Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping
Abstract
:1. Introduction
2. Results
2.1. Overview of the Properties of Solvatochromic BODIPYs and Solvents Explored in the Dataset
2.2. Cluster Analysis of the Solvatochromic Sensitivity
2.2.1. Six-Cluster Dataset of High Solvatochromic Sensitivity
2.2.2. 24-Cluster Dataset of High Solvatochromic Sensitivity
2.2.3. BODIPYs Bearing Near-Zero Solvatochromism
2.3. Analysis of Duplicates and Evaluation of Deviations of Spectral Data
3. Materials and Methods
3.1. Dataset of BODIPYs
3.2. Evaluation of Statistical Deviations in Spectral and Photophysical Data
3.3. Calculation of Solvatochromic Sensitivity of BODIPY Fluorophores
3.4. Clustering the Properties of the Fluorophores and the Graphical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valanciunaite, J.; Kempf, E.; Seki, H.; Danylchuk, D.I.; Peyriéras, N.; Niko, Y.; Klymchenko, A.S. Polarity Mapping of Cells and Embryos by Improved Fluorescent Solvatochromic Pyrene Probe. Anal. Chem. 2020, 92, 6512–6520. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Y.; Chen, Y.; Zheng, J.; Zhang, J.; Li, R.; Wan, H.; Yin, J.; Yuan, Z.; Chen, H. A family of push-pull bio-probes for tracking lipid droplets in living cells with the detection of heterogeneity and polarity. Anal. Chim. Acta 2020, 1096, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Boens, N.; Jiao, L.; Hao, E. Aromatic b-fused BODIPY dyes as promising near-infrared dyes. Org. Biomol. Chem. 2020, 18, 4135–4156. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Otsuka, Y.; Zhang, S.; Takahashi, M.; Yamada, K. A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials 2020, 13, 677. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Mu, X.; Zhang, X.-D.; Ming, D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjug. Chem. 2020, 31, 260–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, K.; Dutta, T.; Koner, A.L. An Enumerated Outlook of Intracellular Micropolarity Using Solvatochromic Organic Fluorescent Probes. ACS Omega 2021, 6, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, S.V. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. Biosensors 2020, 10, 192. [Google Scholar] [CrossRef]
- Solomonov, A.V.; Marfin, Y.S.; Rumyantsev, E.V. Design and applications of dipyrrin-based fluorescent dyes and related organic luminophores: From individual compounds to supramolecular self-assembled systems. Dyes Pigments 2019, 162, 517–542. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Huo, F.; Wen, Y.; Yin, C. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes. Sci. China Chem. 2020, 63, 1742–1755. [Google Scholar] [CrossRef]
- Deng, P.; Xiao, F.; Wang, Z.; Jin, G. A Novel BODIPY Quaternary Ammonium Salt-Based Fluorescent Probe: Synthesis, Physical Properties, and Live-Cell Imaging. Front. Chem. 2021, 9, 89. [Google Scholar] [CrossRef]
- Xiao, H.; Li, P.; Tang, B. Recent progresses in fluorescent probes for detection of polarity. Coord. Chem. Rev. 2021, 427, 213582. [Google Scholar] [CrossRef]
- Jun, J.V.; Chenoweth, D.M.; Petersson, E.J. Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020, 18, 5747–5763. [Google Scholar] [CrossRef] [PubMed]
- Colas, K.; Doloczki, S.; Posada Urrutia, M.; Dyrager, C. Prevalent Bioimaging Scaffolds: Synthesis, Photophysical Properties and Applications. Eur. J. Org. Chem. 2021, 2021, 2133–2144. [Google Scholar] [CrossRef]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.P. Introduction to Fluorescence Sensing; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-60154-6. [Google Scholar]
- Bobrov, A.V.; Kishalova, M.V.; Merkushev, D.A.; Marfin, Y. BODIPY in matrices: Brief review. J. Phys. Conf. Ser. 2021, 1822, 12020. [Google Scholar] [CrossRef]
- Martynov, V.I.; Pakhomov, A.A. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russ. Chem. Rev. 2021, 90, 1213–1262. [Google Scholar] [CrossRef]
- Wan, Z.; Yu, S.; Wang, Q.; Tobia, J.; Chen, H.; Li, Z.; Liu, X.; Zhang, Y. A BODIPY-Based Far-Red-Absorbing Fluorescent Probe for Hypochlorous Acid Imaging. ChemPhotoChem 2022, 6, e202100250. [Google Scholar] [CrossRef]
- Ma, C.; Sun, W.; Xu, L.; Qian, Y.; Dai, J.; Zhong, G.; Hou, Y.; Liu, J.; Shen, B. A minireview of viscosity-sensitive fluorescent probes: Design and biological applications. J. Mater. Chem. B 2020, 8, 9642–9651. [Google Scholar] [CrossRef]
- Kimura, R.; Kitakado, H.; Osuka, A.; Saito, S. Flapping Peryleneimide as a Fluorescent Viscosity Probe: Comparison with BODIPY and DCVJ Molecular Rotors. BCSJ 2020, 93, 1102–1106. [Google Scholar] [CrossRef]
- Liu, X.; Chi, W.; Qiao, Q.; Kokate, S.V.; Cabrera, E.P.; Xu, Z.; Liu, X.; Chang, Y.-T. Molecular Mechanism of Viscosity Sensitivity in BODIPY Rotors and Application to Motion-Based Fluorescent Sensors. ACS Sens. 2020, 5, 731–739. [Google Scholar] [CrossRef]
- Zhang, J.; He, B.; Hu, Y.; Alam, P.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Stimuli-Responsive AIEgens. Adv. Mater. 2021, 33, e2008071. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Sasaki, S.; Sairi, A.S.; Iwai, R.; Tang, B.Z.; Konishi, G. Principles of Aggregation-Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications. Angew. Chem. Int. Ed Engl. 2020, 59, 9856–9867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Jiang, Z.; Yan, M.; Wang, X. Recent Progress of BODIPY Dyes with Aggregation-Induced Emission. Front. Chem. 2019, 7, 712. [Google Scholar] [CrossRef]
