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Abstract: The high recurrence rate and invasive diagnostic and monitoring methods in bladder
cancer (BCa) clinical management require the development of new non-invasive molecular tools for
early detection, particularly for low-grade and low-stage BCa as well as for risk stratification. By
using an in-solution digestion method and label-free data-independent LC-MS/MS coupled with ion
mobility, we profiled the BCa tissues from initiation to advanced stages and confidently identified
and quantified 1619 proteins (≥2 peptides). A statistically significant difference in abundance
(Anova ≤ 0.05) showed 494 proteins. Significant correlation with stage with steady up or down
with BCa stages showed 15 proteins. Testing of NNMT, GALK1, and HTRA1 in urine samples
showed excellent diagnostic potential for NNMT and GALK1 with AUC of 1.000 (95% CI: 1.000–1.000;
p < 0.0001) and 0.801 (95% CI: 0.655–0.947; p < 0.0001), respectively. NNMT and GALK1 also showed
very good potential in discriminating non-invasive low-grade from invasive high-grade BCa with
AUC of 0.763 (95% CI: 0.606–0.921; p = 0.001) and 0.801 (95% CI: 0.653–0.950; p < 0.0001), respectively.
The combination of NNMT and GALK1 increased prognostic accuracy (AUC = 0.813). Our results
broaden the range of potential novel candidates for non-invasive BCa diagnosis and prognosis.

Keywords: bladder cancer; tissue; urine; biomarker; LC-MS/MS; proteomics; ELISA

1. Introduction

Bladder cancer (BCa) is among the top 12 types of cancer detected worldwide, with
more than 570,000 new cases annually and accounts for around 3% of all new cancer
diagnoses and 2.1% of all cancer-associated deaths [1]. Approximately 90–95% of BCa
tumors are urothelial cell carcinomas originating in the epithelium. Around 75% of newly
diagnosed urothelial cell carcinomas are non-muscle invasive bladder cancer (NMIBC)
characterized with stages pTa–pT1, while the remaining 25% are muscle-invasive bladder
cancer (MIBC) characterized with stages ≥pT2 [2]. Patients with MIBC have poor prognosis
with 5-year survival from 63% for T2 tumors to 46% for T3–T4 tumors and 15% for metastatic
cancer [3]. Patients with NMIBC have high survival rates (Ta: 98%; T1: 88%) but also a high
probability of disease recurrence (31–78%) and progression (up to 45%) within five years of
disease diagnosis, with the highest rate observed in patients with high-grade T1 tumors
(pT1G3) [4,5].
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The current widely used diagnostic procedures for detecting BCa include urine cytol-
ogy and cystoscopy, followed by biopsy if abnormal tissue is discovered. Urine cytology is
inexpensive, non-invasive, and commonly used for initial BCa screening. However, the
sensitivity of detecting low-grade tumors is poor, ranging from 10 to 43.6% [6]. Cystoscopy
is the current ‘gold standard’ diagnostic procedure for BCa. However, it is associated
with some serious drawbacks, starting from being invasive, expensive, and uncomfortable
for the patient to missing up to 20% of papillary tumors (Ta and T1) and carcinoma in
situ (CIS) [7–9]. To improve the rate and accuracy of detection, several new endoscopic
technologies were developed, but these are invasive, expensive, time-consuming, and
therefore, not able to significantly improve the diagnostic workflow [10]. As a result, the
investigation for novel non-invasive biomarkers to detect BCa at early stages and reduce
the need for surveillance cystoscopies and other invasive procedures increased over the last
few decades [11–14]. As a result, several FDA-approved tests based on novel biomarkers
have been introduced in the last years [13], but unfortunately this did not solve the problem
of identifying low-grade tumors. Nevertheless, extensive research in this area, analyzing
urine, tissue, blood, and extracellular vesicles has led to the identification of a great number
of potential BCa biomarkers (extensively discussed in [11–15]). Biomarkers discovered
in urine could have superior diagnostic sensitivity but often lack appropriate specificity.
These biomarkers are often blood-associated proteins that are present in urine with altered
abundancies due to the bleeding and angiogenesis mechanisms associated with BCa. The
application of these biomarkers as BCa biomarkers is most likely limited to only high-risk
patients and for monitoring of cancer recurrence. Another shortcoming of urine and other
body fluids as a medium for the identification of high-sensitivity biomarkers is that proteins
that are abundant in body fluids may mask, and thus limit the detection, of tissue-leakage
proteins present at low concentrations.

On the other hand, exploring the tissue proteome of clinical tissue specimens is a
straightforward strategy for discovering reliable BCa biomarker candidates. Tissue pro-
teomics provides insight into the molecular mechanisms of BCa initiation and progression
and, in addition to diagnostic biomarkers, could enable the identification of prognostic and
predictive biomarkers. However, due to the invasive procedures for obtaining tissue as
material for proteomics analysis and its limited availability, only a small number of studies
investigated alterations in the tissue proteome of BCa patients. These studies yielded hun-
dreds of differentially expressed proteins as potential biomarker candidates for studying
the mechanism of BCa development and progression [12,15]. However, to confirm these
findings and identify BCa-related biomarkers with high sensitivity and specificity, more
well-designed tissue proteomics studies encompassing BCa tumors of all stages are needed.

In this study, we searched for potential bladder cancer biomarkers by profiling pro-
teomic changes in tissue specimens of BCa ranging from Ta –T3 tumors using a strategy
combining in-solution digestion method with two detergents (SDS and RapiGest) for sam-
ple preparation and label-free data-independent LC-MS/MS acquisition coupled with ion
mobility. The generated quantitative tissue proteome was correlated with clinicopathologi-
cal characteristics of the tumors that resulted in potential candidates for BCa progression.
To assess the biomarker performance in terms of their sensitivity and specificity to detect
BCa, as well as to give the prognosis in regard to the progression of the disease towards the
invasive forms, three top candidates were tested in two sets of urine samples.

2. Results
2.1. Protein Identification

A total of 1847 proteins with quantitative values based on 25,381 peptides was identi-
fied by Progenesis QIP. The number of proteins and peptides was similar among the three
compared groups (Mann–Whitney U-test, p > 0.05) (Figure 1A). We have identified 1277,
1285, and 1353 proteins in groups 1, 2 and 3, respectively, with 876 proteins common for
all groups (Figure 1B). The correlation of normalized protein abundance across individ-
ual samples was very high with a median Spearman Rho correlation coefficient of 0.926
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(Figure 1C). The hierarchical clustering of the proteins with normalized protein abundance
showed a clear distinction between patients with non-invasive low-grade papillary urothe-
lial carcinoma versus patients with invasive/infiltrative high-grade papillary urothelial
carcinoma (Figure 1D).

