Enrichment of Activated Fibroblasts as a Potential Biomarker for a Non-Durable Response to Anti-Tumor Necrosis Factor Therapy in Patients with Crohn’s Disease
Abstract
:1. Introduction
2. Results
2.1. PCA of CD Inflamed Samples
2.2. Cell Fraction Using Cibersortx
2.3. Validation
2.4. Differentially Expressed Genes in Inflammatory Tissues
3. Discussion
4. Materials and Methods
4.1. Study Samples
4.2. Sample Collection
4.3. Sample Preparation, Library Construction, and RNA-Sequencing
4.4. PCA and Cibersortx
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Song, E.M.; Na, S.-Y.; Hong, S.N.; Ng, S.C.; Hisamatsu, T.; Ye, B.D. Treatment of inflammatory bowel disease–Asian perspectives: The results of a multinational web-based survey in the 8th Asian Organization for Crohn’s and Colitis meeting. Intest. Res. 2023, 21, 339–352. [Google Scholar] [CrossRef]
- Koh, S.-J.; Hong, S.N.; Park, S.-K.; Ye, B.D.; Kim, K.O.; Shin, J.E.; Yoon, Y.S.; Lee, H.S.; Jung, S.H.; Choi, M.; et al. Korean clinical practice guidelines on biologics for moderate to severe Crohn’s disease. Intest. Res. 2023, 21, 43–60. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef]
- Otake, H.; Matsumoto, S.; Mashima, H. Long-term clinical and real-world experience with Crohn’s disease treated with anti-tumor necrosis factor-α antibodies. Intest. Res. 2022, 20, 464–474. [Google Scholar] [CrossRef]
- Martin, J.C.; Chang, C.; Boschetti, G.; Ungaro, R.; Giri, M.; Grout, J.A.; Gettler, K.; Chuang, L.-S.; Nayar, S.; Greenstein, A.J.; et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 2019, 178, 1493–1508.e1420. [Google Scholar] [CrossRef]
- Smillie, C.S.; Biton, M.; Ordovas-Montanes, J.; Sullivan, K.M.; Burgin, G.; Graham, D.B.; Herbst, R.H.; Rogel, N.; Slyper, M.; Waldman, J.; et al. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell 2019, 178, 714–730.e22. [Google Scholar] [CrossRef]
- Barnhoorn, M.C.; Hakuno, S.K.; Bruckner, R.S.; Rogler, G.; Hawinkels, L.; Scharl, M. Stromal Cells in the Pathogenesis of Inflammatory Bowel Disease. J. Crohn’s Colitis 2020, 14, 995–1009. [Google Scholar] [CrossRef]
- Wei, K.; Nguyen, H.N.; Brenner, M.B. Fibroblast pathology in inflammatory diseases. J. Clin. Investig. 2021, 131, e149538. [Google Scholar] [CrossRef]
- Park, S.K.; Kim, Y.B.; Kim, S.; Lee, C.W.; Choi, C.H.; Kang, S.-B.; Kim, T.O.; Bang, K.B.; Chun, J.; Cha, J.M.; et al. Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes. J. Pers. Med. 2022, 12, 947. [Google Scholar] [CrossRef]
- Arijs, I.; De Hertogh, G.; Lemaire, K.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; Cleynen, I.; Van Assche, G.; Vermeire, S.; et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS ONE 2009, 4, e7984. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019, 37, 773–782. [Google Scholar] [CrossRef]
- Kinchen, J.; Chen, H.H.; Parikh, K.; Antanaviciute, A.; Jagielowicz, M.; Fawkner-Corbett, D.; Ashley, N.; Cubitt, L.; Mellado-Gomez, E.; Attar, M.; et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell 2018, 175, 372–386.e317. [Google Scholar] [CrossRef]
- West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Görtz, D.; This, S.; Stockenhuber, K.; et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017, 23, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Zhen, N.; Pan, Q.; Li, Y. Gene expression profile predicting the response to anti-TNF antibodies therapy in patients with inflammatory bowel disease: Analyses of GEO datasets. Int. J. Clin. Exp. Med. 2016, 9, 23397–23406. [Google Scholar]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef]
- Wang, J.; Macoritto, M.; Guay, H.; Davis, J.W.; Levesque, M.C.; Cao, X. The Clinical Response of Upadacitinib and Risankizumab Is Associated with Reduced Inflammatory Bowel Disease Anti-TNF-α Inadequate Response Mechanisms. Inflamm. Bowel Dis. 2023, 29, 771–782. [Google Scholar] [CrossRef]
- Kelly, T.; Huang, Y.; Simms, A.E.; Mazur, A. Fibroblast activation protein-α: A key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell Mol. Biol. 2012, 297, 83–116. [Google Scholar]
- Del Pozo Martin, Y.; Park, D.; Ramachandran, A.; Ombrato, L.; Calvo, F.; Chakravarty, P.; Spencer-Dene, B.; Derzsi, S.; Hill, C.S.; Sahai, E.; et al. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Rep. 2015, 13, 2456–2469. [Google Scholar] [CrossRef]