- Filatov, M.A. Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Org. Biomol. Chem. 2020, 18, 10–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Dick, B.; Zhao, J. Twisted Bodipy derivative as a heavy-atom-free triplet photosensitizer showing strong absorption of yellow light, intersystem crossing, and a high-energy long-lived triplet state. Org. Lett. 2020, 22, 5535. [Google Scholar] [CrossRef]
- Chen, K.; Dong, Y.; Zhao, X.; Imran, M.; Tang, G.; Zhao, J.; Liu, Q. Bodipy Derivatives as Triplet Photosensitizers and the Related Intersystem Crossing Mechanisms. Front. Chem. 2019, 7, 821. [Google Scholar] [CrossRef] [Green Version]
- Kand, D.; Liu, P.; Navarro, M.X.; Fischer, L.J.; Rousso-Noori, L.; Friedmann-Morvinski, D.; Winter, A.H.; Miller, E.W.; Weinstain, R. Water-Soluble BODIPY Photocages with Tunable Cellular Localization. J. Am. Chem. Soc. 2020, 142, 4970–4974. [Google Scholar] [CrossRef]
- Shrestha, P.; Dissanayake, K.C.; Gehrmann, E.J.; Wijesooriya, C.S.; Mukhopadhyay, A.; Smith, E.A.; Winter, A.H. Efficient Far-Red/Near-IR Absorbing BODIPY Photocages by Blocking Unproductive Conical Intersections. J. Am. Chem. Soc. 2020, 142, 15505–15512. [Google Scholar] [CrossRef]
- Singh, P.K.; Majumdar, P.; Singh, S.P. Advances in BODIPY photocleavable protecting groups. Coord. Chem. Rev. 2021, 449, 214193. [Google Scholar] [CrossRef]
- Contreras-García, E.; Lozano, C.; García-Iriepa, C.; Marazzi, M.; Winter, A.H.; Torres, C.; Sampedro, D. Controlling Antimicrobial Activity of Quinolones Using Visible/NIR Light-Activated BODIPY Photocages. Pharmaceutics 2022, 14, 1070. [Google Scholar] [CrossRef]
- Shrestha, P.; Mukhopadhyay, A.; Dissanayake, K.C.; Winter, A.H. Efficiency of Functional Group Caging with Second-Generation Green- and Red-Light-Labile BODIPY Photoremovable Protecting Groups. J. Org. Chem. 2022, 87, 14334–14341. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.; Lan, X.; Liu, S.; Jia, W.; Cheng, W.; Cheng, J.; Liu, Z. Synthesis and bioimaging of a BODIPY-based fluorescence quenching probe for Fe3. RSC Adv. 2022, 12, 21332–21339. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y. BODIPY Dyes and Their Analogues. In Progress in the Science of Functional Dyes; Ooyama, Y., Yagi, S., Eds.; Springer: Singapore, 2021; pp. 119–220. ISBN 978-981-33-4391-7. [Google Scholar]
- Lee, J.-S.; Kim, H.K.; Feng, S.; Vendrell, M.; Chang, Y.-T. Accelerating fluorescent sensor discovery: Unbiased screening of a diversity-oriented BODIPY library. Chem. Commun. 2011, 47, 2339–2341. [Google Scholar] [CrossRef]
- Zhai, D.; Lee, S.-C.; Vendrell, M.; Leong, L.P.; Chang, Y.-T. Synthesis of a novel BODIPY library and its application in the discovery of a fructose sensor. ACS Comb. Sci. 2012, 14, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Er, J.C.; Tang, M.K.; Chia, C.G.; Liew, H.; Vendrell, M.; Chang, Y.-T. MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem. Sci. 2013, 4, 2168. [Google Scholar] [CrossRef]
- Alamudi, S.H.; Satapathy, R.; Kim, J.; Su, D.; Ren, H.; Das, R.; Hu, L.; Alvarado-Martínez, E.; Lee, J.Y.; Hoppmann, C.; et al. Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 2016, 7, 11964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittel, A.M.; Davis, A.M.; Wang, L.; Nederlof, M.A.; Escobedo, J.O.; Strongin, R.M.; Gibbs, S.L. Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy. Sci. Rep. 2018, 8, 4590. [Google Scholar] [CrossRef] [Green Version]
- Bittel, A.M.; Saldivar, I.S.; Dolman, N.J.; Nan, X.; Gibbs, S.L. Superresolution microscopy with novel BODIPY-based fluorophores. PLoS ONE 2018, 13, e0206104. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Kang, N.-Y.; Kim, Y.K.; Samanta, A.; Feng, S.; Kim, H.K.; Vendrell, M.; Park, J.H.; Chang, Y.-T. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J. Am. Chem. Soc. 2009, 131, 10077–10082. [Google Scholar] [CrossRef]
- Su, D.; Teoh, C.L.; Kang, N.-Y.; Yu, X.; Sahu, S.; Chang, Y.-T. Synthesis and systematic evaluation of dark resonance energy transfer (DRET)-based library and its application in cell imaging. Chem. Asian J. 2015, 10, 581–585. [Google Scholar] [CrossRef]
- Vendrell, M.; Krishna, G.G.; Ghosh, K.K.; Zhai, D.; Lee, J.-S.; Zhu, Q.; Yau, Y.H.; Shochat, S.G.; Kim, H.; Chung, J.; et al. Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun. 2011, 47, 8424–8426. [Google Scholar] [CrossRef] [PubMed]
- Joung, J.F.; Han, M.; Jeong, M.; Park, S. Experimental database of optical properties of organic compounds. Sci. Data 2020, 7, 295. [Google Scholar] [CrossRef] [PubMed]
- Joung, J.F.; Han, M.; Hwang, J.; Jeong, M.; Choi, D.H.; Park, S. Deep Learning Optical Spectroscopy Based on Experimental Database: Potential Applications to Molecular Design. JACS Au 2021, 1, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.-W.; Bai, H.; Li, B.; Liu, R. Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields. J. Chem. Inf. Model. 2021, 61, 1053–1065. [Google Scholar] [CrossRef]
