Analysis of Changes in the Expression of Selected Genes from the ABC Family in Patients with Triple-Negative Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. The Expression Level of Selected Genes from the ABC Family in Patients with TNBC: Comparison of the Obtained Results with the Data Obtained from the TCGA Database
2.2. The Relationship between the Selected Genes from the ABC Family and a Comparison of the Results Obtained from the Experimental Part with the Bioinformatics Analysis Data Results from the TCGA and SCAN-B Database
2.3. Analysis of the Relationship between the Expression of Selected Genes from the ABC Family and Clinical Data (Age, Invasion of Fat Tissue, Lymphovascular Invasion, SBR Grade, Metastases to the Lymph Nodes, and Tumor Size)
2.3.1. Age
2.3.2. Invasion of the Fat Tissue
2.3.3. Lymphovascular Invasion
2.3.4. The Scarff–Bloom and Richardson (SBR) Grading System
2.3.5. Metastases to the Lymph Nodes
2.3.6. Primary Tumor Size
2.4. Analysis of the Impact of the Expression Level of Selected Genes from the ABC Family on the Overall Survival of Patients with Triple-Negative Breast Cancer—Analysis of Data from the TCGA
3. Discussion
4. Materials and Methods
4.1. Characteristics of Patients Qualified for the Study
4.2. Preparation of Material for Research
4.3. Tissue Homogenization
4.4. RNA Isolation and cDNA Reverse Transcription
4.5. Statistical Analysis of Data
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolff, A.C.; Hammond, M.E.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona-Davis, L.; Rose, D.P.; Hazard, H.; Howard-McNatt, M.; Adkins, F.; Partin, J.; Hobbs, G. Triple-negative breast cancer and obesity in a rural Appalachian population. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 3319–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295, 2492–2502. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef]
- Morris, G.J.; Naidu, S.; Topham, A.K.; Guiles, F.; Xu, Y.; McCue, P.; Schwartz, G.F.; Park, P.K.; Rosenberg, A.L.; Brill, K. Mitchell EP. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 2007, 110, 876–884. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13 Pt 1, 4429–4434. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.U.; Claus, E.; Sohl, J.; Razzak, A.R.; Arnaout, A.; Winer, E.P. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: High incidence of central nervous system metastases. Cancer 2008, 113, 2638–2645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fang, C.; Xu, X.; Li, A.; Cai, Q.; Long, X. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: A meta-analysis. Biomed. Res. Int. 2015, 2015, 357485. [Google Scholar] [CrossRef] [Green Version]
