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Abstract: Continuing chemical investigation of the Red Sea sponge Spongia sp. led to the isolation of
four new 3,4-seco-3,19-dinorspongian diterpenoid lactones, secodinorspongins A−D (1−4), along
with a classical spongian diterpenoid lactone, sponginolide (5). The chemical structures, including
the absolute configurations of these compounds, were elucidated using the extensive spectroscopic
study composed of 1D and 2D NMR data analyses, and a comparison between calculated-electronic-
circular-dichroism (ECD) and experimental-circular-dichroism (CD) spectra. A plausible biosynthetic
pathway of 1−4 was also proposed. Furthermore, the cytotoxicity, antibacterial and anti-inflammatory
activities of 1−5 were evaluated. Compound 1 was found to exhibit inhibitory activity against the
growth of Staphylococcus aureus (S. aureus), and 4 and 5 exhibited suppression of superoxide-anion
generation and elastase release in fMLF/CB-induced human neutrophils.

Keywords: Red Sea sponge; Spongia sp.; 3,4-seco-3,19-dinorspongian diterpenoid lactones; spongian
diterpene; secodinorspongins A−D; antibacterial assay; anti-inflammatory

1. Introduction

Spongian diterpenoids and structurally related metabolites are a series of natural prod-
ucts with unique structures distributed in sponges of the genus Spongia, and the structural
diversity and potential biological significance of these compounds are well known [1–11].
Recently, we have reported the discovery of new spongian diterpenes, including four rare
5,5,6,6,5-pentacyclic diterpenoids, from a Red Sea sponge, Spongia sp. [12,13]. Some of these
compounds have been shown to display antibacterial and anti-inflammatory activities. In
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our continuing study on the chemical constituents from this sponge, we further discovered
four new 3,4-seco-3,19-dinorspongian diterpenoid lactones, secodinorspongins A−D (1−4),
and one classical spongian diterpenoid lactone, sponginolide (5) (Figure 1). Compounds
with the same carbon skeleton of 1−4 have been found only two times so far [1,2], and
were discovered in Red Sea sponges for the first time. The relative structures and absolute
configurations of these compounds were established by the analyses of MS, UV, IR, NMR,
and CD spectra (Supplementary Figures S1–S51 and Figures 1–4). Furthermore, the cyto-
toxicity, antibacterial and anti-inflammatory activities of 1−5 were assayed. Herein, we
report the isolation, structural elucidation, and bioactivity evaluation of these compounds.
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Figure 4. (a) Calculated ECD curves of 5R,8R,9R,10R-1 (1a), 5S,8S,9S,10S-1 (1b) and the experimental
CD curve of 1. (b) Calculated ECD curves of 5R,8R,9R,10R-3 (3a), 5S,8S,9S,10S-3 (3b) and the exper-
imental CD curve of 3. (c) Calculated ECD curves of 5R,8R,9R,10R,16R-4 (4a), 5S,8S,9S,10S,16S-4
(4b), 5R,8R,9R,10R,16S-4 (4c) and the experimental CD curve of 4. (d) Calculated ECD curves of
3R,5R,8R,9R,10R,15R-5 (5a), 3S,5S,8S,9S,10S,15S-5 (5b), 3R,5R,8R,9R,10R,15S-5 (5c) and the experi-
mental CD curve of 5.

2. Results and Discussion

The lyophilized sponge Spongia sp. (550 g) was extracted with a solvent mixture of
CH2Cl2/EtOAc/MeOH (1:1:0.5, v/v). The crude extract was partitioned between CH2Cl2
and H2O, to afford the CH2Cl2 fraction (18.5 g), which was fractionated repeatedly, using
column chromatography, to yield compounds 1 (1.4 mg), 2 (4.3 mg), 3 (4.0 mg), 4 (1.3 mg)
and 5 (3.0 mg) (Figure 1).