- Ye, Z.-R.; Huang, I.-S.; Chan, Y.-T.; Li, Z.-J.; Liao, C.-C.; Tsai, H.-R.; Hsieh, M.-C.; Chang, C.-C.; Tsai, M.-K. Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach. RSC Adv. 2020, 10, 23834–23841. [Google Scholar] [CrossRef]
- Lin, Z.; Kohn, A.W.; van Voorhis, T. Toward Prediction of Nonradiative Decay Pathways in Organic Compounds II: Two Internal Conversion Channels in BODIPYs. J. Phys. Chem. C 2020, 124, 3925–3938. [Google Scholar] [CrossRef]
- Matarranz, B.; Fernández, G. BODIPY dyes: Versatile building blocks to construct multiple types of self-assembled structures. Chem. Phys. Rev. 2021, 2, 41304. [Google Scholar] [CrossRef]
- López Arbeloa, F.; Bañuelos Prieto, J.; Martínez Martínez, V.; Arbeloa López, T.; López Arbeloa, I. Intramolecular charge transfer in pyrromethene laser dyes: Photophysical behaviour of PM650. Chemphyschem 2004, 5, 1762–1771. [Google Scholar] [CrossRef]
- Qin, W.; Baruah, M.; Sliwa, M.; van der Auweraer, M.; Borggraeve, W.M.D.; Beljonne, D.; van Averbeke, B.; Boens, N. Ratiometric, fluorescent BODIPY dye with aza crown ether functionality: Synthesis, solvatochromism, and metal ion complex formation. J. Phys. Chem. A 2008, 112, 6104–6114. [Google Scholar] [CrossRef]
- Qin, W.; Dou, W.; Leen, V.; Dehaen, W.; van der Auweraer, M.; Boens, N. A ratiometric, fluorescent BODIPY-based probe for transition and heavy metal ions. RSC Adv. 2016, 6, 7806–7816. [Google Scholar] [CrossRef]
- Orte, A.; Debroye, E.; Ruedas-Rama, M.J.; Garcia-Fernandez, E.; Robinson, D.; Crovetto, L.; Talavera, E.M.; Alvarez-Pez, J.M.; Leen, V.; Verbelen, B.; et al. Effect of the substitution position (2, 3 or 8) on the spectroscopic and photophysical properties of BODIPY dyes with a phenyl, styryl or phenylethynyl group. RSC Adv. 2016, 6, 102899–102913. [Google Scholar] [CrossRef] [Green Version]
- Filarowski, A.; Kluba, M.; Cieślik-Boczula, K.; Koll, A.; Kochel, A.; Pandey, L.; Borggraeve, W.M.D.; van der Auweraer, M.; Catalán, J.; Boens, N. Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochem. Photobiol. Sci. 2010, 9, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Ooyama, Y.; Yagi, S. (Eds.) Progress in the Science of Functional Dyes; Springer: Singapore, 2021; ISBN 978-981-33-4391-7. [Google Scholar]
- Telegin, F.Y.; Marfin, Y.S. New insights into quantifying the solvatochromism of BODIPY based fluorescent probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119683. [Google Scholar] [CrossRef] [PubMed]
- Telegin, F.Y.; Marfin, Y.S. Polarity and Structure of BODIPYs: A Semiempirical and Chemoinformation Analysis. Russ. J. Inorg. Chem. 2022, 67, 362–374. [Google Scholar] [CrossRef]
- López Arbeloa, F.; López Arbeloa, T.; López Arbeloa, I.; García-Moreno, I.; Costela, A.; Sastre, R.; Amat-Guerri, F. Photophysical and lasing properties of pyrromethene567 dye in liquid solution: Environment effects. Chem. Phys. 1998, 236, 331–341. [Google Scholar] [CrossRef]
- López Arbeloa, F.; López Arbeloa, T.; López Arbeloa, I. Electronic spectroscopy of pyrromethene 546. J. Photochem. Photobiol. A Chem. 1999, 121, 177–182. [Google Scholar] [CrossRef]
- Bañuelos Prieto, J.; López Arbeloa, F.; Martinez Martinez, V.; Arbeloa López, T.; Amat-Guerri, F.; Liras, M.; López Arbeloa, I. Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: Internal conversion mechanisms. Chem. Phys. Lett. 2004, 385, 29–35. [Google Scholar] [CrossRef]
- Bañuelos Prieto, J.; López Arbeloa, F.; Martínez Martínez, V.; Arbeloa López, T.; López Arbeloa, I. Photophysical Properties of the Pyrromethene 597 Dye: Solvent Effect. J. Phys. Chem. A 2004, 108, 5503–5508. [Google Scholar] [CrossRef]
- Shen, Z.; Röhr, H.; Rurack, K.; Uno, H.; Spieles, M.; Schulz, B.; Reck, G.; Ono, N. Boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors--en route to a new class of highly emissive fluorophores for the red spectral range. Chemistry 2004, 10, 4853–4871. [Google Scholar] [CrossRef]
- Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R.A.L.; Beljonne, D.; van der Auweraer, M.; Borggraeve, W.M.D.; Boens, N. Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution. J. Phys. Chem. A 2006, 110, 5998–6009. [Google Scholar] [CrossRef]
- Qin, W.; Baruah, M.; Borggraeve, W.M.D.; Boens, N. Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. J. Photochem. Photobiol. A Chem. 2006, 183, 190–197. [Google Scholar] [CrossRef]
- Cieślik-Boczula, K.; Burgess, K.; Li, L.; Nguyen, B.; Pandey, L.; Borggraeve, W.M.D.; van der Auweraer, M.; Boens, N. Photophysics and stability of cyano-substituted boradiazaindacene dyes. Photochem. Photobiol. Sci. 2009, 8, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Leen, V.; Dehaen, W.; Cui, J.; Xu, C.; Tang, X.; Liu, W.; Rohand, T.; Beljonne, D.; van Averbeke, B.; et al. 3,5-Dianilino Substituted Difluoroboron Dipyrromethene: Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations †. J. Phys. Chem. C 2009, 113, 11731–11740. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Mula, S.; Chattopadhyay, S.; Banerjee, M. Photophysical properties of the 8-phenyl analogue of PM567: A theoretical rationalization. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 739–744. [Google Scholar] [CrossRef]
