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Abstract: Intrinsically disordered regions (IDRs) are protein regions that are unable to fold into stable
tertiary structures, enabling their involvement in key signaling and regulatory functions via dynamic
interactions with diverse binding partners. An understanding of IDRs and their association with
biological function may help elucidate the pathogenesis of inherited retinal diseases (IRDs). The
main focus of this work was to investigate the degree of disorder in 14 proteins implicated in IRDs
and their relationship with the number of pathogenic missense variants. Metapredict, an accurate,
high-performance predictor that reproduces consensus disorder scores, was used to probe the degree
of disorder as a function of the amino acid sequence. Publicly available data on gnomAD and ClinVar
was used to analyze the number of pathogenic missense variants. We show that proteins with an
over-representation of missense variation exhibit a high degree of disorder, and proteins with a high
amount of disorder tolerate a higher degree of missense variation. These proteins also exhibit a lower
amount of pathogenic missense variants with respect to total missense variants. These data suggest
that protein function may be related to the overall level of disorder and could be used to refine variant
interpretation in IRDs.

Keywords: inherited retinal diseases; intrinsically disordered proteins; missense variants;
protein structure

1. Introduction

Our understanding of protein function is dependent on crystallography, biochemical
studies, and computational analysis of protein structure. This structure–function paradigm
has been widely applied to proteins that have a well-defined secondary and tertiary struc-
ture [1]. Some protein sequences, which lack hydrophobic amino acids and therefore do
not form a hydrophobic core, do not form a three-dimensional structure [2]. These regions
are referred to as intrinsically disordered regions (IDRs) [1]. Certain amino acids are more
prone to promote IDRs (proline, glutamic acid, serine, glutamine, lysine, alanine, and
glycine), while other amino acids are more prone to promote ordered regions (aspartic
acid, threonine, and arginine). Some are not causative for either disorder or order and
are considered neutral (methionine, asparagine, valine, histidine, leucine, phenylalanine,
isoleucine, tyrosine, tryptophan, and cysteine) [3,4]. Proteins made up entirely of IDRs are
referred to as intrinsically disordered proteins (IDPs). These proteins and protein regions
fluctuate on a continuum of conformations, dynamically shifting in a way that is functional
for their role within the cell [5,6]. Not only do IDRs regulate protein conformations, but
there is evidence that human proteasomes with N-terminal IDRs have significantly shorter
half-lives than proteasomes without these features [7]. Primary sequences of IDRs may
include molecular recognition features or short linear motifs [8]. Molecular recognition
features are short 10–70 amino acid motifs that facilitate protein interaction with other
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smaller molecules, and short linear motifs are conserved sequences of less than ten amino
acids that mediate protein–protein interactions involved in cell signaling [8].

Recently, studies of IDRs and IDPs have become increasingly relevant due to their in-
volvement in important cellular processes, including cell signaling, protein regulation, and
transmembrane transport [9]. The disorder allows these proteins to change conformation,
allowing flexibility [10]. Because of their importance in cellular interaction, IDPs are tightly
regulated and, when altered, are implicated in various diseases [9]. More specifically, IDPs
have been analyzed in the context of cancer, cardiovascular, and neurodegenerative disease
and are postulated as a target for therapeutic modalities [10–12].

The role of IDPs and proteins with IDR regions has yet to be examined in the context
of inherited retinal disease (IRD). The inherited retinal disease includes a heterogeneous
group of diseases that lead to visual impairment caused by numerous nuclear and mito-
chondrial genetic aberrations [13]. Recently, Tanner et al., demonstrated that six IRD genes
(SAMD11, ALMS1, WFS1, RP1L1, KCNV2, ADAMTS18) exhibit an overrepresentation of
nonsynonymous missense variant [14] and that these may constitute “noisy genes,” which
should be interpreted with caution when found in patients. Though our understanding of
why certain proteins tolerate higher percentages of missense variation is currently limited,
we hypothesized that these proteins have a higher percentage of IDRs and thus allow more
flexibility in conformations. In this study, we evaluated 14 genes implicated in IRDs by
examining the predicted ordered and disordered regions within each protein. We catego-
rized proteins into four groups: (1) proteins with overrepresentation of missense variants
(SAMD11, ALMS1, WFS1, RP1L1, KCNV2, and ADAMTS18), (2) transmembrane trans-
port (CNGB1, CNGA1, TRPM1, ABCA4, BEST1, and KCNV2), (3) internal or structural
proteins of the photoreceptors that are essential in visual function (RHO and RPE65), and
(4) secreted proteins (TIMP3 and ADAMTS18). We investigated the disorder content in
each of these proteins and examined their relationship with the number of nonsynonymous
missense variants.