The HRESIMS of metabolite 1 exhibited the [M + H]+ peak at m/z 321.1696 (calcd
for C18H25O5, 321.1697, Supplementary Figure S1) and established a molecular formula
of C18H24O5, appropriate with seven degrees of unsaturation. The IR spectrum of 1
showed the presence of hydroxy (3462 cm−1), carbonyl (1748, 1698 and 1684 cm−1) and
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olefinic (1653 cm−1) functional groups (Supplementary Figure S3). The 13C NMR data of
1 displayed 18 carbon signals (Table 1), which were assigned with the assistance of the
1H and HSQC spectrum into three methyls (δC 31.8, 21.4, and 19.5), six methylenes (δC
44.2, 36.1, 22.2, 22.1, and 18.6, including one oxygenated methylene δC 68.8), two methines
(δC 56.3 and 48.7) and seven non-protonated carbons (δC 211.6, 174.3, 172.8, 171.2, 123.9,
40.2, and 37.6). In total, the NMR spectroscopic data of 1 (Table 1) showed signals for an
α,β-unsaturated γ-lactone (δC 174.3, C; 171.2, C; 123.9, C and 68.8, CH2; δH 4.86, dt, J = 17.0,
2.5 Hz, 1H and 4.72, dd, J = 17.0, 2.5 Hz, 1H) [2,12,14,15]. Furthermore, the 1H–1H COSY
experiment showed the presence of two partial structures (Figure 2), which were further
connected by analysis of the HMBC correlations (Figure 2), to establish the planar structure
of 1 as 3,4-seco-3,19-dinorspongian diterpenoid lactone.

Table 1. 13C and 1H NMR data for compounds 1–4 (125/500 MHz) in acetone-d6.

1 2 3 4

Position δH δC δH δC δH δC δH δC

1 2.30, d
(14.5) a 44.2, CH2 2.29, m 44.5, CH2

2.30, d
(14.5) 44.4, CH2

2.29, d
(14.5) 44.3, CH2

2.57, d
(14.5)

2.54, d
(13.0)

2.55, d
(14.5)

2.54, d
(14.5)

2 − 172.8, C − 174.8, C − 172.8, C − 172.9, C
4 − 211.6, C − 211.9 C − 211.9, C − 211.9, C

5 3.15, dd
(13.0, 3.5) 56.3, CH 3.20, br d

(11.5) 56.2, CH 3.11, dd
(12.5, 3.5) 56.5, CH 3.11, dd

(12.5, 3.5) 56.4, CH

6α
1.78, ddd
(13.5, 7.0,

3.5)
22.1, CH2 1.73, m 21.9, CH2

1.75, ddd
(13.5, 7.0,

3.5)
22.1, CH2

1.74, ddd
(13.5, 7.0,

3.5)
22.1, CH2

6β 1.90, dd
(13.5, 3.5) 1.87, m 1.82, td

(13.5, 3.5)
1.81, dd

(13.5, 3.5)

7α 1.54, td
(13.5, 3.5) 36.1, CH2 1.33, m 30.9, CH2

1.22, td
(13.5, 3.5) 35.2, CH2

1.25, td
(13.5, 3.5) 35.5, CH2

7β 1.83, dt
(13.5, 3.5) 2.27, m 2.61, dt

(13.5, 3.5)
2.57, dt

(13.5, 3.5)
8 − 37.6, C − 43.7, C − 35.9, C − 35.9, C
9 1.67, m 48.7, CH 1.77, m 48.9, CH 1.63, m 49.6, CH 1.59, m 49.3, CH

10 − 40.2, C − 40.1, C − 40.2, C − 40.2, C
11α 2.06, m 18.6, CH2 2.05, m 18.1, CH2 2.07, m 18.7, CH2 2.06, m 18.7, CH2
11β 1.65, m 1.77, m 1.63, m 1.59, m
12α 2.05, m 22.2, CH2 2.11, m 22.1, CH2 2.34, m 25.6, CH2 2.37, m 24.7, CH2
12β 2.29, m 2.29, m 2.48, m 2.53, m
13 − 123.9, C − 125.1, C − 161.2, C − 160.1, C
14 − 171.2, C − 169.8, C − 135.1, C − 138.2, C

15α 4.72, dd
(17.0, 2.5) 68.8, CH2

4.71, dd
(17.0) 72.3, CH2 − 172.5, C − 169.7, C

15β 4.86, dt
(17.0, 2.5)

5.00, dt
(17.0)

16α − 174.3, C − 174.8, C 4.67, d
(17.5) 71.3, C − 97.5, CH

16β 4.61, d
(17.5) 5.88, d (4.0)