- Leen, V.; Qin, W.; Yang, W.; Cui, J.; Xu, C.; Tang, X.; Liu, W.; Robeyns, K.; van Meervelt, L.; Beljonne, D.; et al. Synthesis, spectroscopy, crystal structure determination, and quantum chemical calculations of BODIPY dyes with increasing conformational restriction and concomitant red-shifted visible absorption and fluorescence spectra. Chem. Asian J. 2010, 5, 2016–2026. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, J.; Arbeloa, F.L.; Martinez, V.; Liras, M.; Costela, A.; Moreno, I.G.; Arbeloa, I.L. Difluoro-boron-triaza-anthracene: A laser dye in the blue region. Theoretical simulation of alternative difluoro-boron-diaza-aromatic systems. Phys. Chem. Chem. Phys. 2011, 13, 3437–3445. [Google Scholar] [CrossRef] [PubMed]
- Boens, N.; Leen, V.; Dehaen, W.; Wang, L.; Robeyns, K.; Qin, W.; Tang, X.; Beljonne, D.; Tonnelé, C.; Paredes, J.M.; et al. Visible absorption and fluorescence spectroscopy of conformationally constrained, annulated BODIPY dyes. J. Phys. Chem. A 2012, 116, 9621–9631. [Google Scholar] [CrossRef]
- Yin, Z.; Tam, A.Y.-Y.; Wong, K.M.-C.; Tao, C.-H.; Li, B.; Poon, C.-T.; Wu, L.; Yam, V.W.-W. Functionalized BODIPY with various sensory units--a versatile colorimetric and luminescent probe for pH and ions. Dalton Trans. 2012, 41, 11340–11350. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, P.; Cao, J.; Zhang, Y.; Wang, X.; Yang, Y.; Zhang, Y.; Zhang, J. 6-Hydroxyindole-based borondipyrromethene: Synthesis and spectroscopic studies. Org. Biomol. Chem. 2012, 10, 267–272. [Google Scholar] [CrossRef]
- Nano, A.; Ziessel, R.; Stachelek, P.; Harriman, A. Charge-recombination fluorescence from push-pull electronic systems constructed around amino-substituted styryl-BODIPY dyes. Chemistry 2013, 19, 13528–13537. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Li, B.; Zhang, L.; Liu, X. Triphenylamine-cored tetramethyl-BODIPY dyes: Synthesis, photophysics and lasing properties in organic media. RSC Adv. 2013, 3, 14993. [Google Scholar] [CrossRef]
- Boens, N.; Wang, L.; Leen, V.; Yuan, P.; Verbelen, B.; Dehaen, W.; van der Auweraer, M.; Borggraeve, W.D.D.; van Meervelt, L.; Jacobs, J.; et al. 8-HaloBODIPYs and their 8-(C, N, O, S) substituted analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations. J. Phys. Chem. A 2014, 118, 1576–1594. [Google Scholar] [CrossRef] [PubMed]
- Caltagirone, C.; Arca, M.; Falchi, A.M.; Lippolis, V.; Meli, V.; Monduzzi, M.; Nylander, T.; Rosa, A.; Schmidt, J.; Talmon, Y.; et al. Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Adv. 2015, 5, 23443–23449. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.-T.; Xiong, J.-B.; Zheng, Y.-S.; Pan, B.; Zhang, C.; Wang, L.; Xie, Y. Multicolor Emissions by the Synergism of Intra/Intermolecular Slipped π–π Stackings of Tetraphenylethylene-DiBODIPY Conjugate. Chem. Mater. 2015, 27, 7812–7819. [Google Scholar] [CrossRef]
- Filarowski, A.; Lopatkova, M.; Lipkowski, P.; van der Auweraer, M.; Leen, V.; Dehaen, W. Solvatochromism of BODIPY-Schiff dye. J. Phys. Chem. B 2015, 119, 2576–2584. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Yu, C.; Wang, J.; Briggs, E.A.; Besley, N.A.; Robinson, D.; Ruedas-Rama, M.J.; Orte, A.; Crovetto, L.; Talavera, E.M.; et al. Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes. RSC Adv. 2015, 5, 89375–89388. [Google Scholar] [CrossRef]
- Thorat, K.G.; Kamble, P.; Mallah, R.; Ray, A.K.; Sekar, N. Congeners of Pyrromethene-567 Dye: Perspectives from Synthesis, Photophysics, Photostability, Laser, and TD-DFT Theory. J. Org. Chem. 2015, 80, 6152–6164. [Google Scholar] [CrossRef]
- Waddell, P.G.; Liu, X.; Zhao, T.; Cole, J.M. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations. Dyes Pigments 2015, 116, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Bacalum, M.; Wang, L.; Boodts, S.; Yuan, P.; Leen, V.; Smisdom, N.; Fron, E.; Knippenberg, S.; Fabre, G.; Trouillas, P.; et al. A Blue-Light-Emitting BODIPY Probe for Lipid Membranes. Langmuir 2016, 32, 3495–3505. [Google Scholar] [CrossRef]
- Gupta, N.; Reja, S.I.; Bhalla, V.; Gupta, M.; Kaur, G.; Kumar, M. A bodipy based fluorescent probe for evaluating and identifying cancer, normal and apoptotic C6 cells on the basis of changes in intracellular viscosity. J. Mater. Chem. B 2016, 4, 1968–1977. [Google Scholar] [CrossRef]
- Marfin, Y.S.; Vodyanova, O.S.; Merkushev, D.A.; Usoltsev, S.D.; Kurzin, V.O.; Rumyantsev, E.V. Effect of π-Extended Substituents on Photophysical Properties of BODIPY Dyes in Solutions. J. Fluoresc. 2016, 26, 1975–1985. [Google Scholar] [CrossRef] [PubMed]
- Telore, R.D.; Jadhav, A.G.; Sekar, N. NLOphoric and solid state emissive BODIPY dyes containing N -phenylcarbazole core at meso position—Synthesis, photophysical properties of and DFT studies. J. Lumin. 2016, 179, 420–428. [Google Scholar] [CrossRef]
