
90 min each

HBO2 for
Post-concussive
Symptoms after
mTBI (HOPPS)

Completed
Dr. Scott Miller,
United States of

America
Mild TBI Post-concussion

symptoms
Post-concussion

symptoms
questionnaire

PCS between HBO2
and sham did not
significantly differ

[47–49]

40 HBOT sessions,
60 min each
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3. Chronic Impairments in TBI Populations

When evaluating whether HBOT is indicated for TBI, one must note the heterogeneity
underlying such brain injuries. As mentioned above, clinicians and scientists classify TBI as
either mild (mTBI), moderate, or severe. mTBI accounts for the vast majority of TBIs, with
an estimated 80–90% of brain injuries fitting this classification [62,63]. Typically, mTBI has
been viewed as an acute injury, with most neurocognitive and behavioral deficits resolving
within days to weeks [64]. This is in contrast to moderate and severe TBIs, which are known
to cause progressive morbidity and mortality in the estimated 500 out of 10,000 Americans
who suffer from them annually [62]. While the exact deficits vary based on the mechanism
of injury and individual characteristics, many patients report neurocognitive dysfunction,
prolonged fatigue, and psychiatric disturbances, including but not limited to impulsivity,
irritability, and depression [62,65]. Recent evidence indicates that those with mTBI may also
experience subtle chronic symptoms, including impaired executive functioning, somatic
dysfunction, and personality changes [64,66]. Such changes following mTBI are referred
to as persistent post-concussion symptoms (PPCS) and are likely under-reported [66,67].
Furthermore, certain TBI etiologies may impart a greater risk of prolonged symptoms.
Veterans are especially susceptible to TBI and PPCS, with an estimated 12–20% of those who
fought in Iraq and/or Afghanistan experiencing one or more mTBI [64]. In an autopsy study
on U.S. military veterans with a history of blast-related TBI, Goldstein et al. found that those
suffering from blast-induced TBI had the morphological characteristics of chronic traumatic
encephalopathy (CTE), a progressive brain disorder characterized by neuroinflammation,
microvascular injury, neurodegeneration, and concurrent clinical symptoms [68]. Given
the clinical and societal burden of PPCS and CTE, identifying those at risk remains an
important step in improving patient outcomes.

While the pathophysiology underlying TBI has yet to be fully elucidated, those who
suffer from TBI experience both primary and secondary neurological injury. The primary
injury refers to the initial TBI causing insult and results in diffuse irreversible damage to
neurons, glia, and the cerebral vasculature [69]. Secondary injury refers to the subsequent
biochemical and cellular changes and can last for years [70]. The hallmarks of secondary
injury include altered neuronal and glial morphology, excitotoxicity, neuroinflammation,
demyelination, and oxidative stress, all of which may serve as future targets for improving
post-TBI symptoms and functioning [71,72]. Neuroinflammation in particular may repre-
sent a targetable process, as the influx of monocytes and other inflammatory cells into areas
of damage has been well established. Animal studies have shown that blocking the infiltra-
tion of these inflammatory cells results in a marked reduction in both neurodegeneration
and cognitive deficits [73,74]. Another pathophysiology of secondary injury following TBI
relates to dysregulated cerebral blood flow (CBF) [69]. Given the high metabolic demands of
neural tissue, even slightly dysregulated CBF can result in hypoxic changes that trigger cell
death cascades [75]. While further research into the exact mechanisms underlying HBOT in
TBI is warranted, the aforementioned ability of HBOT to attenuate both neuroinflammation
and hypoxia makes it promising in the reduction of chronic neuropathology.

4. HBOT Mechanism of Action

Regarding the mechanism of action underlying HBOT, studies have shown reduced
levels of edema, inflammation, and apoptosis along with increased levels of angiogenesis
and neurogenesis after HBOT [71]. While the mechanisms mediating these effects are
not fully understood, several studies have identified potential pathways. Specifically, the
therapeutic effects of HBOT have been found to be mediated by increased growth factor
synthesis, stem cell mobilization, attenuated monocyte chemokine production, neutrophil
β-actin 5-nitrosylation, and changes in inflammatory markers, which overall lead to neo-
vascularization and improved tissue survival [11,76,77]. Changes in oxygen transport
and metabolism have also been implicated as mechanistically underlying HBOT. Recently,
Li et al. conducted a proteomic analysis on HBOT in rats with spinal cord injuries and
identified an upregulation in proteins involved in oxygen transport and binding [77]. Given
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that hypoxia is a key mediator of secondary injury in TBI, modulating oxygen transport
may prove beneficial in TBI patients.