17 1.26, s 21.4, CH3
3.71, d
(10.0) 64.3, CH2 1.18, s 20.8, CH3 1.17, s 21.4, CH3

4.15, d
(10.0)

18 2.23, s 31.8, CH3 2.23, s 31.9, CH3 2.22, s 31.7, CH3 2.22, s 31.7, CH3
20 1.07, s 19.5, CH3 1.01, s 20.0, CH3 1.05, s 19.5, CH3 1.04, s 19.5, CH3

a J values (Hz) in parentheses.
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In the NOESY spectrum of compound 1, the following NOE interactions were found
(Figure 3): H3-17 with H3-20, both H3-17 and H3-20 with one proton (δH 1.90) of H2-6
and one proton (δH 1.65) of H2-11, and H3-17 with one proton (δH 1.83) of H2-7 and
one proton (δH 4.86) of H2-15. The above finding revealed that these protons must be
located in the same orientation and were assumed to be β protons [2,12]. In contrast,
the NOE correlations of the H-7α (δH 1.54) with both H-5 and H-9, and of H-9 with H-5
and H-12α (δH 2.05), indicated that these protons must be positioned on the α-face [2,12].
Furthermore, a comparison of the experimental ECD spectrum with those calculated for
1a (5R,8R,9R,10R-1) and 1b (5S,8S,9S,10S-1) allowed us to conclude the 5R,8R,9R,10R-
configuration for 1 (Figure 4a). Accordingly, the structure of 1 was identified as a new
3,4-seco-3,19-dinorspongian diterpene, and named secodinorspongin A.

The 13C and 1H NMR data of compound 2 are very similar to those of 1 (Table 1),
except that a methyl group (δH 1.26, 3H, s and δC 21.4, CH3) at C-8 in 1 was oxidized
to a hydroxymethyl (δH 4.15 and 3.71, each 1H, d, J= 10.0 Hz; δC 64.3, CH2) in 2. The
detailed analyses of 2D NMR correlations disclosed from the HMBC, COSY and NOESY
experiments confirmed that 2 is the 17-hydroxylated derivative of 1 (Figures 2 and 3).

The NMR data of compound 3 are also similar to those of 1 (Table 1); however,
notable differences were observed for NMR chemical shifts of CH2-7, CH2-12, and CH3-
17. A comparison of their HMBC correlations also showed distinct differences in the
correlation of H2-12. These protons correlated with the ester carbonyl carbon in 1 (Figure 2),
whereas the same protons correlated with the oxygenated methylene carbon in 3 (Figure 2).
Furthermore, the NOE correlations of H3-17 with H-7β and H3-20, and of H-5 with H-7α
and H-9 suggested a 5R*,8R*,9R*,10R* relative configuration for 3 (Figure 3).

A high similarity in the 13C and 1H NMR data between metabolites 3 and 4 (Table 1)
was observed, with the exception being that the 16-oxymethylene group (δH 4.67 and 4.61,
each 1H, d, J = 17.5 Hz; δC 71.3, CH2) in γ-lactone of 3 was converted to an acetal (δH 5.88,
1H, d, J = 4.0 Hz; δC 97.5, CH) in 4. The detailed analyses observed by 2D NMR experiments
confirmed that 4 is a 16-hydroxylated derivative of 3 (Figure 2). However, due to the lack
of NOE interaction of H-16 with other protons in 4 (Figure 3), the configuration of C-16 was
determined by comparison of the calculated ECD with experimental CD spectra (Figure 4c).
The experimental CD curve of 4 was found to be quite similar to 4a (5R,8R,9R,10R and 16R)
rather than 4b (5S,8S,9S,10S and 16S) or 4c (5R,8R,9R,10R and 16S) (Figure 4c). On the basis
of the above results, the structure of 4 was determined, and named secodinorspongin D.

It is suggested that compounds 1–4 share the same biogenetic origin, as they are
obtained from the same organism. Consequently, we propose that 1–4 might be biosyn-
thesized from the spongian diterpene (i.e., 6, Scheme 1). The initial oxidation at C-3 and
C-19 and the subsequent decarboxylation resulting in the loss of C-19 and dehydration,
generate a methyl cyclohexene moiety. Further oxidative cleavage on the double bond of
the cyclohexene ring and oxidation at C-2 give intermediate 7 (Scheme 1). With the loss
of CO2 from the β-keto acid moiety and the subsequent oxidation at the relevant position,
diterpenes 1–4 may be generated, as illustrated in Scheme 1.