- Vu, T.T.; Méallet-Renault, R.; Clavier, G.; Trofimov, B.A.; Kuimova, M.K. Tuning BODIPY molecular rotors into the red: Sensitivity to viscosity vs. temperature. J. Mater. Chem. C 2016, 4, 2828–2833. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Fan, J.; Mu, H.; Zhu, T.; Zhang, Z.; Du, J.; Peng, X. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes. Sci. Rep. 2016, 6, 35627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrushenko, K.B.; Petrushenko, I.K.; Petrova, O.V.; Sobenina, L.N.; Trofimov, B.A. Novel environment-sensitive 8-CF3 -BODIPY dye with 4-(dimethylamino)phenyl group at the 3-position: Synthesis and optical properties. Dyes Pigments 2017, 136, 488–495. [Google Scholar] [CrossRef]
- Sadak, A.E.; Gören, A.C.; Bozdemir, Ö.A.; Saraçoğlu, N. Synthesis of Novel meso- Indole- and meso-Triazatruxene-BODIPY Dyes. ChemistrySelect 2017, 2, 10512–10516. [Google Scholar] [CrossRef]
- Suhina, T.; Amirjalayer, S.; Woutersen, S.; Bonn, D.; Brouwer, A.M. Ultrafast dynamics and solvent-dependent deactivation kinetics of BODIPY molecular rotors. Phys. Chem. Chem. Phys. 2017, 19, 19998–20007. [Google Scholar] [CrossRef]
- Thorat, K.G.; Ray, A.K.; Sekar, N. Modulating TICT to ICT characteristics of acid switchable red emitting boradiazaindacene chromophores: Perspectives from synthesis, photophysical, hyperpolarizability and TD-DFT studies. Dyes Pigment. 2017, 136, 321–334. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Feng, N. Photoinduced Electron Transfer-based Halogen-free Photosensitizers: Covalent meso-Aryl (Phenyl, Naphthyl, Anthryl, and Pyrenyl) as Electron Donors to Effectively Induce the Formation of the Excited Triplet State and Singlet Oxygen for BODIPY Compounds. Chem. Asian J. 2017, 12, 2447–2456. [Google Scholar] [CrossRef]
- Leen, V.; Laine, M.; Ngongo, J.M.; Lipkowski, P.; Verbelen, B.; Kochel, A.; Dehaen, W.; van der Auweraer, M.; Nadtochenko, V.; Filarowski, A. Impact of the Keto-Enol Tautomeric Equilibrium on the BODIPY Chromophore. J. Phys. Chem. A 2018, 122, 5955–5961. [Google Scholar] [CrossRef]
- Mallah, R.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Excitation energy transfer processes in BODIPY based donor-acceptor system—Synthesis, photophysics, NLO and DFT study. Opt. Mater. 2018, 84, 795–806. [Google Scholar] [CrossRef]
- Ordóñez-Hernández, J.; Jiménez-Sánchez, A.; García-Ortega, H.; Sánchez-Puig, N.; Flores-Álamo, M.; Santillan, R.; Farfán, N. A series of dual-responsive Coumarin-Bodipy probes for local microviscosity monitoring. Dyes Pigment. 2018, 157, 305–313. [Google Scholar] [CrossRef]
- Ripoll, C.; Cheng, C.; Garcia-Fernandez, E.; Li, J.; Orte, A.; Do, H.; Jiao, L.; Robinson, D.; Crovetto, L.; González-Vera, J.A.; et al. Synthesis and Spectroscopy of Benzylamine-Substituted BODIPYs for Bioimaging. Eur. J. Org. Chem. 2018, 2018, 2561–2571. [Google Scholar] [CrossRef]
- Ali, H.; Guérin, B.; van Lier, J.E. gem-Dibromovinyl boron dipyrrins: Synthesis, spectral properties and crystal structures. Dalton Trans. 2019, 48, 11492–11507. [Google Scholar] [CrossRef] [PubMed]
- Antina, L.A.; Ksenofontov, A.A.; Kalyagin, A.A.; Antina, E.V.; Berezin, M.B.; Khodov, I.A. Luminescent properties of new 2,2-, 2,3- and 3,3-CH2-bis(BODIPY)s dyes: Structural and solvation effects. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Sun, P.; Liu, Y.; Zhang, H.; Hu, W.; Zhang, W.; Liu, Z.; Fan, Q.; Li, L.; Huang, W. Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging. Chem. Commun. 2019, 55, 10920–10923. [Google Scholar] [CrossRef]
- Guseva, G.B.; Ksenofontov, A.A.; Antina, E.V.; Berezin, M.B.; Vyugin, A.I. Effect of solvent nature on spectral properties of blue-emitting meso-propargylamino-BODIPY. J. Mol. Liquids 2019, 285, 194–203. [Google Scholar] [CrossRef]
- Kawakami, J.; Sasaki, Y.; Yanase, K.; Ito, S. Benzo-fused BODIPY Derivative as a Fluorescent Chemosensor for Fe3+, Cu2+, and Al3+. Trans. Mat. Res. Soc. Jpn. 2019, 44, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Sevinç, G.; Özgür, M.; Küçüköz, B.; Karatay, A.; Aslan, H.; Yılmaz, H. Synthesis and spectroscopic properties of a novel “turn off” fluorescent probe: Thienyl-pyridine substituted BODIPY. J. Lumin. 2019, 211, 334–340. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhu, J. BODIPY parent compound: Fluorescence, singlet oxygen formation and properties revealed by DFT calculations. J. Lumin. 2019, 205, 148–157. [Google Scholar] [CrossRef]
- González-Vera, J.A.; Lv, F.; Escudero, D.; Orte, A.; Guo, X.; Hao, E.; Talavera-Rodriguez, E.M.; Jiao, L.; Boens, N.; Ruedas-Rama, M.J. Unusual spectroscopic and photophysical properties of solvatochromic BODIPY analogues of Prodan. Dyes Pigment. 2020, 182, 108510. [Google Scholar] [CrossRef]
- Shen, F.; Wang, T.; Yu, X.; Li, Y. Free radical oxidation reaction for selectively solvatochromic sensors with dynamic sensing ability. Chin. Chem. Lett. 2020, 31, 1919–1922. [Google Scholar] [CrossRef]
- Vyšniauskas, A.; Cornell, B.; Sherin, P.S.; Maleckaitė, K.; Kubánková, M.; Izquierdo, M.A.; Vu, T.T.; Volkova, Y.A.; Budynina, E.M.; Molteni, C.; et al. Cyclopropyl Substituents Transform the Viscosity-Sensitive BODIPY Molecular Rotor into a Temperature Sensor. ACS Sens. 2021, 6, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- ChemAxon, JChem for Office. Available online: www.chemaxon.com (accessed on 7 April 2020).