Figure 1. Summary of the proteomics data identified and quantified by Progenesis QIP. (A) Number of
proteins and peptides identified in the experimental groups. In the box plot graphs, median (−), 25th
and 75th percentiles, minimum/maximum (•) mean (+) and outliers (∗) are shown. (B) Number of
unique and shared proteins among groups (C) Correlation matrix for normalized protein abundances
across the individual samples using Spearman Rho correlation. (D) Heatmap of the normalized
protein abundances of 1847 proteins where samples are shown in columns and proteins in the
rows. Clustering method applied: Average linkage; Distance Measurement method: Spearman
rank correlation.
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2.2. Proteins with Differential Abundance among Groups

The protein identifications were further filtered to remove reverse sequences (n = 68),
proteins identified on only one peptide (n = 159), and yeast ADH. The final report contained
1619 proteins identified based on ≥2 peptides (Supplementary Table S1). A statistically
significant difference in abundance (Anova ≤ 0.05) showed 494 proteins (Supplementary
Table S2). Significant differential abundance (Mann–Whitney U-test, p ≤ 0.05) in Group
1 vs. Group 2, Group 2 vs. Group 3, and Group 1 vs. Group 3 showed 340, 95, and
482 proteins, respectively (Table 1). After adjusting the p-values for multiple testing
using the Benjamini-Hochberg (B-H) procedure and filtering the dataset for B-H p ≤ 0.05,
significant differential abundance (Mann–Whitney U-test, p ≤ 0.05) showed 216 proteins
(Group 1 vs. Group 2 = 81; Group 2 vs. Group 3 = 0; Group 1 vs. Group 3 = 195). The
higher proportion of the differentially abundant proteins were down-regulated.

Table 1. Overview of the number of identified proteins with differential abundance between groups
and their regulation trend.

Gr1 vs. Gr2
(Ta vs. T1)

Gr2 vs. Gr3
(T1 vs. T2/3)

Gr1 vs. GR3
(Ta vs. T2/3)

Differentially expressed
(Mann–Whitney p ≤ 0.05) 340 95 482

Differentially expressed
(B-H p ≤ 0.05) 81 0 195

Up-regulated (B-H p ≤ 0.05) 35 / 75
Down-regulated (B-H p ≤ 0.05) 46 / 121

2.3. Functional Analysis

To gain insight into the cell/tissue origin and biological implication of the 494 pro-
teins with significantly altered abundance among groups, we have analyzed the reported
molecular functions, biological processes, cellular localization, the protein localization in
the bladder and cancer in general (Supplementary Table S2), and performed an enrichment
analysis with STRING. Bladder and cancer specificity were analyzed based on transcript
detection according to the data available from the Human Protein Atlas (HPA).

All of the proteins for which there was available data in HPA had expression in the
normal bladder tissue (434 proteins or 87.9%) (Figure 2A). Elevated expression in the
bladder compared to other tissues had 7 proteins (1.4%), namely, OAS1, HPGD, S100P,
TNFAIP2, KRT17, DHRS2 and PADI3. The remaining had elevated expression in other
tissues but expressed in the bladder (170 proteins or 34.4%) and low tissue specificity
but expressed in the bladder (257 proteins or 52%). Elevated expression in cancer had
56 proteins (11.3%) while 374 (75.7%) had low cancer specificity. From proteins elevated in
cancer, 17 had elevated expression in urothelial cancer of which, 9 (16.1%) were elevated
only in urothelial cancer (KRT7, GSTM1, HPGD, S100P, DHRS2, GDPD3, KRT23, TINAGL1,
PADI3), while 8 (14.3%) in addition to urothelial cancer, were elevated in some other cancer
too (SNCG, KRT13, KRT20, HSD17B2, FABP5, LY6D, INA, ANXA10).

The top-represented molecular functions were binding (GO:0005488), catalytic activity
(GO:0003824), and structural molecule activity (GO:0005198) while the top-represented
biological functions were cellular (GO:0009987) and metabolic processes (GO:0008152),
biological regulation (GO:0065007) and localization (GO:0051179) (Figure 2B). The top
represented protein classes were metabolite interconversion enzyme (PC00262) with more
than 100 proteins, followed by cytoskeletal protein (PC00085) and protein modifying
enzyme (PC00260). Among the top 5 associated pathways were the Integrin signaling
pathway (P00034), Inflammation mediated by chemokine and cytokine signaling pathway
(P00031), Cytoskeletal regulation by Rho GTPase (P00016), Wnt signaling pathway (P00057),
and Glycolysis (P00024).
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Figure 2. Categorization of the differentially abundant proteins in BCa. (A) Bladder tissue and cancer
specificity according to the data from the Human Protein Atlas, based on transcript mRNA detec-
tion and specificity. (B) GO annotations of proteins according to the Panther Classification System.
(C) Enrichment analysis with STRING: Proteins colored in pink are expressed in the urinary system,
while proteins colored in dark green are expressed in the human bladder. The top associated path-
ways according to the Reactome pathways database were the immune system (red) and neutrophil
degranulation (blue), while according to WikiPathways, these were the VEGFA-VEGFR2 signaling
pathway (green) and complement system (yellow). Carcinoma was among the top associated diseases
(turquoise) according to the STRING database of disease-gene associations.

Protein-protein interaction analysis with STRING indicated that these proteins have
more interactions among themselves than what would be expected for a random set of
proteins of the same size and degree distribution drawn from the genome (PPI enrichment
p-value = 1.0 × 10−16). Such an enrichment indicates that the proteins are at least partially
biologically connected as a group (Figure 2C). There are 52 proteins in this network that
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are expressed in the urinary tract, according to the STRING database, of which 13 are
expressed in the human bladder. According to the Reactome pathways database, the top
associated pathways were “immune system” (HSA-168256: 93 proteins, p = 4.01 × 10−28)
and “neutrophil degranulation” (HSA-6798695: 46 proteins, p = 1.37 × 10−23), while
according to WikiPathways, among the top associated pathways were “VEGFA-VEGFR2
signaling pathway” (WP3888: 31 proteins, p = 2.74 × 10−05) and “complement system”
(WP2806: 12 proteins, p = 1.56 × 10−06). According to the STRING database of disease-gene
associations, “carcinoma” was among the top associated diseases (DOID:305: 21 proteins,
p = 9.2 × 10−3).