The molecular formula of metabolite 5 was determined to be C20H30O4, from the
HRESIMS (m/z 357.2035 [M + Na]+, calcd for C20H30O4Na, 357.2036), indicating six degrees
of unsaturation. The IR spectrum displayed the absorptions of hydroxyl (3446 cm−1) and
carbonyl (1748 cm−1) functionalities. The analysis of NMR spectral data, including 1H–1H
COSY, HMBC, and NOE correlations (Table 2 and Figures 2 and 3), suggested the gross
structure of 5 was a (3R*, 5R*, 8R*, 9R*, 10R*)-spongian diterpene (Figure 3). Furthermore,
the relative stereochemistry of C-3 was also identified by the comparison of the NMR
data of 5 with those of the 3-epimeric analogs, aglaiabbreviatin C (8) [16] and 3β-hydroxy-
22,23,24,25,26,27-hexanordammaran-20-one (9) [17] (Figure 5). The proton chemical shift
and coupling patterns of H-3 (δH 3.44, t, J = 3.0 Hz) of 5 were similar to that of 8 (δH 3.40, t,
J = 2.9 Hz) rather than that of 9 (δH 3.22, dd, J = 11.5 and 5.3 Hz) in CDCl3. Moreover, the
experimental CD curve of 5 was found to be quite similar to 5a (3R,5R,8R,9R,10R,15R-5)
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rather than 5b (3S,5S,8S,9S,10S,15S-5) and 5c (3R,5R,8R,9R, 10R,15S-5) (Figure 4d). On the
basis of the above results, the structure of 5 was determined, and named sponginolide.
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Table 2. 13C and 1H NMR data for compound 5 (150/600 MHz) in CDCl3.

5

Position δH δC Position δH δC

1 1.35, m 32.9, CH2 10 − 37.5, C
1.51, m 11 1.52, m 16.8, CH2

2α 1.61, m 24.9, CH2 12α 2.13, m 21.4, CH2

2β 2.00, t (3.0) a 12β 2.41, dd
(18.6, 6.6)

3 3.44, t (3.0) 75.9, CH 13 − 127.7, C
4 − 37.6, C 14 − 167.6, C
5 1.41, m 49.2, CH 15 6.06, br s 96.8, CH
6 1.57, m 17.7, CH2 16 − 173.5, C

7α 1.50, m 36.8, CH2 17 1.25, s 20.6, CH3
7β 2.04, m 18 0.96, s 28.2, CH3
8 − 37.6, C 19 0.87, s 21.8, CH3
9 1.18, m 55.6, CH 20 0.93, s 16.4, CH3

a J values (Hz) in parentheses.
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The cytotoxic, antibacterial and anti-inflammatory properties of 1–5 were analyzed
in order to discover their potential medicinal application. The cytotoxicities of these
compounds against the proliferation of the human hepatocellular carcinoma (HCC) Huh7
cell line were evaluated using the resazurin assay [18,19], and none of them showed
notable inhibition regarding the growth of the HCC Huh7 cells. Furthermore, compound
1 exhibited 43%, 54%, and 75% inhibition at 50, 100, and 200 µM, respectively, in the
assay for the growth inhibition of S. aureus (Table 3). In the anti-inflammatory assay
(Table 4), compounds 1–5, at 20 µM, exhibited suppression of superoxide anion generation
(7.1 ± 5.3%, 7.2 ± 2.4%, 3.7 ± 2.7%, 20.4 ± 4.5 and 22.0 ± 4.6, respectively) and elastase
release (12.2 ± 2.4%, 18.5 ± 1.7%, 17.6 ± 2.3%, 30.8 ± 2.6 and 22.5 ± 4.2, respectively) by
fMLF/CB-stimulated human neutrophils [20–22].

Table 3. Inhibitory effects of compounds 1–5 on the growth of S. aureus.