- López Arbeloa, T.; López Arbeloa, F.; López Arbeloa, I.; García-Moreno, I.; Costela, A.; Sastre, R.; Amat-Guerri, F. Correlations between photophysics and lasing properties of dipyrromethene–BF2 dyes in solution. Chem. Phys. Lett. 1999, 299, 315–321. [Google Scholar] [CrossRef]
- Costela, A.; García-Moreno, I.; Gomez, C.; Sastre, R.; Amat-Guerri, F.; Liras, M.; López Arbeloa, F.; Bañuelos Prieto, J.; López Arbeloa, I. Photophysical and Lasing Properties of New Analogs of the Boron–Dipyrromethene Laser Dye PM567 in Liquid Solution. J. Phys. Chem. A 2002, 106, 7736–7742. [Google Scholar] [CrossRef]
- Rohand, T.; Lycoops, J.; Smout, S.; Braeken, E.; Sliwa, M.; van der Auweraer, M.; Dehaen, W.; Borggraeve, W.M.D.; Boens, N. Photophysics of 3,5-diphenoxy substituted BODIPY dyes in solution. Photochem. Photobiol. Sci. 2007, 6, 1061–1066. [Google Scholar] [CrossRef]
- Costela, A.; García-Moreno, I.; Pintado-Sierra, M.; Amat-Guerri, F.; Liras, M.; Sastre, R.; Arbeloa, F.L.; Bañuelos Prieto, J.; Arbeloa, I.L. New laser dye based on the 3-styryl analog of the BODIPY dye PM567. J. Photochem. Photobiol. A Chem. 2008, 198, 192–199. [Google Scholar] [CrossRef]
- Arroyo, I.J.; Hu, R.; Merino, G.; Tang, B.Z.; Peña-Cabrera, E. The smallest and one of the brightest. Efficient preparation and optical description of the parent borondipyrromethene system. J. Org. Chem. 2009, 74, 5719–5722. [Google Scholar] [CrossRef]
- Costela, A.; García-Moreno, I.; Pintado-Sierra, M.; Amat-Guerri, F.; Sastre, R.; Liras, M.; López Arbeloa, F.; Bañuelos Prieto, J.; López Arbeloa, I. New analogues of the BODIPY dye PM597: Photophysical and lasing properties in liquid solutions and in solid polymeric matrices. J. Phys. Chem. A 2009, 113, 8118–8124. [Google Scholar] [CrossRef]
- Bañuelos, J.; Arroyo-Córdoba, I.J.; Valois-Escamilla, I.; Alvarez-Hernández, A.; Peña-Cabrera, E.; Hu, R.; Zhong Tang, B.; Esnal, I.; Martínez, V.; López Arbeloa, I. Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position. RSC Adv. 2011, 1, 677. [Google Scholar] [CrossRef]
- Bañuelos, J.; Martín, V.; Gómez-Durán, C.F.A.; Arroyo Córdoba, I.J.; Peña-Cabrera, E.; García-Moreno, I.; Costela, Á.; Pérez-Ojeda, M.E.; Arbeloa, T.; López Arbeloa, I. New 8-amino-BODIPY derivatives: Surpassing laser dyes at blue-edge wavelengths. Chem. A Eur. J. 2011, 17, 7261–7270. [Google Scholar] [CrossRef]
- Duran-Sampedro, G.; Agarrabeitia, A.R.; Garcia-Moreno, I.; Costela, A.; Bañuelos, J.; Arbeloa, T.; López Arbeloa, I.; Chiara, J.L.; Ortiz, M.J. Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. Eur. J. Org. Chem. 2012, 2012, 6335–6350. [Google Scholar] [CrossRef]
- Osorio-Martínez, C.A.; Urías-Benavides, A.; Gómez-Durán, C.F.A.; Bañuelos, J.; Esnal, I.; López Arbeloa, I.; Peña-Cabrera, E. 8-AminoBODIPYs: Cyanines or hemicyanines? The effect of the coplanarity of the amino group on their optical properties. J. Org. Chem. 2012, 77, 5434–5438. [Google Scholar] [CrossRef]
- Zhang, M.; Hao, E.; Xu, Y.; Zhang, S.; Zhu, H.; Wang, Q.; Yu, C.; Jiao, L. One-pot efficient synthesis of pyrrolylBODIPY dyes from pyrrole and acyl chloride. RSC Adv. 2012, 2, 11215. [Google Scholar] [CrossRef]
- Durán-Sampedro, G.; Agarrabeitia, A.R.; Cerdán, L.; Pérez-Ojeda, M.E.; Costela, A.; García-Moreno, I.; Esnal, I.; Bañuelos, J.; Arbeloa, I.L.; Ortiz, M.J. Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Adv. Funct. Mater. 2013, 23, 4195–4205. [Google Scholar] [CrossRef]
- Esnal, I.; Urías-Benavides, A.; Gómez-Durán, C.F.A.; Osorio-Martínez, C.A.; García-Moreno, I.; Costela, A.; Bañuelos, J.; Epelde, N.; López Arbeloa, I.; Hu, R.; et al. Reaction of amines with 8-methylthioBODIPY: Dramatic optical and laser response to amine substitution. Chem. Asian J. 2013, 8, 2691–2700. [Google Scholar] [CrossRef] [PubMed]
- Esnal, I.; Valois-Escamilla, I.; Gómez-Durán, C.F.A.; Urías-Benavides, A.; Betancourt-Mendiola, M.L.; López-Arbeloa, I.; Bañuelos, J.; García-Moreno, I.; Costela, A.; Peña-Cabrera, E. Blue-to-orange color-tunable laser emission from tailored boron-dipyrromethene dyes. Chemphyschem 2013, 14, 4134–4142. [Google Scholar] [CrossRef] [PubMed]
- Flores-Rizo, J.O.; Esnal, I.; Osorio-Martínez, C.A.; Gómez-Durán, C.F.A.; Bañuelos, J.; López Arbeloa, I.; Pannell, K.H.; Metta-Magaña, A.J.; Peña-Cabrera, E. 8-Alkoxy- and 8-aryloxy-BODIPYs: Straightforward fluorescent tagging of alcohols and phenols. J. Org. Chem. 2013, 78, 5867–5877. [Google Scholar] [CrossRef]
- Choi, S.; Bouffard, J.; Kim, Y. Aggregation-induced emission enhancement of a meso-trifluoromethyl BODIPY via J-aggregation. Chem. Sci. 2014, 5, 751–755. [Google Scholar] [CrossRef]
- Liu, C.-L.; Chen, Y.; Shelar, D.P.; Li, C.; Cheng, G.; Fu, W.-F. Bodipy dyes bearing oligo(ethylene glycol) groups on the meso-phenyl ring: Tuneable solid-state photoluminescence and highly efficient OLEDs. J. Mater. Chem. C 2014, 2, 5471. [Google Scholar] [CrossRef]