- Gluz, O.; Liedtke, C.; Gottschalk, N.; Pusztai, L.; Nitz, U.; Harbeck, N. Triple-negative breast cancer--Current status and future directions. Ann. Oncol. 2009, 20, 1913–1927. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005, 205, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Nedeljković, M.; Damjanović, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019, 8, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, R.; Lin, Y.; Zhu, L. Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol. Biol. Rep. 2018, 45, 2913–2923. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 2000, 11, 265–283. [Google Scholar] [CrossRef]
- Gillet, J.P.; Gottesman, M.M. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010, 596, 47–76. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zhang, J.; Yu, X.; Wang, X.; Zhao, L. Effects of resveratrol on P-glycoprotein and cytochrome P450 3A in vitro and on pharmacokinetics of oral saquinavir in rats. Drug Des. Devel. Ther. 2016, 10, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127. [Google Scholar] [CrossRef]
- Yamada, A.; Ishikawa, T.; Ota, I.; Kimura, M.; Shimizu, D.; Tanabe, M.; Chishima, T.; Sasaki, T.; Ichikawa, Y.; Morita, S.; et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res. Treat. 2013, 137, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, Z.; Wang, K.; Zhou, H.; Xing, C. Expression of aldehyde dehydrogenase 1 and ATP-binding cassette superfamily G member 2 is enhanced in primary foci and metastatic lymph node from patients with triple-negative breast cancer. Biomed. Res. 2017, 28, 5078–5083. [Google Scholar]
- Guestini, F.; Ono, K.; Miyashita, M.; Ishida, T.; Ohuchi, N.; Nakagawa, S.; Hirakawa, H.; Tamaki, K.; Ohi, Y.; Rai, Y.; et al. Impact of Topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2019, 173, 275–288. [Google Scholar] [CrossRef]
- Das, S.; Samant, R.S.; Shevde, L.A. Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to Smoothened-targeting Hedgehog inhibition. J. Biol. Chem. 2013, 288, 11824–11833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, K.M.; Eyre, R.; Harvey, I.J.; Stemke-Hale, K.; Browell, D.; Lennard, T.W.J.; Meeson, A.P. Breast cancer, side population cells and ABCG2 expression. Cancer Lett. 2012, 323, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, A.; Subramani, R.; Nandy, S.B.; Terreros, D.; Dwivedi, A.K.; Saltzstein, E.; Lakshmanaswamy, R. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. The value of histological grade for 22.616 cases of breast cancer. The basis for a prognostic index. Cancer 1991, 8, 2142–2149. [Google Scholar]
- Barzgar Barough, N.; Sajjadian, F.; Jalilzadeh, N.; Shafaei, H.; Velaei, K. Understanding breast cancer heterogeneity through non-genetic heterogeneity. Breast Cancer 2021, 28, 777–791. [Google Scholar] [CrossRef]
- Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol. 2007, 608, 1–22. [Google Scholar] [CrossRef]
- Popęda, M.; Płuciennik, E.; Bednarek, A.K. Białka w oporności wielolekowej nowotworów [Proteins in cancer multidrug resistance]. Postepy Hig. Med. Dosw. 2014, 68, 616–632. [Google Scholar] [CrossRef]