Compound
Growth of S. aureus

50 µM
(%, Mean ± SD)

100 µM
(%, Mean ± SD)

200 µM
(%, Mean ± SD)

1 57.2 ± 6.4 46.4 ± 22.3 25.0 ± 20.5
2 96.7 ± 3.1 96.3 ± 4.7 96.2 ± 4.8
3 101.2 ± 2.4 100.4 ± 2.3 100.1 ± 3.5
4 100.4 ± 9.9 98.4 ± 2.3 95.7 ± 7.8
5 102.2 ± 6.9 103.2 ± 8.1 101.5 ± 7.7

Tetracycline a 0.9 ± 0.3
a Tetracycline was used as a positive control at 0.5 µg/mL.

Table 4. Inhibitory effects of compounds 1–5 on superoxide anion generation and elastase release, zº
by human neutrophils.

Compound
Superoxide Anion Elastase Release

IC50 (µM) a Inh% b IC50 (µM) Inh%

1 >20 7.1 ± 5.3 >20 12.2 ± 2.4 **
2 >20 7.2 ± 2.4 * >20 18.5 ± 1.7 ***
3 >20 3.7 ± 2.7 >20 17.6 ± 2.3 **
4 >20 20.4 ± 4.5 ** >20 30.8 ± 2.6 ***
5 >20 22.0 ± 4.6 ** >20 22.5 ± 4.2 **

LY294002 1.9 ± 0.8 *** 88.7 ± 1.5 *** 2.9 ± 0.1 *** 79.5 ± 2.0 ***
Results are presented as mean ± S.E.M. (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control value
(DMSO). a Concentration required for 50% inhibition (IC50). b Percentage of inhibition (Inh %) at 20 µM.

3. Materials and Methods
3.1. General Experimental Procedures

The NMR experiments of all the compounds were recorded on a Varian Unity INOVA
500 FT-NMR (Varian Inc., Palo Alto, CA, USA). Specific optical rotations were performed
in MeOH on the Jasco P-1020 polarimeter (JASCO Corporation, Tokyo, Japan). The IR
spectra were recorded on an FT/IR-4100 infrared spectrophotometer (JASCO Corporation,
Tokyo, Japan). Measurements of circular-dichroism spectra were performed on a Jasco
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J-715 CD spectrometer (JASCO Corporation, Tokyo, Japan). HRESIMS were measured on
the Impact HD Q-TOF (Bruker, Bremen, Germany) mass spectrometer. Pre-coated silica
gel plates (Silica gel 60 F254, 100 µm, Merck, Darmstadt, Germany), or C18 gel plates
(Silica gel 60 RP-18 F254s, 100 µm, Merck, Darmstadt, Germany) were used for analytical
thin-layer chromatography (TLC). The silica gel (40–63 µm, Merck, Billerica, U.S.A.) and
reversed-phase silica gel (RP-18, 40−63 µm, Merck, Darmstadt, Germany) were applied for
column chromatography. The Hitachi L-2455 HPLC apparatus (Hitachi, Tokyo, Japan) with
a Supelco C18 column (250 × 21.2 mm, 5 µm, Supelco, Bellefonte, PA, USA) were used
for HPLC.

3.2. Animal Material

The sponges Spongia sp. were collected from the coast of the Red Sea (21o22′11.08′′ N,
39o06′56.62′′ E), Saudi Arabia, in March 2016. The species of sponges was identified by
Prof. Y. M. Huang. The voucher sample (RSS-1) was deposited at the Department of
Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia.

3.3. Extraction and Separation

The freeze-dried sponges (550 g) were minced and extracted with MeOH/EtOAc/
CH2Cl2 (1/1/0.5). The crude extract was suspended in water and partitioned with CH2Cl2
to obtain CH2Cl2 (18.47 g) fraction. The CH2Cl2 fraction was chromatographed on silica
gel with n-hexane−EtOAc (100:0 to 0:100, stepwise) and then EtOAc−MeOH (3:1 to 0:100,
stepwise) to yield 12 fractions (F1–F12).

Fraction F3 (0.987 g, EtOAc/n-hexane 1:9) was isolated using column chromatography
on the reversed-phase silica gel with H2O−MeOH (100:0 to 0:100, stepwise), to yield six
subfractions (F3-1 to F3-6). Subfraction F3-4 (79.1 mg, MeOH/H2O 3:2) was further isolated
using reversed-phase HPLC (MeOH/H2O 7:3), to give seven subfractions (F3-4-1 to F3-4-7).
F3-4-3 (18.3 mg) was purified using reversed-phase HPLC (MeOH/H2O 13:12), to obtain
compounds 1 (1.4 mg) and 3 (4.0 mg).