2.4. Correlation of Proteomics Findings with Clinical Parameters

Correlation of the proteomics data with clinical records (stage, age) was performed
for the 494 proteins with significantly altered abundance among groups. As the data
normality was rejected by the normality tests, Spearman’s rho correlation was performed.
Significantly correlated with age were 125 proteins. Significantly correlated with stage were
445 proteins, of which, 156 were positively and 289 were negatively correlated. Statisti-
cally significant differences in abundance between the groups and correlation with stage
with consistent regulation trends (up- or down-) across the BCa stages showed 15 pro-
teins, of which 5 had increased and 10 decreased levels with BCa progression (Figure 3).
Nicotinamide N-methyltransferase (NNMT), Galactokinase (GALK1), Serine protease
HTRA1 (HTRA1), Complement C1q subcomponent subunit A (C1QA), and Importin-4
(IPO4) showed raise, while Rootletin (CROCC), Alpha-actinin-2 (ACTN2), Tubuloint-
erstitial nephritis antigen-like (TINAGL1), Peptidyl-prolyl cis-trans isomerase FKBP1A
(FKBP1A), Polyadenylate-binding protein 4 (PABPC4), Aflatoxin B1 aldehyde reductase
member 4 (AKR7L), Erlin-2 (ERLIN2), Septin-9 (SEPTIN9), Intersectin-2 (ITSN2), and S-
methylmethionine--homocysteine S-methyltransferase (BHMT2) showed a decrease in the
protein abundance with increasing BCa stage.

Statistically significant differences between initial (Ta–T1) and advanced (T2–T3) dis-
ease stages showed 14 proteins, of which 7 had increased and 7 decreased levels in advanced
BCa (Figure 4). Statistically significant increase in advanced BCa showed ER membrane
protein complex subunit 2 (EMC2), UDP-glucuronosyltransferase 1A10 (UGT1A10), Estra-
diol 17-beta-dehydrogenase 2 (HSD17B2), NSFL1 cofactor p47 (NSFL1C), Leucine zipper
putative tumor suppressor 2 (LZTS2), Glycine--tRNA ligase (GARS1) and Fanconi ane-
mia group A protein (FANCA). On the other hand, Electron transfer flavoprotein subunit
beta (ETFB), Nucleosome assembly protein 1-like 4 (NAP1L4), Keratin_type I cytoskeletal
20 (KRT20), Plastin-1 (PLS1), Lupus La protein (SSB), Thioredoxin (TXN) and Isocitrate
dehydrogenase [NADP] cytoplasmic (IDH1) showed statistically significant decrease in
advanced BCa.

2.5. Validation of Selected Candidates in Urine

The preselected protein candidates NNMT, GALK1, and HTRA1 were measured in
two cohorts of urine samples (Figure 5). The testing in Cohort I showed that all 3 pro-
teins have detectable levels in urine using antibody-based measurements, can discriminate
normal controls from BCa patients with statistical significance, and their concentration
increases with BCa stage. In addition to discriminating between normal controls and
BCa, NNMT showed statistically significant discrimination between initial (Ta, G1) and
advanced tumors (T1–T2, G3). As for GALK1 and HTRA1, no significant differences were
observed between the BCa stages. The testing in Cohort II validated the findings in regard
to NNMT and GALK1 but failed to confirm the HTRA1 differences between BCa and con-
trols. NNMT showed very good statistically significant discrimination between all groups
except discrimination between more advanced BCa groups T1 G3 and T2 G3. GALK1 also
discriminated most groups with statistical significance, but could not discriminate initial
BCa stage (Ta, G1) from normal controls as well as more advanced BCa groups T1 G3 and
T2 G3.



Int. J. Mol. Sci. 2023, 24, 14938 7 of 22

Figure 3. Abundance of the proteins significantly correlated with cancer stage with steady up or
down with disease stages. All of the presented proteins showed statistically significant differences in
abundance between cancer groups (* p < 0.05). In the box plot graphs, median (−), 25th and 75th
percentiles, minimum/maximum (•), outliers (∗) and mean (+) are shown.
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Figure 4. Abundance of the proteins significantly correlated with cancer stage with statistically
significant difference in protein abundance between initial (Ta/T1) and advanced (T2/T3) tumors.
Significant differences between investigated cancer groups are marked (* p < 0.05). In the box plot
graphs, median (−), 25th and 75th percentiles, minimum/maximum (•), outliers (∗) and mean (+)
are shown.
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Figure 5. Normalized protein levels of the 3 validated proteins in urine samples of BCa patients and
controls. Proteins were validated in two cohorts of urine samples: Cohort I consisted of 24 samples
BCa samples taken during the cystoscopy and frozen immediately at −80 ◦C without any processing;
and Cohort II consisted of 44 urine samples from BCa patients collected according to standard guide-
lines as first-morning urine, centrifuged, aliquoted and stored at −80 ◦C. Control group consisted
of 8 samples from individuals without BCa. Statistically significant differences accessed by the
Mann–Whitney U-test are marked (* p < 0.05). In the box plot graphs, median (−), 25th and 75th
percentiles, minimum/maximum (•), outliers (∗) and mean (+) are presented.

It is worth pointing out that the concentration of the tested proteins was 5–10 times
higher in the urine samples from Cohort I compared to the samples from Cohort II. This
was probably due to the collection method and freezing of the samples without clearing
the cell debris, which lysed and released epithelial cell content into the urine. As Cohort II
represents the “standard” collection method for urine testing, further calculation in regards
to the diagnostic potential in detecting and prognosis of BCa was carried out on samples
from Cohort II.

To determine the diagnostic potential in detecting BCa, samples were grouped into
two groups: Control and BCa (Ta, G1+ T1–T2, G3). Significant differences in protein levels
between Controls and BCa showed NNMT (p < 0.0001) and GALK1 (p = 0.006) (Figure 6A).
The area under curve (AUC) for NNMT and GALK1 were 1.000 (95% CI: 1.000–1.000;
p < 0.0001) and 0.801 (95% CI: 0.655–0.947; p < 0.0001), respectively. The optimal cutoffs for
the proteins were: 0.018 ng NNMT/mg creatinine (100% specificity, 100% sensitivity) and
2.88 ng GALK1/mg creatinine (87.5% specificity, 72.7% sensitivity). The diagnostic model
based only on GALK1 correctly classified 82.69% of total cases (Control: 0 %; BCa: 97.73%),
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while the model based only on NNMT correctly classified 100% of total cases (Control:
100%; BCa: 100%).