- Delou, J.M.A.; Vignal, G.M.; Índio-do-Brasil, V.; Accioly, M.T.S.; da Silva, T.S.L.; Piranda, D.N.; Sobral-Leite, M.; de Carvalho, M.A.; Capella, M.A.M.; Vianna-Jorge, R. Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis. Breast Cancer 2017, 9, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlaváč, V.; Brynychová, V.; Václavíková, R.; Ehrlichová, M.; Vrána, D.; Pecha, V.; Koževnikovová, R.; Trnková, M.; Gatěk, J.; Kopperová, D.; et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics 2013, 14, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.A.; Udupa, N.; Chamallamudi, M.R.; Gupta, V.; Rangarajan, A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS ONE 2016, 11, e0155013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhani, S.R.; Ellis, I.O.; Schnitt, S.; Tan, P.H.; van de Vijver, M. WHO Classification of Tumours of the Breast, 4th ed.; IARC: Lyon, France, 2012. [Google Scholar]
- Wittekind, C.; Meyer, H.J.; UICC (Hrsg). TNM: Classification of Malignant Tumors, 7th ed.; Wiley-VCH: Weinheim, Germany, 2010; Part VII; pp. 347–376. [Google Scholar]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 62, 156–159. [Google Scholar] [CrossRef]
- Makuch-Kocka, A.; Kocki, J.; Brzozowska, A.; Bogucki, J.; Kołodziej, P.; Płachno, B.J.; Bogucka-Kocka, A. The BIRC Family Genes Expression in Patients with Triple Negative Breast Cancer. Int. J. Mol. Sci. 2021, 22, 1820. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Rodriguez, I.P.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Jézéquel, P.; Frénel, J.S.; Campion, L.; Guérin-Charbonnel, C.; Gouraud, W.; Ricolleau, G.; Campone, M. bc-GenExMiner 3.0: New mining module computes breast cancer gene expression correlation analyses. Database 2013, 2013, bas060. [Google Scholar] [CrossRef]
- Jézéquel, P.; Gouraud, W.; Ben Azzouz, F.; Guérin-Charbonnel, C.; Juin, P.P.; Lasla, H.; Campone, M. bc-GenExMiner 4.5: New mining module computes breast cancer differential gene expression analyses. Database 2021, 2021, baab007. [Google Scholar] [CrossRef]
Genes | The Descriptive Statistics | ||
---|---|---|---|
Mean [logRQ] | Median [logRQ] | SD [logRQ] | |
ABCA2 | −0.191886 | −0.256099 | 0.953895 |
ABCA3 | −0.093406 | −0.097453 | 0.811485 |
ABCB1 | −0.302247 | −0.364516 | 1.046728 |
ABCB4 | −0.381887 | −0.510042 | 1.090308 |
ABCB9 | −0.033501 | 0.022634 | 0.887895 |
ABCC10 | −0.062088 | 0.010299 | 0.648125 |
ABCC11 | −0.262637 | −0.399027 | 1.632714 |
ABCC1 | −0.182129 | −0.162096 | 0.697759 |
ABCC2 | −0.216629 | −0.275724 | 1.057454 |
ABCC3 | 0.038216 | 0.056714 | 0.789761 |
ABCC4 | −0.046965 | −0.004365 | 0.961714 |
ABCC5 | −0.210334 | −0.154902 | 0.995382 |
ABCC6 | −0.949418 | −0.987163 | 1.085124 |
ABCG2 | −0.628239 | −0.661544 | 0.962047 |
Gene | SBR1 | SBR2 | SBR3 | p for Multiple Comparison | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
ABCA2 | −0.6129 | 1.00908 | −0.0526 | 1.33483 | −0.2077 | 0.77625 | SBR1*SBR2 = 0.001720 * SBR1*SBR3 = 0.000002 * SBR2*SBR3 = 0.084 |
ABCA3 | 0.1042 | 0.82632 | −0.0923 | 0.67787 | −0.1137 | 0.83441 | SBR1*SBR2 = 0.012065 * SBR1*SBR3 = 0.000262 * SBR2*SBR3 = 0.603 |