Fraction F7 (1.505 g, EtOAc/n-hexane 3:1) was isolated using column chromatography
on the reversed-phase silica gel with H2O−MeOH (100:0 to 0:100, stepwise), to yield eight
subfractions (F7-1 to F7-8). Subfraction F7-3 (146.3 mg, MeOH/H2O 2:3) was further
isolated using reversed-phase HPLC (MeOH/H2O 1:1), to give ten subfractions (F7-3-1 to
F7-3-10). F7-3-6 (28.2 mg) was purified using reversed-phase HPLC (CH3CN /H2O 1:3),
to obtain 2 (4.3 mg) and 4 (1.3 mg). F7-5 (72.1 mg, MeOH/H2O 8:2) was isolated using
reversed-phase HPLC (MeOH/H2O 9:1), to give 6 subfractions (F7-5-1 to F7-5-6); F7-5-3
(19.3 mg) was purified using reversed-phase HPLC (MeOH/H2O 1:1), to afford 5 (3.0 mg).

3.3.1. Secodinorspongin A (1)

Colorless oil, [α]25
D −34.3 (c = 0.38, CH3OH); UV (CH3OH) λmax (logε): 208 nm (3.46);

IR (neat) νmax 3462, 2921, 1748, 1698, 1684 and 1653 cm–1; CD experimental data and
cartesian coordinates of conformer 1a, see Figure 4a and Supplementary Tables S1 and S2,
respectively; 1H NMR and 13C data, see Table 1; HRESIMS m/z 321.1696 [M + H]+ (calcd
for C18H25O5, 321.1697).

3.3.2. Secodinorspongin B (2)

Colorless oil, [α]25
D −44.3 (c = 0.43, CH3OH); UV (CH3OH) λmax (logε): 211 nm (3.58);

IR (neat) νmax 3393, 2948, 2836, 1733, 1697, 1684 and 1654 cm–1; CD experimental data,
see Supplementary Table S3; 1H NMR and 13C data, see Table 1; HRESIMS m/z 337.1644
[M + H]+ (calcd for C18H25O6, 337.1646).

3.3.3. Secodinorspongin C (3)

Colorless oil, [α]25
D −29.0 (c = 0.40, CH3OH); UV (CH3OH) λmax (logε): 205 nm (3.27);

IR (neat) νmax 3392, 2947, 2835, 1734, 1698, 1684 and 1653 cm–1; CD experimental data and
cartesian coordinates of conformer 3a, see Figure 4b and Supplementary Tables S4 and S5,
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respectively; 1H NMR and 13C data, see Table 1; HRESIMS m/z 321.1699 [M + H]+ (calcd
for C18H25O5, 321.1697).

3.3.4. Secodinorspongin D (4)

Colorless oil, [α]25
D −26.0 (c = 0.35, CH3OH); UV (CH3OH) λmax (logε): 209 nm (3.71);

IR (neat) νmax 3446, 2949, 1748, 1700, 1684 and 1654 cm–1; CD experimental data and carte-
sian coordinates of conformers 4a and 4c, see Figure 4c and Supplementary Tables S6–S8,
respectively; 1H NMR and 13C data, see Table 1; HRESIMS m/z 337.1648 [M + H]+ (calcd
for C18H25O6, 337.1646).

3.3.5. Sponginolide (5)

Colorless oil, [α]25
D +30.5 (c = 0.30, CH3OH); UV (CH3OH) λmax (logε): 208 nm (3.66); IR

(neat) νmax 3446, 2923, 2854 and 1748 cm–1; CD experimental data and cartesian coordinates
of conformer 5a and 5c, see Figure 4d and Supplementary Tables S10–S12, respectively; 1H
NMR and 13C data, see Table 2 and Supplementary Table S9; ESIMS m/z 357 [M + Na] +;
HRESIMS m/z 357.2035 [M + Na]+ (calcd for C20H30O4Na, 357.2036).