Figure 6. Diagnostic potential of GALK1, NNMT and HTRA1 for BCa diagnosis and prognosis.
(A) Diagnostic accuracy for early detection of BCa. (B) Diagnostic accuracy for discrimination
between non-invasive low-grade and invasive high-grade BCa. Normalized protein levels in urine
of BCa patients and controls is represented in box plots while the diagnostic accuracy is depicted
with receiver operating characteristic (ROC) curves as area under the curve (AUC). In the box plot
graphs, median (−), 25th and 75th percentiles, minimum/maximum (•), outliers (∗) and mean (+)
are presented. Statistically significant differences are marked (* p < 0.05).
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To determine the diagnostic potential in detecting advanced BCa, samples were
grouped into three groups: Control, non-invasive low-grade BCa (Ta, G1), and invasive
high-grade BCa (T1–T2, G3). Statistically significant differences between non-invasive
low-grade and invasive high-grade BCa showed NNMT (p = 0.003) and GALK1 (p = 0.001)
(Figure 6B). The individual accuracy for NNMT was AUC = 0.763 (95% CI: 0.606–0.921;
p = 0.001) while for GALK1 AUC was 0.801 (95% CI: 0.653–0.950; p < 0.0001). The opti-
mal cutoffs of the proteins were: 1.18 ng NNMT/mg creatinine (75.0% specificity, 82.1%
sensitivity) and 3.30 ng GALK1/mg creatinine (75.0% specificity, 85.7% sensitivity). The
diagnostic model based only on NNMT correctly classified 72.73% of total cases (Ta, G1:
43.75%; T1–T2, G3: 89.29%), while the model based only on GALK1 correctly classified
77.27% of total cases (Ta, G1: 56.25%; T1–T2, G3: 89.29%). The combination of NNMT
and GALK1 slightly increased the diagnostic accuracy to AUC = 0.813 with 77.27% of
total correct classification and 56.25% and 89.29% correct classification of non-invasive
low-grade BCa and invasive high-grade BCa, respectively.

To investigate whether the urine levels of the biomarkers were clinically independent prog-
nostic factors for BCa, correlation analysis using Spearman rho was performed (Table 2). Both
GALK1 and NNMT showed a weak positive correlation with age (rGALK1 = 0.360, p = 0.009;
rNNMT = 0.351, p = 0.011) and moderate positive correlation with stage (rGALK1 = 0.566,
p < 0.0001; rNNMT = 0.627, p < 0.0001). A moderate positive correlation was observed also
between GALK1 and NNMT (r = 0.634; p < 0.0001).

Table 2. Spearman correlation between tested biomarkers in urine and clinical parameters.

Variables Age Stage GALK1 NNMT HTRA1

Age 1 0.412 0.360 0.351 0.188
Stage 0.412 1 0.566 0.627 0.206
GALK1 0.360 0.566 1 0.634 0.565
NNMT 0.351 0.627 0.634 1 0.598
HTRA1 0.188 0.206 0.565 0.598 1

Values in bold are different from 0 with a significance level of alpha = 0.05.

3. Discussion

The high recurrence rate of BCa and the use of invasive diagnostic and monitoring
methods require the development of new molecular tools that will introduce non-invasive
testing with improved diagnostic accuracy as well as assessment of disease progression
and recurrence. Therefore, the identification of new molecular marker(s) that can be
used for early detection, particularly for low-grade and low-stage NMIBC as well as risk
stratification of BCa patients remains a pertinent clinical need.

To support the implementation of new non-invasive BCa biomarkers into practice,
we have set up this comparative proteomics study analyzing the proteome of BCa tissues
from initiation to advanced stages. Bioinformatics enrichment analysis of the proteins with
altered abundance between stages revealed an association with more than 100 pathways
according to the Panther database. The top 20 pathways, that have been preselected to
include more than 4 differentially abundant proteins from our dataset, were all strongly
associated with cancer, except the “Blood coagulation pathway” (P00011) that showed sig-
nificant association due to the bleeding and angiogenesis mechanisms associated with BCa.
The top 3 associated pathways were “Integrin signaling pathway” (P00034), “Inflammation
mediated by chemokine/cytokine” (P00031), and “Cytoskeletal regulation by Rho GTPase”
(P00016) with 15, 13, and 10 proteins from our data set, respectively. The main role of
integrins is to mediate cell adhesion and transmit mechanical and chemical signals to the
cell interior. However, recent studies have revealed that various mechanisms deregulate
integrin signaling in cancer, so it can drive multiple stem cell functions, including tumor
initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and
immune-targeted therapies [16]. Chemokines are soluble factors shown to play important
roles in regulating immune cell recruitment during inflammatory responses. While studies
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in the past have focused solely on the role of chemokine signaling pathways in regulating
immune responses, emerging studies show that these molecules regulate diverse cellular
processes including angiogenesis, epithelial cell growth, and survival, and as such are
critical for cancer progression and direct complexes and diverse functions in the tumor
microenvironment [17]. The Rho family of GTPases is highly conserved and contributes
to several cellular processes including the organization of the actin and microtubule cy-
toskeletons, regulation of gene expression, vesicle trafficking, cell cycle progression, cell
morphogenesis, cell polarity, and cell migration. However, Rho GTPases also play an
important role in cancer. There is growing evidence that in most cancers, expression levels
and/or activity of Rho GTPases is altered which puts Rho GTPase signaling as a possible
target in the development of new cancer treatments [18]. Moreover, our dataset was signifi-
cantly associated with several pathways which aberrant regulation represents the hallmark
of cancer. These are the “Apoptosis signaling pathway” (P00006) [19], “FAS signaling
pathway” (P00020) [20], and “p53 pathway” (P00059) [21] which have a central role in
the physiological regulation of programmed cell death and have been implicated in the
pathogenesis of various malignancies; “EGF receptor signaling pathway” (P00018) [22],
“PI3 kinase pathway” (P00048) [23] and “Cadherin signaling pathway” (P00012) [24] that
are one of the most important pathways that regulate growth, proliferation, survival, and
differentiation in mammalian cells; “Wnt signaling pathway” (P00057) which is one of the
key cascades regulating development and tightly associated with cancer [25] and “Ubiqui-
tin proteasome pathway” (P00060) which plays a pivotal role in the degradation of proteins
and has well-established role in the pathogenesis of various human diseases among which
is cancer as well [26]. Among the top 20 pathways were “Glycolysis” (P00024) and “Pentose
phosphate pathway” (P02762) that branches from glycolysis at the first committed step
of glucose metabolism, which have an important function in the regulation of cancer cell
metabolism and survival [27,28]; “Heterotrimeric G-protein signaling” (P00026/P00027)
that impacts oncogenesis at multiple levels by regulating tumor angiogenesis, immune
evasion, metastasis, and drug resistance [29] and “FGF signaling pathway” (P00021) that
governs fundamental cellular processes such as cell survival, proliferation, migration, dif-
ferentiation, is mediated by MAPK and PI3K-AKT pathway, and intersects and synergizes
with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth
factor (TGF)-β signaling.