2. Results
2.1. Analysis of Degree of Disorder

Group 1 proteins, namely those that previously had been shown to have an over-
representation of nonsynonymous variants, exhibited the highest degree of disorder with
content found to be 96.5, 87.7, 80.4, 25.3, 22.8, and 13.6% for ALMS1, RP1L1, SAMD11,
KCNV2, WFS1, and ADAMTS18, respectively. Metapredict analysis graphs for ALMS1 and
RHO are shown in Figures 1 and 2, respectively. The remaining proteins in Groups 1–4 are
shown in Figures S1–S12.

Interestingly, Group 3 proteins (important internal proteins for structure and function
in photoreceptors) exhibited the lowest degree of disordered regions. The intrinsic disorder
was 11.4% for RHO and 0% for RPE65. On the other hand, Group 2 (transmembrane
transport proteins expressed in the retina) would be expected to exhibit a high degree
of disorder. In fact, we found disorder content of 60.9% for CNGB1, 44.1% for BEST1,
36.9% for TRPM1, 25.3% for KCNV2, 24.8% for CNGA1, and 10.2% for ABCA4. Finally,
because ADAMTS18 is also a secreted protein, we expanded our analysis to include TIMP3,
a protein that inhibits enzymes and degrades matrix components. Disorder content in
terms of percentages and box plots is displayed in Figure 3A. The comparison of mean
disorder content across the four groups is shown in Figure 3B. The ANOVA showed
p = 0.129, likely because of the small number of proteins evaluated.
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Figure 1. (A) Metapredict generated plots of intrinsically disordered regions as a function of amino
acid residue for ALMS1, a protein with the highest amount of disorder. (B) Overlay of pathogenic
missense variants (top) and total missense variants (bottom) for ALMS1 generated from ClinVar’s
data release.

Figure 2. (A) Metapredict generated plots of intrinsically disordered regions as a function of amino
acid residue for RHO, a protein with the lowest amount of disorder. (B) Overlay of pathogenic missense
variants (top) and total missense variants (bottom) for RHO generated from ClinVar’s data release.
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Figure 3. (A) Disorder content and box plot comparisons for proteins in Groups 1–4. Disorder
content is listed as a percentage in the chart and decimal in the box plot. Yellow = Group 1: over-
representation of missense variants; Blue = Group 2: transmembrane proteins; Green = Group 3:
internal and structural proteins of photoreceptors; Red = Group 4: secreted proteins. (B) Mean
disorder in Groups 1–4.

2.2. Proteins with Higher Disordered Regions Tolerate a Higher Amount of Total Missense Variation

The number of total missense variants for each protein in the four groups was deter-
mined using both ClinVar and gnomAD sources. Data are summarized in Table 1A. With
gnomAD data, linear regression demonstrated a significant positive correlation between
the degree of disorder and the total number of missense variants (p = 0.008, R2 = 0.45,
R= 0.67). This is displayed in Figure 4, top panel. With ClinVar data, linear regression
showed a similar positive linear trend, though the relationship did not approach signifi-
cance (p = 0.277, R2 = 0.0976, R = 0.31). This is displayed in Figure 4, bottom panel. The
ratio between the number of pathogenic missense variants and total missense variants
was calculated for each protein to assess the percentage of pathogenic missense variants;
results are summarized in Table 1B. This ratio is termed % pathogenicity. With ClinVar
data, linear regression showed a significant relationship between the degree of disorder
and % pathogenicity (p = 0.028, R2 = 0.34, R = 0.58) (Figure 5, bottom panel). A similar
relationship was demonstrated with gnomAD data, though it did not approach statistical
significance (p = 0.11, R2 = 0.197, R = 0.44) (Figure 5, top panel). Structural proteins exhibit
the highest % pathogenicity, and over-representation of missense variants shows the lowest
% pathogenicity. Prior to a Benjamini–Hochberg adjustment, p = 0.008 and 0.028 were
considered significant. Following adjustment, p = 0.008 and 0.028 achieved significance.
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Table 1. (A) Number of total missense variants, as obtained from ClinVar and gnomAD data and
pathogenic missense variants for proteins in Groups 1–4. (B) Percentage of pathogenic missense
variants over total missense variants (% pathogenicity), as obtained from ClinVar and gnomAD data
for proteins in Groups 1–4.