3.4. DFT and TD-DFT Calculations

The geometry optimization of conformers was performed using DFT calculation at
B3LYP/6-31G + (d) level of theory, and the resulting conformers were subsequently calcu-
lated using the time-dependent DFT (TD-DFT) approach at CAM-B3LYP/6-311 + G(d,p)
(compound 1) or at B3LYP/6-31 + G(d,p) (compounds 3–5) level of theory [23]. The
calculations were performed using Gaussian 09 program [24] with the integral-equation-
formalism-polarizable-continuum (IEFPCM) solvent model in MeOH. The ECD curves
were simulated using GaussSum 2.2.5, and then illustrated with Microsoft Excel.

3.5. Cytotoxicity Assay

The human hepatocellular carcinoma (HCC) Huh7 cells were used in the resazurin assay
(Cayman Chemical) to evaluate the cytotoxicity of compounds (Supplementary Table S13).
The method was performed as described previously [18,19], and the detailed process of
the cytotoxicity assay was the same as in our previous publications [12,25]. Sorafenib, the
positive control, inhibited 52% of the growth of Huh7 cells at 12.5 µM, and the DMSO
controls were assigned 100% of relative cell-viability.

3.6. Antibacterial Assay

The antibacterial assay was processed using the previously reported methods [26]. The
culture and dilution of S. aureus were performed as previously described [12,25]. The bacte-
ria aliquots were plated (100 µL/well of 96-well plate) with the tested compounds (cpd) at
concentrations of 50 µM, 100 µM, and 200 µM. A total of 1% DMSO in LB solution (back-
ground control), 1% DMSO in the diluted bacteria solution (positive control), and 0.5 µg/mL
tetracycline (known-drug control) were plated on the same plate. After incubation at 37 ◦C
for 16 h, the plate was measured by the absorbance at 600 nm (A), and then the percentage
of S. aureus growth was measured using the following equation: [(Acpd—Acpd_basal)
− Abackground control]/[(Apositive control − Apositive control_basal) − Abackground
control] × 100.

3.7. Anti-Inflammatory Activity

The methods using dextran sedimentation, Ficoll-Hypaque gradient centrifugation,
and hypotonic lysis to enrich the neutrophils, which were isolated from the blood of healthy
adult volunteers and incubated in Ca2 + -free HBSS buffer (pH 7.4, ice-cold), were described
in a previous paper [22].
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3.8. Inhibition of Superoxide Anion Generation

The method was performed as described previously [20,21], and the detailed process
of incubating and treating neutrophils was the same as in our previous publications [12,25].
After cytochalasin B (CB, 1 µg/mL) for 3 min, the 100 nM fMLF for 10 min (fMLF/CB)
was used to activate neutrophils, and the positive control LY294002 [2-(4-morpholinyl)-8-
phenyl-1(4H)-benzopyran-4-one] was used. The wavelength 550 nm (spectrophotometer
U-3010, Hitachi, Tokyo, Japan) was used to measure the generation of the superoxide anion.

3.9. Inhibition of Elastase Release

The method was performed as described previously [20,21], and the detailed process
of incubating and treating neutrophils was the same as in our previous publications [12,25].
The fMLF (100 nM)/CB (0.5 µg/mL) for 10 min, was used to activate neutrophils, and
the wavelength 405 nm (spectrophotometer U-3010, Hitachi, Tokyo, Japan) was used to
measure the generation of elastase release.

4. Conclusions

The new dinorditerpenoid lactones 1−4 have the rare 3,4-seco-3,19-dinorspongian
structure. In the previous study, compounds of this skeleton [1,2] did not show cytotox-
icity, and the same situation was also found for metabolites 1−4. However, the current
study revealed that compound 1 possessed notable inhibition against the growth of S. au-
reus, while 4 and 5 exhibited in vitro anti-inflammatory potential through the inhibitory
activity against the generation of the superoxide anion and elastase release in fMLF/CB-
induced human neutrophils. In prior studies, most of the spongian diterpenoids were not
found to exhibit conspicuous biological activities [1,2,4,6,12,13]; however, few analogs with
3,19-dihydroxyl-2-one fragment in the A-ring and/or furano D-ring [2–4,8–11,13,27] were
reported to have potent cytotoxicity, anti-inflammatory, and anti-viral activities. In this
study, compounds 1−5, which lack the aforementioned functionality, could be responsible
for the deficiency of cytotoxic and anti-inflammatory activities.
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com/article/10.3390/ijms24021252/s1.
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