According to the Reactome pathways database, the top associated pathways were “Im-
mune system” (93 proteins) and “neutrophil degranulation” (46 proteins), while according
to WikiPathways, among the top associated pathways were “VEGFA-VEGFR2 signaling
pathway” (31 proteins) and “complement system” (12 proteins). The role of the immune
system in cancer has been extensively studied. In principle, tumor development can be
controlled by cytotoxic innate and adaptive immune cells. However, as the tumor develops,
cancer cells evolve different mechanisms that mimic peripheral immune tolerance to avoid
the tumoricidal attack. The Neutrophil degranulation process plays an important role in
introducing new membrane proteins on the surface of neutrophils and dictates interaction
between neutrophils and cancer cells, together with other cell populations in the tumor
microenvironment. It is well known that neutrophils physically interact with circulating
tumor cells, and they can promote tumor progression by stimulating angiogenesis and
matrix remodeling and disabling T cell-dependent antitumor immunity [30]. VEGFA sig-
naling through VEGFR2 is the major pathway that activates angiogenesis by inducing the
proliferation, survival, sprouting, and migration of endothelial cells (ECs), and also by
increasing endothelial permeability [31]. As for the complement system, in a tumor context,
it may affect the immunity, angiogenesis, and phenotype of the tumor cells while in terms
of immunity, the same complement proteins may influence several immune cells positively
or negatively depending on the model or cancer type [32].

Further, a comparison of our dataset of differentially abundant proteins with the
most promising tissue protein biomarkers for BCa diagnosis/prognosis from published
studies (reviewed in [12,15]) showed that our dataset contains a number of these pro-
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teins. Namely, our dataset contained Alpha-actinin-1 (ACTN1), Matrix metalloproteinase-9
(MMP9), Thymidine phosphorylase (TYMP), Cullin-associated NEDD8-dissociated protein
1 (CAND1), Beta-hexosaminidase subunit beta (HEXB), Alpha-internexin (INA), Small
ribosomal subunit protein eS19 (RPS19) reported to be BCa specific [33] and candidate
biomarkers for advanced stage BCa such as Exocyst complex component 4 (EXOC4),
MMP9 [34], Cathepsin E (CTSE) [35], L-lactate dehydrogenase (LDHB) [36], Fibrinogen
Beta (FGB) and Lamin-B1 (LMNB1) [37]. Comparison with potential biomarkers in urine
((reviewed in [11,12,15]) showed several biomarkers that have been proposed as urine
biomarkers for BCa multiple times, such as MMP9, FGB, Serine protease HTRA1 and Nu-
clear mitotic apparatus protein 1 (NUMA1). Worth pointing out is that two FDA-approved
tests, namely, ALERE NMP22® TEST and the NMP22™ BLADDERCHEK™ (Abbott Molec-
ular Diagnostics, USA) are based on NUMA1 for BCa detection and surveillance in urine
samples [38]. The identification of the above-mentioned biomarkers in our dataset of differ-
entially abundant proteins gives further validation to these proteins as well as confirms the
validity of our approach.

Correlation of the proteomics findings with clinical data revealed 15 proteins that
showed a high statistically significant correlation with BCa stage and constant up or down
trend with disease stages. Out of these, and based on the available literature data about their
involvement in cancer and BCa, and positive correlation with stage, we have preselected
NNMT, GALK1, and HTRA1 to be further tested in urine samples.

Nicotinamide N-methyltransferase (NNMT) is an enzyme that catalyzes the N-methylation
reaction of nicotinamide, using S-adenosyl-L-methionine as the methyl donor and therefore
plays a central role in regulating cellular methylation potential, mainly expressed in the
liver and belongs to phase II metabolizing enzymes [39]. NNMT overexpression has been
reported for many solid tumors, including gastric, colon, lung, breast, endometrial, cervical,
ovarian, oral, esophageal, nasopharyngeal, and thyroid cancers, as well as in epithelial
neoplasms (extensively reviewed in [40]). The analysis of NNMT expression levels in
different cancers from The Cancer Genome Atlas (TCGA) dataset indicates that NNMT
might be a potential biomarker and therapeutic target in some cancers [41]. The recent
proteomics work analyzing NNTM in the tumor and stromal compartments of several
cancers revealed that this enzyme is a central metabolic regulator of cancer-associated
fibroblast differentiation and cancer progression in the stroma that may be therapeutically
targeted [42]. These findings have initiated the development of NNMT inhibitors in recent
years, starting from varieties of bisubstrate inhibitors [43,44] to structurally diverse NNMT
inhibitors such as macrocyclic peptides which bind to NNMT [45]. Overexpression of
NNMT was reported in urological cancers as well [40]. In terms of BCa, there are only
three studies that have reported the possible biomarker role of NNMT and these are gene
expression studies. The first study that aimed to investigate the differentially expressed
genes in relation to the BCa stages revealed that NNMT was significantly upregulated
in MIBC compared to NMIBC [46]. The subsequent study, based on gene expression
cDNA macroarray data, confirmed the overexpression in BCa tissues compared to controls
and validated the findings by qPCR, Western blot, and catalytic activity assay [47]. This
study also reported that NNMT expression levels in urine were significantly higher in
BCa patients compared to controls which showed low or undetectable amounts of NNMT
transcript and protein. In the latest study, using qPCR, NNMT expression in urine samples
from BCa patients was significantly higher compared to controls, but inversely correlated
with histological grade [48]. Our study accessed the protein level of NNMT in BCa tissues
for the first time. The results from the comparative proteomics study showed that the
protein level of NNMT in BCa tissues increased steadily with stages and that based on the
tissue protein levels, NNMT could discriminate initial, intermediate, and advanced BCa
stages with statistical significance. Testing of the protein levels in urine confirmed NNMT
steady increase with BCa stages with very good discrimination between controls, initial,
intermediate, and advanced stages, excellent diagnostic, and solid prognostic potential.
Overall, our study showed that protein levels of NNMT in both tissue and urine correspond
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to the reported gene expression [46,47] and confirm NNMT as a potential biomarker for
both BCa diagnosis and prognosis. However, the results in regards to NNMT correlation
with BCa stage were opposite to the previous findings on mRNA levels [48].