In the context of traumatic brain injury, an important therapeutic mechanism of interest
is the inhibition of chronic neuroinflammation pathways. Chronic TBI, in which inflam-
mation closely accompanies secondary brain injury, has been targeted by many potential
therapeutics with an overall goal of preventing the further deficits and neurodegenerative
processes [78,79]. Meng et al. found that in rats with post-trauma secondary brain injury,
HBOT inhibits toll-like receptor (TLR)-4/nuclear factor kappa B (NF-kB) signaling and
reduces the levels of multiple inflammatory and apoptotic markers including caspase-3, tu-
mor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β with overall reduced apoptosis
and improved neurological functions [80]. Similarly, microglia contribute to the progression
of secondary injury by producing inflammatory cytokines [81]. Lim et al. demonstrated
a therapeutic anti-inflammatory effect of HBOT in rats 1 h and 8 h post-TBI. Specifically,
they observed reduced microgliosis, neuronal apoptosis, and levels of TNF-α [82]. While
these and other studies have shown that HBOT has therapeutic utility post-TBI, several
studies have demonstrated a prophylactic potential of HBOT. Yang et al. demonstrated
that HBOT preconditioning before ischemia attenuates inflammation by downregulating
both allograft inflammatory factor (IBA)-1-positive microglia and levels of TNF-α [83].
Likewise, Lippert and Borlongan demonstrated that exposing rat neuronal cells to HBOT
prior to the injection of TNF-a and lipopolysaccharide, both of which trigger a TBI-like
inflammatory cascade, is cytoprotective. Specifically, cells pre-treated with HBOT had
increased viability and higher levels of mitochondrial transfer from astrocytes [78]. Such
an increased mitochondrial transfer may relate to the anti-inflammatory, anti-oxidative
stress, and pro-stem cell proliferative effects of HBOT, though further prospective studies
are warranted. These studies demonstrate both the therapeutic and prophylactic potential
of HBOT for attenuating TBI-related brain injury (Table 2).

5. Probing the Mechanisms Mediating HBOT via Biomolecular Assays
5.1. Inflammation (GFAP and UCH-L1)

Accumulating studies on TBI have shown sensitive biomarkers to determine the
severity of the disease. Foremost are inflammatory biomarkers such as GFAP and UCH-
L1 [84,85], which can be assayed in blood samples from TBI patients. For each sample draw,
a single vial of approximately 2 mL of blood is collected and placed in serum separator
tubes allowing it to clot at room temperature. The blood is then centrifuged for 30 min,
the serum is placed in bar-coded aliquot containers, and stored in a freezer at −70 ◦C
during its transportation to a central laboratory. There, the samples are analyzed in batches
using sandwich enzyme-linked immunosorbent assays (ELISA) to GFAP [86–89] and UCH-
L1 [90–92] (Abcam). Lab personnel running the samples stay blind to the clinical data.
The necessary reagents, working standards, and samples are prepared and equilibrated
at room temperature (18–25 ◦C) prior to use. Firstly, the wash buffer 1× by is diluted
with 10× with deionized water. The antibody cocktail is mixed with the 10× capture
and 10× detector antibodies with the antibody diluent keeping the dilution ratio of 1:1:8.
Then, a fresh set of standards is prepared, assuring duplicate measurements for statistical
reasons. The stock standard solution at 400 ng/mL is reconstituted with sample diluent
and then prepared with an 8-point dilution series with the standard #8 as the blank control.
Regarding samples, the cell culture supernatants are collected and centrifuged at 2000× g
for 10 min to remove debris [93–95]. A 96-well plate is prepared with ready-to-use strips.
For each assay performed, a minimum of two wells represents the zero control. A total of
50 µL of all samples or standards is added to appropriate wells. Subsequently, 50 µL of the
antibody cocktail is added to each well. The loaded plate is placed on a plate shaker set to
400 rpm for 1 h of incubation at room temperature. At the end of the incubation period,
three washes with 1× wash buffer into each well are performed, keeping the buffer for at
least 10 s in the wells. After the last wash, an incubation of 10 min in the dark with 100 µL
per each well of development solution occurs, setting the plate on the shaker at 400 rpm.
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The reaction is interrupted by the addition of 100 µL per well of stop solution. After 1 min
on a plate shaker, the optical density at 450 nm is recorded in a plate reader as an endpoint
reading [96].