(A)

Protein Name # Total Missense
Variants (Clinvar)

# Total Missense
Variants (gnomAD)

# Pathogenic Missense
Variants

SAMD11 186 546 0

ALMS1 1014 2437 5

WFS1 430 890 46

RP1L1 357 2394 3

ADAMTS18 220 919 2

CNGB1 281 779 5

KCNV2 208 606 12

CNGA1 106 358 10

TRPM1 286 914 12

ABCA4 985 1306 268

BEST1 298 289 98

RHO 204 209 102

RPE65 195 284 58

TIMP3 34 68 7

(B)

Protein Name % Pathogenicity (Clinvar) % Pathogenicity (gnomAD)

SAMD11 0 0

ALMS1 0.493096647 0.205170291

WFS1 10.69767442 5.168539326

RP1L1 0.840336134 0.125313283

ADAMTS18 0.909090909 0.217627856

CNGB1 1.779359431 0.641848524

KCNV2 5.769230769 1.98019802

CNGA1 9.433962264 2.793296089

TRPM1 4.195804196 1.312910284

ABCA4 27.20812183 20.52067381

BEST1 32.88590604 33.9100346

RHO 50 48.80382775

RPE65 29.74358974 20.42253521

TIMP3 20.58823529 10.29411765
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Figure 4. Graph of disorder content versus the total number of missense variants. Yellow = Group 1:
over-representation of missense variants; Blue = Group 2: transmembrane proteins; Green = Group 3:
internal and structural proteins of photoreceptors; Red = Group 4: secreted proteins. The number of
total missense variants obtained from gnomAD data (top panel) and ClinVar data (bottom panel).
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Figure 5. Graph of disorder content with respect to % pathogenicity. Percentages are graphed.
Yellow = Group 1: over-representation of missense variants; Blue = Group 2: transmembrane proteins;
Green = Group 3: internal and structural proteins of photoreceptors; Red = Group 4: secreted proteins.
The number of total missense variants was obtained from gnomAD data (top panel) and ClinVar data
(bottom panel).

3. Discussion

Proteins with comparatively higher amounts of the disorder have a higher tolerance
for missense variation. This is because intrinsically disordered protein regions lack a stable
3D structure, which enables rich conformational adaptability and potential for efficient
interaction with diverse binding targets. It also appears that IRD proteins with higher
amounts of the disorder have an over-representation of missense variants and transmem-
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brane proteins. Conversely, proteins that are very structured were noted to be those that
are involved in visual function. This suggests that protein function may be related to the
overall level of disorder and could be used to refine variant interpretation in IRDs. Previous
studies have demonstrated that IDRs are more abundant in membrane proteins than in the
complete proteome, with more than 50% of transmembrane proteins containing IDRs com-
posed of at least 30 residues [15,16]. Our results show that Group 2 transmembrane proteins
exhibit the second-highest degree of disorder, confirming this finding. Wang et al., have
demonstrated the enrichment of missense mutations on protein interaction interfaces [17],
underscoring the impact of missense variants on protein regulatory function. Furthermore,
20% of nonsynonymous SNVs are located in IDRs [18], suggesting that disease variants in
IDRs are equally critical to those in structured domains.

We showed a significant relationship between disorder content and the percentage
of pathogenic missense variants as a fraction of total missense variants. The most ordered
proteins are in Group 3 (structural and internal proteins that are essential for visual function)
and exhibited the highest pathogenic missense variants to total missense variants ratio.
This suggests that highly ordered proteins may be more susceptible to acquiring pathogenic
missense variants, perhaps because of their comparatively limited ability to undergo
conformational changes and thus maintain function. In support of our findings, Laddach
et al., showed that pathogenic missense variants tended to localize to ordered regions [19].
Variants occurring in ordered regions may more greatly destabilize an overall protein
compared with those occurring in a disordered region, which may explain why Group
3 exhibited the greatest number of pathogenic missense variants. Our initial studies are
encouraging in showing a relationship between disorder and variant acceptance, and
further studies are warranted. Present in silico mutation analyses only investigate the effect
of amino acid substitutions on the surrounding local milieu without determining if the
surrounding region is ordered or disordered; adding this assessment as well might improve
our ability to determine the in silico determination of variant pathogenicity.

There are several limitations to this study. Only a selected number of proteins impli-
cated in IRD were probed, so follow-up studies analyzing a greater number of proteins with
broad functional roles are needed for a better understanding of how disordered protein
regions are implicated in IRDs. Only two proteins in Group 3 were evaluated in this initial
study, and these are internal proteins of the photoreceptors that are also essential for visual
function. Though we divided the proteins into four groups, the number of proteins was
too small to obtain a statistically significant difference in disorder between the groups. It
is important to note that this study represents the first evaluation of IDR in IRDs. For the
presented proteins, we demonstrated a positive relationship between IDRs and total mis-
sense variants, and future studies may further evaluate this relationship in other proteins
involved in other IRDs. We categorized proteins in regard to their importance in visual
functionality, but whether certain proteins are more important than others is not within
the scope of this study. Therefore, not all proteins perfectly follow the linear regression
model. Studies on the natural selection of proteins and their association with IDRs will
help elucidate the relative roles of essential proteins within the cell.