Galactokinase (GALK1) is a major enzyme for the metabolism of galactose that cat-
alyzes the transfer of a phosphate from ATP to alpha-D-galactose and participates in the
first committed step in the catabolism of galactose. It is a ubiquitously expressed enzyme
with the highest expression in the liver. GALK1’s relation with cancer was first observed by
Barretina and co-workers [49] who reported that the GALK1 gene was up-regulated by at
least six-fold in 28 different human liver cancer cell lines. The subsequent study applying
small interfering RNA (siRNA) to target the GALK1 gene in the hepatocellular carcinoma
(HCC) cell line supported GALK1 as a novel target for treating HCC and uncovered new
posttranscriptional regulatory mechanisms that link the galactose metabolic pathway to
protein expression of the PI3K/AKT pathway [50]. Very recently, in the last two years,
GALK1 was linked also to BCa. Based on the well-established knowledge that energy
metabolism and its reprogramming is an essential hallmark of most cancers, mRNA expres-
sion profiling of glycolysis-related genes [51], metabolism-related genes [52], and energy
metabolism-related genes [53] in BCa cohorts by mining data from The Cancer Genome At-
las (TCGA) database was performed. GALK1 was part of the four gene panel [51], 16 gene
panel [52], and 13 gene panel [53] that could be used for BCa prognosis. The expression
level of GALK increased with increasing risk score and was inversely correlated with the
patient’s survival [53]. The results from our comparative proteomics study showed that the
protein level of GALK1 in BCa tissues increased steadily with stages and that based on the
tissue protein levels, GALK1 could discriminate initial, intermediate, and advanced BCa
stages with statistical significance. The diagnostic potential in urine was characterized with
solid accuracy but lower than NNMT, while prognostic accuracy was the highest with the
correct classification of 77.3% of cases.

Serine protease HTRA1 is a ubiquitously expressed protein, a member of the trypsin
family of serine proteases that is proposed to regulate the availability of insulin-like growth
factors (IGFs) and has also been suggested to be a regulator of cell growth. HTRA1 is
involved in several vascular diseases and its altered expression has been reported for a
few cancers such as ovarian [54], lung cancer [55], and melanoma [56], where a tumor
suppressor role was proposed. Dysregulation concerning BCa has been reported only in
one study, where tissue levels of HTRA1 were undetectable in a few urothelial cancer cell
lines but significantly higher amounts were found in urine from cancer patients compared
with both healthy subjects and patients with cystitis [57]. The results from our study are
opposite to previous findings in terms of tissue expression in the above-mentioned cancers.
According to the detected levels in BCa tissues, HTRA1 increased steadily with stages.
Recent study where inhibition of HTRA1 in the tumor stroma impaired tumor progression
by deregulating angiogenesis [58], is in favor of HTRA1 acting as an oncogene and in
concordance with our findings. Testing in the first urine cohort showed that HTRA1 could
discriminate between controls and BCa patients and a trend of increasing protein levels
with BCa stages was observed as in the study of Lorenzi et al., [57]. However, testing in the
second urine cohort failed to confirm the HTRA1 differences between BCa and controls.
Overall, more work is needed to establish the role of HTRA1 in cancer in terms of whether
it functions as an oncogene or a tumor suppressor. However according to our results, its
potential as a biomarker in BCa is low; more studies are necessary to evaluate its potential.

In addition to the above potential biomarkers, our list contains several more pro-
teins that showed high statistically significant positive or negative correlation with BCa
stage with steady increase or decrease, respectively, and according to HPA are associated
with some cancers. To name a few, Importin-4 (IPO4), Peptidyl-prolyl cis-trans isomerase
FKBP1A (FKBP1A), and Polyadenylate-binding protein 4 (PABPC4) are prognostic biomark-
ers for liver and renal cancer; Complement C1q subcomponent subunit A (C1QA) is a
prognostic biomarker for renal cancer; Erlin-2 (ERLIN2) is a prognostic biomarker for
glioma and renal cancer; Intersectin-2 (ITSN2) is a prognostic biomarker for head and
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neck cancer; Tubulointerstitial nephritis antigen-like (TINAGL1) is increased in urothelial
cancers and is prognostic biomarker for renal and thyroid cancers; Septin-9 (SEPTIN9) is a
prognostic biomarker for liver cancer; Rootletin (CROCC) is a prognostic biomarker for
lung and renal cancer. Validation of some of these proteins in the context of BCa might
bring more potential biomarkers for this disease.

It is worth mentioning that this study, besides its reliable design, technical approach,
and high-quality bioinformatics and statistical analysis possesses some limitations. One
of the limitations is the relatively small sample cohorts used for discovery and validation.
Although we have available biobank with considerable number of samples, due to the
often very low amounts of tissue available from Ta tumors with Grade 1, we were restricted
to perform the comparative proteomics analysis with 6 samples per group, or 18 samples
in total. Urine cohorts were restricted in size since the large proportion of samples had
visible hematuria which interfered with ELISA results. Other limitations include variations
in urine storage time and conditions before the delivery to our lab, as well as inherited
variability of the chosen technique for measurement of the proteins in urine.

In order to overcome these limitations and establish more precisely the value of the
proposed biomarkers for non-invasive BCa detection and prognosis, several aspects need
to be included in future studies. First, validation of NNMT, GALK1, and HTRA1 and other
candidates tightly correlated with BCa stage needs to be performed using larger patient
cohorts of BCa including benign conditions such as cystitis, samples with hematuria, as
well as other tumors from the urogenital tract (prostate, and renal). Inclusion of samples
from other urogenital cancers is of particular importance as the identified and validated
biomarkers in this study are not bladder-specific but ubiquitously expressed proteins
which are often dysregulated in cancer. Second, assessment of the protein intra- and
inter-variability in urine is a critical step toward clinical application. Third, comparison
of the ELISA results with other methods for precise quantification, preferably targeted
proteomics. This would be necessary in particularly for urine samples with hematuria
which are prevalent in BCa patients. The findings from this study also open the way for
testing the transcription levels of the proposed protein candidates in tissue and urine, which
could lead to the development of more rapid and cost-effective test for BCa prognosis.