5.2. Oxidative Stress (s100B, MBP, and NF-L)

In tandem with inflammatory biomarkers, a bulk of laboratory and clinical studies
has also explored oxidative stress biomarkers such as s100B, MBP, and NF-L [97–99]. We
also propose to obtain blood samples from TBI patients. For each sample drawn, a single
vial of approximately 3 mL of blood is placed in serum separator tubes allowing it to clot at
room temperature. The blood is centrifuged for 30 min, then the serum is placed in bar-
coded aliquot containers, and stored in a freezer at −70 ◦C for transportation to a central
laboratory. Thereafter, the samples are analyzed in batches using sandwich enzyme-linked
immunosorbent assays (ELISA) to s100B [100–102], MBP [103–105] and NF–L [106–108]
(R&D Systems). All reagents are prepared at room temperature. The capture antibody,
biotinylated detection antibody and streptavidin conjugated to horseradish-peroxidase
(Streptavidin-HRP B) are next processed following the working concentration specified on
the vial label. In particular, the biotinylated detection antibody is diluted with 10 mL of
reagent diluent. Then, Streptavidin-HRP B and biotinylated detection antibody are diluted
with reagent diluent. The capture antibody is reconstituted with 0.5 mL of PBS and then
diluted in PBS without a carrier protein. Subsequently, a seven-point standard curve is
prepared using twofold serial dilutions in a reagent diluent. Each vial is reconstituted using
standards with 0.5 mL of deionized water. Each plate assayed requires a total of 1000 µL of
a high standard. All working dilutions are next prepared at the time of the assay. For the
preparation of the assayed 96-wells microplate, the plate is coated with 100 µL per well
of the diluted capture antibody. The coated microplate is sealed and incubated overnight
at room temperature. After incubation, three washes are performed for each well using a
squirt bottle and assuring the complete removal of the liquid at each step [109]. As the last
wash occurs, any remaining wash buffer is removed by inverting the plate and blotting it
against clean paper towels. The washed microplate will be blocked by non-specific sites by
adding 300 µL of blocking buffer to each well. Then, the plate is incubated for a minimum
of 1 h at room temperature. At the end of the incubation, three washes are performed
assuring the complete removal of liquid at each step. Once the assayed microplate has
its coating and blocking, it will be ready to receive samples and standards. A quantity of
100 µL of samples or standards is then added to the respective wells; the microplate is then
sealed with an adhesive strip and incubated for 2 h at room temperature. After incubation,
the samples and standards are processed with the microplate washes as described before,
with at least three washes in the wash buffer. A quantity of 100 µL of diluted biotinylated
detection antibody is added to each well. Again, the plate is sealed and incubated for 2 h at
room temperature. After that, the biotinylated detection antibody is removed, and the plate
is washed as described above. Next, 100 µL of diluted Streptavidin-HRP B are added to
each well and the plate is incubated for 20 min at room temperature, while avoiding placing
the plate in direct light. After three washes, 100 µL of the substrate solution are added to
each well, then incubated for 20 min at room temperature, while avoiding exposure of the
plate to direct light. The reaction is then interrupted and processed for the recording of the
optical density immediately with a microplate reader set to 450 nm [110,111].