Another possible limitation is that Metapredict, an in silico evaluation of IDRs, may
not be fully accurate in disorder prediction. However, Metapredict version 2 was shown
to correctly classify both human transcription factors and de novo synthetic proteins [20],
and the original version was demonstrated to have a low average error rate of two residues
in 100 [21]. Additionally, the cutoff threshold used was 0.5, such that any residue above
a disorder score of 0.5 was considered to be “disordered,” and below 0.5 was considered
“ordered” [21]. This was an increase in threshold score from the legacy version and
predicted a much larger percentage of proteins to be disordered than before, thus decreasing
the number of false negatives [20]. Even with a high degree of accuracy, Uppal et al.,
recently identified a small IDR of 18 amino acids in RPE65 [22]. This suggests that in silico
predictions may not fully resolve small-region IDRs. Furthermore, ClinVar is updated on
a routine basis, and we used the January 2022 version. Newer versions may show minor
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changes when compared with our findings. There have been studies assessing various
deep-learning algorithms that predict disordered protein regions [23,24]. Eventually, our
analysis may become automated as part of artificial intelligence efforts. Finally, future
studies examining how IDRs affect the efficacy of gene therapy are definitely warranted.

4. Materials and Methods

A variety of publicly available bioinformatics tools and databases were used in the
analysis of 14 proteins categorized into four groups.

4.1. Prediction of Intrinsically Disordered Regions

The amino acid sequences of each protein used in this study were obtained through the
National Institutes of Health (NIH) National Library of Medicine Protein search tool. The
Mane Select transcript was selected for each protein. The sequences were then run through
Metapredict to plot the intrinsically disordered regions (IDRs). Metapredict is an accurate,
high-performance predictor of protein disorder and structure that reproduces consensus
disorder scores [21]. Consensus scores report the percentage of independent disorder
predictors that would predict a residue as disordered [21]. The accuracy and execution time
of Metapredict has been previously compared to existing competitor predictors. Analysis
showed that, while Metapredict was approximately two residues per 100 (less accurate
than the highest-performing predictor), it took only 40 s to predict the entire testing dataset
compared with approximately one month for the highest-performing predictor [21].

We input amino acid sequences for each protein into Metapredict and obtained graphs
of disorder as a function of amino acid residue. To complement the graphical representation
of disorder for each protein, we calculated the degree of disorder (defined as the percentage
of IDRs) by taking the number of amino acids within the IDRs divided by the total number
of amino acids.

4.2. Variant Pathogenicity

Databases gnomAD and ClinVar were used to examine the number of pathogenic
missense mutations and total missense mutations for each protein. The gnomAD database
is currently the largest and most widely-accessed publicly available reference population
collection [25] that provides rapid variant analysis. ClinVar is maintained by the National
Institutes of Health and is a public archive of human genetic variants [26]. ClinVar variants
noted in the January 2022 version and included in gnomAD were used to examine the
number of pathogenic missense mutations compared with total missense mutations for
each protein. The number of pathogenic missense variants was obtained on gnomAD by se-
lecting only “pathogenic/likely pathogenic” and “Missense/inframe indel” and manually
excluding any inframe indel variants that may have been included. The number of total mis-
sense variants was obtained on gnomAD as the observed single-nucleotide variants (SNVs)
for the missense category. For each representative protein, genetic maps of pathogenic
missense mutations and total missense mutations were plotted with Metapredict.

4.3. Statistical Analysis

Linear regression was performed in Microsoft Excel to determine the degree of corre-
lation between (1) disorder content and % pathogenicity and (2) disorder content and the
total number of missense variants using both gnomAD and ClinVar data. The coefficient of
determination (R2) was determined, and a p-value of <0.05 was considered significant.

The Benjamini–Hochberg adjustment was employed to decrease the false discovery
rate for multiple hypotheses testing. Critical values were calculated for a total of four
individual p-values with the formula (i/m)×Q, where i designates the p-value rank, m is
the total number of p-values, and Q is the false discovery rate set at 20%.
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5. Conclusions

Our study represents an initial explanatory investigation, and many conclusions are
tentative. For these proteins, the hypothesis is valid. Future work will include categorizing
each variant based on changes to disordered or ordered amino acids and localizing variants
to protein regions. Furthermore, it would be important to elucidate which groups of
proteins exhibit higher percentages of changes to disordered and ordered amino acids to
better predict the relationship between genetic variants, protein function, and disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24021060/s1.
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