4. Materials and Methods
4.1. Patients Samples

The tissue samples used for the proteomics profiling are part of the RCGEB MASA
biobank of snap-frozen tumors from patients with BCa. This biobank currently includes
tissue and/or urine samples from approximately 170 patients. The diagnosis of the patients
was based on histological evaluation of the tissues obtained by surgical procedure. The
biobank contains tissue and urine samples from all stages of BCa with tumor sizes from Ta
to T3, classified into Grade 1 (n = 33), Grade 2 (n = 78), and Grade 3 (n = 61). The study was
designed to investigate proteomics alterations in BCa progression starting from low-grade
(G1) Ta tumors to high-grade (G2–G3) T1–T2 tumors. For the comparative proteomics
analysis by label-free data-independent LC-MS/MS, a total of 18 tissue samples were
profiled, grouped into 3 groups of 6 samples each: (1) Group 1 (Ta, G1), (2) Group 2 (T1,
G2–G3) and (3) Group 3 (T2–T3, G3). Patients were aged 39–82 years with no significant
differences among groups regarding age (Table 3, Supplementary Table S3).

The selected potential biomarkers from the comparative tissue proteomics analysis
were tested in urine samples from BCa patients and controls. We had two cohorts of urine
samples: Cohort I consisted of samples taken during the cystoscopy and frozen immediately
at −80 ◦C without any processing; and Cohort II consisted of urine samples collected
according to standard guidelines as first-morning urine, that were further centrifuged at
1000× g for 10 min to remove cell debris, aliquoted in 1.5 mL tubes, and stored at −80 ◦C
until use. As a first criterion, we preselected the urine samples, excluding samples with
hematuria. Although the initial aim was for Cohort I to include urine samples from the
same patients that were included in the comparative tissue proteomics analysis, in the end
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only 5 urine samples were included from these patients, due to the presence of hematuria
in the remaining samples. The remaining samples that had no hematuria were from other
patients. Currently, the biobank contains a limited number of urine samples collected
during the cystoscopy we had only 24 urine samples without hematuria, divided into
the following groups: Group 1 (Ta, G1) (n = 9); Group 2 (Ta, G2) (n = 9); Group 3 (T1,
G3) (n = 4) and Group 4 (T2, G2–G3) (n = 2). Cohort II consisted of 52 urine samples of
which, 8 controls without BCa and 44 BCa samples without hematuria were divided into
the following groups: Group 1 (Ta, G1) (n = 16); Group 2 (T1, G2–G3) (n = 13); and Group 3
(T2, G3) (n = 15). There were no significant differences among groups regarding age in both
urine cohorts (Table 3, Supplementary Table S3).

Table 3. Summary of the clinical and histopathological data of patients included in the study.

Group Diagnosis Patients
Per Group Age (Mean ± SD) Age

(Median)

TNM Classification
Grade

T N M

Tissue samples for the discovery of proteomics

Group 1 (Ta, G1)
Non-invasive
low-grade papillary
urothelial carcinoma

6 58.5 ± 9.8 62 Ta N0 M0 I

Group 2 (T1,
G2–G3)

Invasive
low/high-grade
papillary urothelial
carcinoma

6 62.2 ± 6.7 62 T1 N0 M0 II–III

Group 3
(T2–T3, G3)

Invasive/Infiltrative
high-grade papillary
urothelial carcinoma

6 72.2 ± 8.0 73.5 T2–T3 Nx Mx III

Urine cohort I for ELISA validation

Group 1 (Ta, G1)
Non-invasive
low-grade papillary
urothelial carcinoma

9 58.2 ± 12.0 63 Ta N0 M0 I

Group 2 (Ta, G2)
Non-invasive
low-grade papillary
urothelial carcinoma

9 69.9 ± 6.6 68 Ta N0 M0 II

Group 3 (T1, G3)
Invasive high-grade
papillary urothelial
carcinoma

4 69.5 ± 1.3 69.5 T1 N0 M0 III

Group 4 (T2,
G2–G3)

Infiltrative high-grade
papillary urothelial
carcinoma

2 76.0 ± 7.1 76 T2 Nx Mx II–III

Urine cohort II for ELISA validation

Group 1 (Ta, G1)
Non-invasive
low-grade papillary
urothelial carcinoma

16 64.6 ± 14.3 65 Ta N0 M0 I

Group 2 (T1,
G2–G3)

Invasive
low/high-grade
papillary urothelial
carcinoma

13 64.6 ± 7.8 64 T1 N0 M0 II–III

Group 3 (T2, G3)
Invasive/Infiltrative
high-grade papillary
urothelial carcinoma

15 68.9 ± 10.3 66 T2 Nx Mx III

Control group / 8 48.9 ± 9.8 47 / / / /

4.2. Sample Preparation

Protein extraction from the fresh frozen tissues (10–15 mg per sample) was pulver-
ized with liquid nitrogen. Tissue powder was dispersed in Lysis buffer (4% SDS, 5 mM
MgCl2x6H2O, 10 mM CHAPS, 100 mM NH4HCO3, 50 mM DTT) in a 1:20 ratio (w/v),
mixed and allowed to dissolve by sonication in an ice bath for 30 min. If the samples
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were viscous, Lysis buffer was added to max. 10% of the starting volume and the samples
were vortexed and sonicated again. The protein content was quantified by the Bradford
method [59]. Samples were prepared for LC-MS/MS using RapiGest [60] as previously
described in detail [61].

4.3. LC-MS/MS Data Acquisition

A label-free LC-MS/MS protein profiling was performed using ACQUITY UPLC®

M-Class (Waters Corporation, Milford, MA, USA) coupled with SYNAPT G2-Si High
Definition Mass Spectrometer (Waters Corporation, Milford, MA, USA). Data were obtained
using ion-mobility separation (IMS) acquisition named ultradefinition MSE (UDMSE) [62].
Optimization and determination of the optimal peptide load on column was performed
using pool sample, containing an equal amount of each 18 individual samples. The pool
sample was run from 100–400 ng per run. The determined optimal concentration was
400 ng per run. Each sample had one test run and initial data processing with ProteinLynx
Global SERVER (PLGS, version 3.0.3, Waters Corporation, Milford, MA, USA) for quality
assurance, followed by a run at the optimal concentration.