- Turley, S.J.; Cremasco, V.; Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 2015, 15, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.A.; Jang, J.; Choi, C.H.; Kang, S.B.; Bang, K.B.; Kim, T.O.; Seo, G.S.; Cha, J.M.; Chun, J.; Jung, Y.; et al. Development of a Clinical and Genetic Prediction Model for Early Intestinal Resection in Patients with Crohn’s Disease: Results from the IMPACT Study. J. Clin. Med. 2021, 10, 633. [Google Scholar] [CrossRef]
- Park, S.-K.; Kim, H.-N.; Choi, C.H.; Im, J.P.; Cha, J.M.; Eun, C.S.; Kim, T.-O.; Kang, S.-B.; Bang, K.B.; Kim, H.G.; et al. Differentially Abundant Bacterial Taxa Associated with Prognostic Variables of Crohn’s Disease: Results from the IMPACT Study. J. Clin. Med. 2020, 9, 1748. [Google Scholar] [CrossRef]
- Park, S.-K.; Kim, S.; Lee, G.-Y.; Kim, S.-Y.; Kim, W.; Lee, C.-W.; Park, J.-L.; Choi, C.-H.; Kang, S.-B.; Kim, T.-O.; et al. Development of a Machine Learning Model to Distinguish between Ulcerative Colitis and Crohn’s Disease Using RNA Sequencing Data. Diagnostics 2021, 11, 2365. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. Feature Counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef] [PubMed]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 2022, 13, 1246. [Google Scholar] [CrossRef] [PubMed]
Inflamed_1 (n = 45) | Inflamed_2 (n = 14) | p-Value | |
---|---|---|---|
Age at diagnosis, year (SD) | 28.1 (11.9) | 20.5 (4.4) | <0.001 |
Gender, male (%) | 35 (71.4%) | 10 (71.4%) | 0.660 |
History of smoking, n (%) | 5 (11.1%) | 3 (21.4%) | 0.650 |
Family history of IBD, n (%) | 5 (11.1%) | 1 (7.1%) | 0.650 |
Disease duration, year (SD) | 3 (3.9) | 4.4 (4.1) | 0.270 |
Disease location, n (%) | 0.070 | ||
Ileal | 9 (20%) | 1 (7.1%) | |
Colonic | 12 (26.7%) | 2 (14.3%) | |
Ileocolonic | 24 (53.3%) | 11 (78.6%) | |
Upper GI involvement, n (%) | 0 (0%) | 3 (21.4%) | 0.080 |
Disease behavior, n (%) | 0.890 | ||
Inflammatory | 34 (75.6%) | 11 (78.6%) | |
Stricturing | 8 (17.8%) | 2 (14.3%) | |
Penetrating | 3 (6.7%) | 1 (7.1%) | |
Perianal disease, n (%) | 13 (28.9%) | 5 (35.7%) | 0.650 |
Previous treatment | |||
Immunosuppressants, n (%) | 35 (77.8%) | 14 (100%) | <0.001 |
Anti-TNF | 13 (28.9%) | 9 (64.3%) | 0.026 |
Intestinal resection, n (%) | 11 (24.4%) | 7 (50%) | 0.110 |
DEGs | This Study | RISK | GSE16879 | ||||
---|---|---|---|---|---|---|---|
Inflamed_2 vs. Inflamed_1 | Before Anti-TNF NDR vs. DR | After Anti-TNF NDR vs. DR | Before Anti-TNF NDR vs. DR | ||||
logFC, FDR < 0.05 | logFC | p-Value | logFC | p-Value | logFC | p-Value | |
THBS2 | 3.40 | 2.61 | <0.001 | 1.18 | <0.001 | 0.71 | <0.001 |
CXCL5 | 3.27 | 1.24 | 0.016 | 1.19 | <0.001 | 0.57 | <0.001 |
EGFL6 | 3.13 | 1.41 | 0.013 | 1.04 | <0.001 | 0.58 | <0.001 |
FAP | 2.92 | 1.49 | 0.007 | 1.74 | <0.001 | 0.75 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-K.; Lee, G.-Y.; Kim, S.; Lee, C.-W.; Choi, C.-H.; Kang, S.-B.; Kim, T.-O.; Chun, J.; Cha, J.-M.; Im, J.-P.; et al. Enrichment of Activated Fibroblasts as a Potential Biomarker for a Non-Durable Response to Anti-Tumor Necrosis Factor Therapy in Patients with Crohn’s Disease. Int. J. Mol. Sci. 2023, 24, 14799. https://doi.org/10.3390/ijms241914799
Park S-K, Lee G-Y, Kim S, Lee C-W, Choi C-H, Kang S-B, Kim T-O, Chun J, Cha J-M, Im J-P, et al. Enrichment of Activated Fibroblasts as a Potential Biomarker for a Non-Durable Response to Anti-Tumor Necrosis Factor Therapy in Patients with Crohn’s Disease. International Journal of Molecular Sciences. 2023; 24(19):14799. https://doi.org/10.3390/ijms241914799
Chicago/Turabian StylePark, Soo-Kyung, Gi-Young Lee, Sangsoo Kim, Chil-Woo Lee, Chang-Hwan Choi, Sang-Bum Kang, Tae-Oh Kim, Jaeyoung Chun, Jae-Myung Cha, Jong-Pil Im, and et al. 2023. "Enrichment of Activated Fibroblasts as a Potential Biomarker for a Non-Durable Response to Anti-Tumor Necrosis Factor Therapy in Patients with Crohn’s Disease" International Journal of Molecular Sciences 24, no. 19: 14799. https://doi.org/10.3390/ijms241914799
APA StylePark, S. -K., Lee, G. -Y., Kim, S., Lee, C. -W., Choi, C. -H., Kang, S. -B., Kim, T. -O., Chun, J., Cha, J. -M., Im, J. -P., Ahn, K. -S., Kim, S. -Y., Kim, M. -S., Lee, C. -K., & Park, D. -I. (2023). Enrichment of Activated Fibroblasts as a Potential Biomarker for a Non-Durable Response to Anti-Tumor Necrosis Factor Therapy in Patients with Crohn’s Disease. International Journal of Molecular Sciences, 24(19), 14799. https://doi.org/10.3390/ijms241914799