5.3. Mitochondria Activity (Seahorse)

Recent reports on TBI biomarker development have also highlighted the implication
of mitochondrial activity in detecting disease onset and progression [112,113]. In particular,
TBI patients have been shown to display altered circulating cell energy metabolism and
respiration [112,113]. On the day of experiments, blood pellet or cells are detached from
cell culture plates and seeded to a Seahorse 96-well plate (101085-004; Agilent, Santa Clara,
CA, USA) [114,115]. The centrifugation method will immobilize the samples. Briefly, the
Seahorse 96-well plate is centrifuged in a swing bucket rotator with slow acceleration (4 on
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a scale of 9) to a max speed of 450 rpm with 0 brake, and then the plate orientation reversed
and centrifuged again to a max speed of 650 rpm with 0 brake. To determine the cellular
oxygen consumption rate (OCR), we propose to use the Seahorse extracellular flux analyzer
XFe96 (102416; Agilent) in combination with sequential injection of various compounds
(1 µmol/L oligomycin, 1 µmol/L carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
(FCCP), and 0.5 µmol/L Rotenone and Antimycin A) [112,116]. The measurements of
bioenergetics in platelets are performed using a Seahorse XFe96 Flux Analyzer (Agilent
Technologies, Santa Clara, CA, USA). The OCR is measured in the presence of substrates,
inhibitors, and uncouplers related to OXPHOS as modified from previously described
methods [117,118]. The day before the planned experiment, the sensor cartridge of the
extracellular flux kit is filled with 200 µL deionized water, kept at 37 ◦C overnight. At least
30 min prior to use, the water is removed, the plate filled with 200 µL XF calibrant solution,
and the plate placed back at 37 ◦C. The loading of the injection ports, A to D of the sensor
cartridge, separately or in combinations of substrates/inhibitors/uncouplers will allow
measurement of different states of respiration. Before loading, the stocks are diluted in
buffer such that after each sequential injection, the final concentration of the modulators is
5 mM pyruvate, 2.5 mM malate, and 10 mM succinate (via Port A), 5 µM oligomycin A (via
Port B), 4 µM FCCP (via Port C), and 1 µM antimycin A (via Port D). Loading proceeds
with either 10 or 30 µg total platelet protein (approximately 1 × 107 or 3 × 107 platelets) per
well on a Seahorse XFe96 assay plate in a total volume of 30 µL (platelet sample plus buffer).
The assay plates are next centrifuged at 2100× g for 4 min at RT. After that, a pre-warmed
buffer is added to bring the starting volume to 175 µL. After the calibration step, the utility
plate is placed onto the assay plate carrying platelet samples. The Seahorse Standard XFe96
flux assay plates are used for platelet analysis. The OCR and extra-cellular acidification
rate (ECAR) are recorded in the absence or the presence of various substrates/inhibitors
added from port A to port D [119]. Then, the measurements on intact (non-permeabilized)
platelets are performed via basal readings in the presence of glucose in the buffer. The
OXPHOS, LEAK, MAX, and non-mitochondrial oxygen consumption respiration rates are
recorded depending on subsequent port injections. Basal glycolysis will reveal ECAR in the
presence of glucose without substrate addition. Maximum glycolysis will reveal ECAR after
the addition of oligomycin according to the injection paradigm [120]. The platelet coupling
efficiency is calculated using OXPHOS/LEAK, while the glycolytic reserve capacity is
analyzed by Max glycolysis-Basal glycolysis [121,122].

5.4. Stem Cell Proliferation (Flow Cytometry for Oct4, Nanog, and SSEA)

The most recent addition to TBI biomarker development involves characterizing cir-
culating stem cells using proliferation markers such as Oct4, Nanog, and SSEA [123,124],
which are established stem cell specific protein and gene markers [125]. The immunostain-
ing of cells is performed using manufacturers’ recommended antibody dilution in staining
buffer containing Hank’s balanced salt solution (Invitrogen, Carlsbad, CA, USA), 10%
fetal bovine serum (Invitrogen) and 10 mM Hepes (Invitrogen). Flow cytometry sorting is
conducted on FACS Aria II (BD Biosciences, Billerica, MA, USA) [126,127]. Cell sorting at
clonal cell densities is carried out by sorting cells directly into 96-well plates. Briefly, the
purified cells are prepared in a suitable isotonic neutrally buffered staining buffer in order
to cushion damages during centrifugation, avoid non-specific staining, prevent capping
of the bound antibody, and the block of Fc receptor binding. The concentration of the cell
suspension will need to be of 5 × 105 cells/mL, assuring by vital count a viability of more
than 90%. The cells are then fixed and permeabilized in fix/perm buffer. For staining in
microtiter plates, the plate is spun for 3 min at 100× g at 8 ◦C. Then, the plate is processed
to resuspend the pellet immediately in 100 µL of primary antibodies for OCT4, Nanog, and
SSEA markers diluted with the staining buffer [128–130]. The plate is then incubated for
30 min at 4 ◦C with the primary antibodies. At the end of the incubation period, the plate
is washed three times in perm/wash buffer. After washing, the plate is immediately filled
with 100 µL per well of secondary antibodies AlexaFluor 488 or 594 or 647. Again, the plate
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is washed in perm/wash buffer, resuspending the cells in staining buffer prior to analysis.
Flow cytometry analysis is performed using Guava EasyCyte 8HT (Millipore, Lakeland,
FL, USA) [131].

6. Efficacy of HBOT for Different TBI Populations

The use of HBOT for TBI patients has been controversial, but numerous studies have
shown its benefits. Chen et al. conducted an extensive study and found that patients
with moderate and severe TBI showed neurological improvements after HBOT at 2.0
ATA [132]. Consciousness recovery was measured using Coma Recovery Scale-Revised
scores, which improved in TBI patients after HBOT [132]. Cognitive decline is a significant
concern in TBI patients, and precipitates poor concentration, memory loss, and diminished
executive ability [133]. Chen et al. also assessed the CBF and used Disability Rating
Scale and Functional Independence Measure measurements, both of which indicated
that HBOT improved short-term and long-term cognitive deficits in moderate and severe
TBI [132]. Electroencephalogram (EEG) analysis revealed changes in δ and α wave activity,
adding to a growing body of literature that suggests that HBOT has a positive impact on
improving consciousness by reducing excessive slow waves associated with TBI [132,134].
Additionally, HBOT resulted in increased levels of the brain-derived neurotrophic factor
(BDNF), the nerve growth factor (NGF), and the vascular endothelial growth factor (VEGF),
indicating the potential for faster recovery and improved prognosis in TBI patients [132].