Peptides were trapped on an ACQUITY UPLC M-Class Trap column Symmetry C18,
5 µm particles, 180 µm × 20 mm, (Waters Corporation), followed by separation on AC-
QUITY UPLC M-Class reverse phase C18 column HSS T3, 1.8 µm, 75 µm × 250 mm (Waters
Corporation, Milford, MA, US) at a flow rate of 300 nL/min using 90 min multistep concave
gradient [63]. Lock mass compound Glu-1-Fibrinopeptide B (EGVNDNEEGFFSAR) with
a concentration of 100 fmol/µL was delivered by the auxiliary pump of the LC system
at 500 nL/min, every 45 s. Spectra were recorded in resolution positive ion mode. Mass
spectrometric settings were as previously described in detail [61].

4.4. LC-MS/MS Data Processing

Data was searched against the UniProtKB/Swiss-Prot database containing 20,370 pro-
teins (June 2020), with added yeast alcohol dehydrogenase (UniProt P00330) sequence.
Test runs were processed using PLGS (Waters Corporation) with the following settings:
(1) low energy (LE) and high energy (HE) threshold settings of 150 counts and 30 counts,
respectively; (2) Precursor and fragment ion mass tolerances set to auto; (3) Search settings
included one missed cleavages, carbamidomethyl C as a fixed modification, and oxidized
M as a variable modification; (4) A minimum of two fragment ion matches was required
per peptide identification and five fragment ion matches per protein identification, with at
least one peptide match per protein identification; (5) The protein false discovery rate (FDR)
was set to a 1%; (6) internal standard protein, P00330 with concentration of 25 fmol/µL.
The data were post-acquisition lock mass corrected using the doubly charged monoisotopic
ion of [Glu1]-Fibrinopeptide B. The typical range of RMS error for precursor and product
ions for were ±5 and ±10 ppm, respectively.

Comparative proteomics analysis was carried out using Progenesis QIP version 4.1
(Nonlinear dynamics, Waters Corporation). The following settings were applied: (1) LE
and HE threshold set to auto; (2) reference run-auto; (3) normalization-“normalize to all
proteins”; (4) digest reagent-trypsin; (5) maximum missed cleavages-one; (6) maximum pro-
tein mass-250 kDa; (7) fixed modifications–carbamidomethyl C; (8) variable modification–
oxidation M; (9) peptide tolerance-auto; (10) fragment tolerance-auto; (11) FDR < 1%;
(12) Ion matching requirements as in PLGS processing; (13) Quantification based on non-
conflicting peptides; (14) Grouping of similar proteins; (15) The combined target-decoy
database for database search. Data were further filtrated to remove peptides with a se-
quence length of less than six amino acids and a score below 4. Proteins and peptides were
exported in the form of a .csv output files for subsequent data analysis. The calculated FDR
on the whole dataset level was 3.68%.
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4.5. Quantitative Measurement of Candidate Proteins in Urine

For the quantitative measurement of the selected proteins in urine, we used the fol-
lowing ELISA kits: Human Nicotinamide-N-Methyltransferase (NNMT) ELISA (Cat. No.:
MBS453001) with a lower limit of detection (LLD) = 0.059 ng/mL; Human Galactokinase 1
(GALK1) ELISA Kit (Cat. No.: MBS8804227) with LLD = 1.57 ng/mL; and Human Serine
protease HTRA1 (HTRA1) ELISA Kit (Cat. No.: MBS902316) with LLD = 0.39 ng/mL.
ELISA kits were purchased from MyBioSource.com. Samples were assayed using 100 µL
undiluted urine, in duplicate, according to the manufacturer’s instructions. The concen-
trations of NNMT, GALK1, and HTRA1 were normalized to urine creatinine to correct for
variations in urinary concentration.

4.6. Data Analysis

Differentially abundant proteins were selected based on Anova ≤ 0.05. Statistically
significant protein levels between groups were determined by the Mann–Whitney U test
and corrected using the Benjamini-Hochberg procedure [64]. Panther [65] and STRING [66]
databases were used for functional annotation and enrichment analysis, respectively.
STRING settings included (1) full STRING network; (2) evidence setting; (3) all active
interaction sources; (4) medium confidence score; and (5) max number of interactors to
show, for the 1st shell-none/query proteins only, and for the 2nd shell-none. The tissue
specificity and distribution of the selected proteins in the normal bladder tissue and in
cancer was evaluated based on the mRNA expression data from Human Protein Atlas
version 21.0 [67].

Statistical analyses included: (1) Shapiro–Wilk, Anderson-Darling, Lilliefors, and
Jarque-Bera tests for data distribution; (2) Mann–Whitney U-test for two-sample compar-
isons; (3) Spearman’s rho correlation for the correlation of the quantitative proteomics
data with the patient’s clinical and histopathological reports; (4) logistic regression with
clinical diagnosis or cancer stage as the dependent variable and protein concentrations as
independent variables; and (5) Receiver operating characteristic (ROC) curves. Diagnos-
tic performance was defined by area under the curve (AUC). A confidence level of 95%
(p < 0.05) was considered significant for all performed tests. These tests were performed
using XLSTAT software ver. 2022.1.2 (https://www.xlstat.com).

5. Conclusions

Using comparative proteomics approach in analyzing BCa tissues ranging from initial
to advanced stages, we have identified pathways that are involved in BCa pathogenesis
and panel of potential biomarker candidates that displayed strong correlation with the
progression of the disease. We chose to validate three candidate biomarkers, NNMT,
GALK1, and HTRA1, for which limited data about their relationship with BCa, based
mainly on gene expression and IHC methods, was available. Validation revealed a clinically
relevant correlation between tissue and urine concentrations of NNMT and GALK1 with
BCa. Our study for the first time accessed the protein levels of NNMT and GALK1 in
BCa patients’ tissues and urine as well as reported their correlation with disease stage.
The observed relationship proposes two new biomarkers for non-invasive diagnosis and
prognosis of BCa. In addition, this study opens a way to further testing and validation of
more high-quality proteomics biomarkers that could ultimately add value to the clinical
management of BCa.
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