- Filatov, M.A.; Karuthedath, S.; Polestshuk, P.M.; Callaghan, S.; Flanagan, K.J.; Telitchko, M.; Wiesner, T.; Laquai, F.; Senge, M.O. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors. Phys. Chem. Chem. Phys. 2018, 20, 8016–8031. [Google Scholar] [CrossRef] [Green Version]
- Prasannan, D.; Arunkumar, C. A “turn-on-and-off” pH sensitive BODIPY fluorescent probe for imaging E. coli cells. N. J. Chem. 2018, 42, 3473–3482. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Feng, N. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Belmonte-Vázquez, J.L.; Avellanal-Zaballa, E.; Enríquez-Palacios, E.; Cerdán, L.; Esnal, I.; Bañuelos, J.; Villegas-Gómez, C.; López Arbeloa, I.; Peña-Cabrera, E. Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. J. Org. Chem. 2019, 84, 2523–2541. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lin, Y.; Zhang, X.-F.; Feng, M.; Zhao, S.; Zhang, J. Heavy-atom-free charge transfer photosensitizers: Tuning the efficiency of BODIPY in singlet oxygen generation via intramolecular electron donor-acceptor interaction. Dyes Pigment. 2019, 164, 139–147. [Google Scholar] [CrossRef]
- Hu, W.; Liu, M.; Zhang, X.-F.; Wang, Y.; Wang, Y.; Lan, H.; Zhao, H. Can BODIPY-Electron Acceptor Conjugates Act as Heavy Atom-Free Excited Triplet State and Singlet Oxygen Photosensitizers via Photoinduced Charge Separation-Charge Recombination Mechanism? J. Phys. Chem. C 2019, 123, 15944–15955. [Google Scholar] [CrossRef]
- Mallah, R.R.; Mohbiya, D.R.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. NLOphoric benzyl substituted BODIPY and BOPHY: A comprehensive linear and nonlinear optical study by spectroscopic, DFT and Z-scan measurement. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Mallah, R.R.; Mohbiya, D.R.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Non-linear optical response of meso hybrid BODIPY: Synthesis, photophysical, DFT and Z scan study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 126–140. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhu, J. BODIPY parent compound: Excited triplet state and singlet oxygen formation exhibit strong molecular oxygen enhancing effect. J. Lumin. 2019, 212, 286–292. [Google Scholar] [CrossRef]
- Berezin, M.B.; Antina, E.V.; Guseva, G.B.; Kritskaya, A.; Semeikin, A.S. Effect of meso-phenyl substitution on spectral properties, photo- and thermal stability of boron (III) and zinc (II) dipyrrometenates. Inorg. Chem. Commun. 2020, 111, 107611. [Google Scholar] [CrossRef]
- DataWarrior: An Open-Source Program for Data Visualization and Analysis with Chemical Intelligence. Available online: https://openmolecules.org/datawarrior/ (accessed on 2 November 2021).
- Backman, T.W.; Cao, Y.; Girke, T. ChemMine Tools: An Online Service for Analyzing and Clustering Small Molecules. Available online: https://chemminetools.ucr.edu/ (accessed on 2 November 2021).
- Liptay, W. Die Lösungsmittelabhängigkeit der Wellenzahl von Elektronenbanden und die chemisch-physikalischen Grundlagen. J. Phys. Sci. Z. Naturforschung A 1965, 20, 1441–1471. [Google Scholar] [CrossRef] [Green Version]
- SCImago Graphica Beta 1.0.12. Available online: www.graphica.app (accessed on 2 November 2021).
- Kawski, A.; Kukliński, B.; Bojarski, P.; Diehl, H. Ground and Excited State Dipole Moments of LAURDAN Determined from Solvatochromic and Thermochromic Shifts of Absorption and Fluorescence Spectra. Z. Für Nat. 2000, 55a, 817–822. [Google Scholar] [CrossRef]
- Kawski, A. On the Estimation of Excited-State Dipole Moments from Solvatochromic Shifts of Absorption and Fluorescence Spectra. Z. Für Nat. 2002, 57a, 255–262. [Google Scholar] [CrossRef]
- Minkin, V.I.; Osipov, O.A.; Zhdanov, I.A. Dipole Moments in Organic Chemistry; Plenum Press: New York, NY, USA, 1970. [Google Scholar]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011; ISBN 3527324739. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; ISBN 0387312781. [Google Scholar]
- Bakhshiev, N.G.; Knyazhanskii, M.I.; Minkin, V.I.; Osipov, O.A.; Saidov, G.V. Experimental Determination of the Dipole Moments of Organic Molecules in Excited Electronic Statesf. Russ. Chem. Rev. 1969, 38, 740–754. [Google Scholar] [CrossRef]
- Liptay, W. Dipole Moments and Polarizabílítíes of Molecules in Excited Electronic States. Excit. States 1974, 1, 129–229. [Google Scholar]
- Marsh, D. Reaction Fields in the Environment of Fluorescent Probes: Polarity Profiles in Membranes. Biophys. J. 2009, 96, 2549–2558. [Google Scholar] [CrossRef] [Green Version]
- Randles, E.G.; Bergethon, P.R. Reaction Field Analysis and Lipid Bilayer Location for Lipophilic Fluorophores. J. Phys. Chem. B 2013, 117, 10193–10202. [Google Scholar] [CrossRef]
- Cerón-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales: Determination of new ET (30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [Google Scholar] [CrossRef]
- Varhese, A.; Akshaya, K.B. Application of Fluorescence in Solvatochromic Studies of Organic Compounds. In Reviews in Fluorescence 2017; Geddes, C.D., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 99–121. ISBN 978-3-030-01568-8. [Google Scholar]