HBOT has been shown to help patients with specific TBI-related conditions, such
as post-concussion syndrome and blast-related injuries. In one study, HBOT was pos-
tulated to help concussion-related injuries by allowing blood oxygen levels to penetrate
deeper into the neural tissue, a feat that would be impossible without a hyperbaric cham-
ber [135]. Specifically, HBOT appears to initiate cellular and vascular repair mechanisms
and improves the cerebral vascular flow by acting on key targets such as injured neural
fibers and axonal white matter [135,136]. In blast-related injuries, patients suffer cerebral
vasculature changes that lead to microvasculature chronic disruptions long after the ini-
tial exposure event [137,138]. With HBOT, the hyper-oxygenated physiological condition
can provide a neuroprotective or regenerative environment to promote angiogenesis and
neurogenesis [138].

7. Safety of HBOT in TBI Populations

While infrequent, there have been adverse effects reported regarding the use of HBOT
to treat TBI. These effects are attributed to the increase in atmospheric pressure, difficulty tol-
erating hyperbaric oxygen, and/or underlying psychological dysfunction [139]. Mild risks
attributed to the change in atmospheric pressure include mild pressure-related tissue dam-
age (barotrauma) or headaches [140]. If the pressure surpasses 2.4 ATA, however, patients
are at increased risk of neurologic, pulmonary, and ocular oxygen toxicity [139]. Oxygen
toxicity in these regions makes patients susceptible to seizures, loss of consciousness, ox-
idative stress, and temporary myopia (nearsightedness) [139]. Regarding psychological
distress, some patients reported claustrophobia due to confinement during treatment [140].

Considering the variety of pathophysiologies underlying TBIs, the time and frequency
of HBOT ought to vary based on patient tolerance and reaction to the conditions [140].
Breaking up exposure to hyperbaric oxygen into multiple sessions has resulted in higher tol-
erances and minimization of some adverse effects, such as pulmonary oxygen toxicity [141].
To combat mild ear barotrauma, patients were advised to relieve pressure via swallowing,
chewing, or the Valsalva maneuver, a technique utilized to equalize ear pressure [139]. In
cases where these techniques are not possible, such as for intubated patients, a myringo-
tomy, an incision of the eardrum, may be performed to drain fluid from the inner ear and
relieve pressure [139]. Furthermore, to maximize safety, there are medical professionals
present during the duration of the treatment. The extent of effects and risks associated
with HBOT can also be influenced by the classification of the TBI. When HBOT is utilized
for chronic mTBI, adverse effects are at a minimum with the most prevalent being mild
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barotrauma [140]. However, when applied in moderate to severe acute TBI cases more
severe consequences can occur such as pulmonary complications and seizures [140]. Such
differences can be attributed to the circumstances in which HBOT is utilized. Patients with
moderate to severe acute TBI typically require life-saving treatment due to the severity of
their trauma. Therefore, this worsened condition has the potential to result in additional
risk when the patient is subjected to HBOT [140].

8. Conclusions

Whether occurring as the result of a fall, gunshot wound, or any other noxious stimu-
lus, TBIs often precede devastating consequences. On a cellular level, acute brain injuries
result in neuronal and glial necrosis. However, secondary brain injuries are more insidious,
and result in cellular morphological changes, loss of membrane integrity, excitotoxicity, and
neuroinflammation. Though mTBIs may recover completely, these aforementioned chronic
changes may precipitate crippling post-concussive symptoms, particularly in more severe
TBIs. Of interest, then, are therapies to target the etiologies of secondary brain injuries.
HBOT is utilized in multiple pathologies but has demonstrated promising results in the
preclinical and clinical trial environment. HBOT ameliorates cerebral edema, intracranial
pressure elevation, apoptosis, and neuroinflammation while increasing oxygen delivery to
the brain and cerebral glucose utilization. Herein is a review of the existing clinical research
examining the use of HBOT in attenuating both the symptoms and physical manifestations
of TBI.
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CTE Chronic traumatic encephalopathy
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IL Interleukin
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