1998 Lopez–Arbeloa–PM567 [58] |
1999 Lopez–Arbeloa(177)–PM546 [59] |
2004 Banuelos Prieto(29)–PAr1Ac [60] |
2004 Banuelos–Prieto(5503)–PM597 [61] |
2004 Lopez–Arbeloa–PM650 [50] |
2004 Shen–3d [62] |
2004 Shen–4a [62] |
2004 Shen–4b [62] |
2004 Shen–4c [62] |
2004 Shen–4e [62] |
2004 Shen–4f [62] |
2006 Baruah–1 [63] |
2006 Qin(190)–1 [64] |
2008 Qin–1 [51] |
2009 Cieslik–Boczula–2CN [65] |
2009 Cieslik–Boczula–4CN [65] |
2009 Qin(11731)–1 [66] |
2010 Chaudhuri–1b [67] |
2010 Filarowski–1 [54] |
2010 Filarowski–2 [54] |
2010 Filarowski–3 [54] |
2010 Leen(2016)–1 [68] |
2010 Leen(2016)–2 [68] |
2010 Leen(2016)–3 [68] |
2011 Banuelos(3437)–BTAA [69] |
2012 Boens(9621)–1 [70] |
2012 Boens(9621)–2 [70] |
2012 Boens(9621)–3 [70] |
2012 Boens(9621)–4 [70] |
2012 Boens(9621)–5 [70] |
2012 Boens(9621)–6 [70] |
2012 Yin–1 [71] |
2012 Zhao–OH [72] |
2013 Er–BDC–9 [37] |
2013 Nano–TX(6) [73] |
2013 Yang–TPA–BDP1 [74] |
2013 Yang–TPA–BDP2 [74] |
2013 Yang–TPA–BDP3 [74] |
2014 Boens–10 [75] |
2014 Boens–6 [75] |
2014 Boens–8 [75] |
2015 Caltagirone–Py–BODIPY [76] |
2015 Feng–1 [77] |
2015 Filarowski–A [78] |
2015 Jiao–3 [79] |
2015 Jiao–4 [79] |
2015 Jiao–5 [79] |
2015 Jiao–1 [79] |
2015 Jiao–2 [79] |
2015 Thorat–Dye 2 [80] |
2015 Thorat–Dye 3 [80] |
2015 Thorat–Dye 4 [80] |
2015 Waddell–1 [81] |
2015 Waddell–2 [81] |
2015 Waddell–3 [81] |
2015 Waddell–4 [81] |
2015 Waddell–5 [81] |
2015 Waddell–6 [81] |
2016 Bacalum–1 [82] |
2016 Gupta–1 [83] |
2016 Marfin(1975)–2 [84] |
2016 Marfin(1975)–3 [84] |
2016 Marfin(1975)–4 [84] |
2016 Marfin(1975)–5 [84] |
2016 Orte–2–Ethyn [53] |
2016 Orte–2–Ph [53] |
2016 Orte–3–Ethyn [53] |
2016 Orte–3–Ph [53] |
2016 Orte–3–Styryl [53] |
2016 Orte–8–Ethyn [53] |
2016 Orte–8–Ph [53] |
2016 Qin–1 [52] |
2016 Telore–7 [85] |
2016 Telore–7a [85] |
2016 Vu–2 [86] |
2016 Vu–3 [86] |
2016 Zhu(35627)–BP–2 [87] |
2017 Petrushenko(488)–1 [88] |
2017 Sadak–15 [89] |
2017 Suhina–1 [90] |
2017 Thorat–Dye 1 [91] |
2017 Thorat–Dye 2 [91] |
2017 Zhang(2447)–Ph–TMBDP [92] |
2018 Leen–BODIPY [93] |
2018 Mallah–Bn–OH–BDY [94] |
2018 Ordonez–Hernandez–mVP1 [95] |
2018 Ordonez–Hernandez–mVP2 [95] |
2018 Ordonez–Hernandez–mVP3 [95] |
2018 Ripoll–2 [96] |
2018 Ripoll–4 [96] |
2018 Ripoll–6 [96] |
2019 Ali–10 [97] |
2019 Ali–12 [97] |
2019 Ali–14 [97] |
2019 Ali–16 [97] |
2019 Ali–19 [97] |
2019 Ali–2 [97] |
2019 Ali–20 [97] |
2019 Ali–21 [97] |
2019 Ali–23 [97] |
2019 Ali–6 [97] |
2019 Ali–9 [97] |
2019 Antina–2,2–CH2–bis(BODIPY) [98] |
2019 Antina–2,3–CH2–bis(BODIPY) [98] |
2019 Antina–3,3–CH2–bis(BODIPY) [98] |
2019 Bai–NJ1060 [99] |
2019 Guseva–BODIPY 1 [100] |
2019 Kawakami–BFBODIPY–DMP–DMAS [101] |
2019 Sevinc–TPy–BDP [102] |
2019 Zhang(148)–BDP [103] |
2020 Gonzalez–Vera–2 [104] |
2020 Gonzalez–Vera–3 [104] |
2020 Shen–BODIPY–DT [105] |
2021 Vysnauskas–BODIPY2 [106] |
2021 Vysnauskas–BODIPY3 [106] |
List of Dyes | |
---|---|
1999 Lopez Arbeloa(315)–PM546 [108] 1999 Lopez Arbeloa(315)–PM567 [108] 2002 Costela–PM567 [109] 2007 Rohand–2 [110] 2008 Costela–PM567 [111] 2009 Arroyo–1 [112] 2009 Costela–PM597 [113] 2011 Banuelos(677)–BDP [114] 2011 Banuelos(7261)–8–PAB [115] 2011 Banuelos(7261)–BDP [115] 2012 Duran-Sampedro–15 [116] 2012 Osorio-Martinez–1 [117] 2012 Zhang(11215)–1a [118] 2013 Duran–Sampedro–PM546 [119] 2013 Duran–Sampedro–PM567 [119] 2013 Duran–Sampedro–PM650 [119] 2013 Esnal(2691)–9 [120] | 2013 Esnal(4134)–3 [121] 2013 Flores–Rizo–BODIPY [122] 2013 Flores–Rizo–BODIPY 7 [122] 2014 Choi–2 [123] 2014 Liu(5471)–B1 [124] 2018 Filatov(8016)–13 [125] 2018 Prasannan–Phenyl–BODIPY [126] 2018 Zhang(13)–BDP [127] 2019 Belmonte–Vazquez–22 [128] 2019 Hu(139)–1 [129] 2019 Hu(15944)–1 [130] 2019 Mallah(122)–Bn–BDY [131] 2019 Mallah(126)–Bn–BPY [132] 2019 Mallah(126)–Bn–OH–BDY [132] 2019 Zhang(286)–BDP [133] 2020 Berezin–3 [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telegin, F.Y.; Karpova, V.S.; Makshanova, A.O.; Astrakhantsev, R.G.; Marfin, Y.S. Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping. Int. J. Mol. Sci. 2023, 24, 1217. https://doi.org/10.3390/ijms24021217
Telegin FY, Karpova VS, Makshanova AO, Astrakhantsev RG, Marfin YS. Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping. International Journal of Molecular Sciences. 2023; 24(2):1217. https://doi.org/10.3390/ijms24021217
Chicago/Turabian StyleTelegin, Felix Y., Viktoria S. Karpova, Anna O. Makshanova, Roman G. Astrakhantsev, and Yuriy S. Marfin. 2023. "Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping" International Journal of Molecular Sciences 24, no. 2: 1217. https://doi.org/10.3390/ijms24021217
APA StyleTelegin, F. Y., Karpova, V. S., Makshanova, A. O., Astrakhantsev, R. G., & Marfin, Y. S. (2023). Solvatochromic Sensitivity of BODIPY Probes: A New Tool for Selecting Fluorophores and Polarity Mapping. International Journal of Molecular Sciences, 24(2), 1217. https://doi.org/10.3390/ijms24021217