ABCB1 | 0.1909 | 1.19809 | −0.4505 | 0.75874 | −0.3108 | 1.08079 | SBR1*SBR2 = 0.000000 * SBR1*SBR3 = 0.000000 * SBR2*SBR3 = 0.336 |
ABCB4 | −0.1702 | 0.84631 | −0.3070 | 0.77300 | −0.4408 | 1.13838 | SBR1*SBR2 = 0.238 SBR1*SBR3 = 0.000001 * SBR2*SBR3 = 0.000001 * |
ABCB9 | −0.1013 | 0.86123 | 0.0134 | 0.81472 | −0.0438 | 0.90357 | SBR1*SBR2 = 0.223 SBR1*SBR3 = 1.000000 SBR2*SBR3 = 0.250 |
ABCC10 | −0.0889 | 0.76072 | −0.1453 | 0.60914 | −0.0458 | 0.63978 | SBR1*SBR2 = 1.000 SBR1*SBR3 = 0.510 SBR2*SBR3 = 0.005770 * |
ABCC11 | −0.3424 | 1.54712 | 0.2333 | 1.93180 | −0.4189 | 1.50223 | SBR1*SBR2 = 0.020891 * SBR1*SBR3 = 1.000 SBR2*SBR3 = 0.000000 * |
ABCC1 | −0.1346 | 0.66676 | −0.2032 | 0.59844 | −0.1843 | 0.71459 | SBR1*SBR2 = 0.894 SBR1*SBR3 = 0.799 SBR2*SBR3 = 1.000 |
ABCC2 | −0.4179 | 0.72293 | −0.1101 | 0.81112 | −0.2358 | 1.12648 | SBR1*SBR2 = 0.030500 * SBR1*SBR3 = 1.000 SBR2*SBR3 = 0.000043 * |
ABCC3 | −0.13340 | 1.034263 | 0.03236 | 0.719029 | 0.04699 | 0.781132 | SBR1*SBR2 = 0.692 SBR1*SBR3 = 0.279 SBR2*SBR3 = 1.000 |
ABCC4 | 0.4054 | 0.92363 | 0.1272 | 0.86296 | −0.1213 | 0.97339 | SBR1*SBR2 = 0.008312 * SBR1*SBR3 = 0.000000 * SBR2*SBR3 = 0.000001 * |
ABCC5 | 0.2376 | 1.05409 | −0.3055 | 0.82283 | −0.2250 | 1.01726 | SBR1*SBR2 = 0.000000 * SBR1*SBR3 = 0.000000 * SBR2*SBR3 = 0.727 |
ABCC6 | −1.0264 | 1.39572 | −0.8833 | 0.97740 | −0.9630 | 1.09047 | SBR1*SBR2 = 0.251 SBR1*SBR3 = 1.000 SBR2*SBR3 = 0.104 |
ABCG2 | −0.5105 | 0.96400 | −0.6190 | 0.79172 | −0.6441 | 0.99699 | SBR1*SBR2 = 1.000 SBR1*SBR3 = 0.334 SBR2*SBR3 = 0.311 |
Gene | T1 | T2 | T3 | p for Multiple Comparison | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
ABCA2 | −0.249 | 0.6788 | −0.104 | 1.0164 | −0.454 | 0.7854 | T1*T2 = 1.000 T1*T3 = 0.000106 * T2*T3 = 0.000000 * |
ABCA3 | −0.054 | 0.7497 | −0.062 | 0.8370 | −0.219 | 0.7322 | T1*T2 = 1.000 T1*T3 = 0.015588 * T2*T3 = 0.004266 * |
ABCB1 | −0.181 | 0.8550 | −0.345 | 0.9619 | −0.250 | 1.3266 | T1*T2 = 0.002718 * T1*T3 = 0.000388 * T2*T3 = 0.523 |
ABCB4 | −0.455 | 0.8863 | −0.382 | 0.9247 | −0.411 | 1.4576 | T1*T2 = 0.258 T1*T3 = 0.018024 * T2*T3 = 0.000000 * |
ABCB9 | −0.109 | 0.8276 | 0.011 | 0.871 | −0.138 | 0.9376 | T1*T2 = 0.072 T1*T3 = 1.000 T2*T3 = 0.000091 * |
ABCC10 | −0.151 | 0.6413 | −0.020 | 0.619697 | −0.164 | 0.6882 | T1*T2 = 0.003034 * T1*T3 = 1.000 T2*T3 = 0.000002 * |
ABCC11 | 0.629 | 1.6187 | −0.316 | 1.6083 | −0.631 | 1.5318 | T1*T2 = 0.00000 * T1*T3 = 0.00000 * T2*T3 = 0.000615 * |
ABCC1 | −0.179 | 0.6255 | −0.178 | 0.6775 | −0.207 | 0.7568 | T1*T2 = 1.000 T1*T3 = 0.655 T2*T3 = 0.444 |
ABCC2 | −0.067 | 0.8799 | −0.210 | 1.1216 | −0.312 | 0.8977 | T1*T2 = 0.006164 * T1*T3 = 0.002114 * T2*T3 = 0.885 |
ABCC3 | 0.209 | 0.7487 | 0.098 | 0.7149 | −0.247 | 0.9262 | T1*T2 = 0.054 T1*T3 = 0.000000 * T2*T3 = 0.000000 * |
ABCC4 | −0.100 | 0.8229 | 0.006 | 0.9055 | −0.184 | 1.1454 | T1*T2 = 0.240 T1*T3 = 0.800 T2*T3 = 0.000077 * |
ABCC5 | −0.054 | 1.0241 | −0.237 | 0.9864 | −0.228 | 0.9796 | T1*T2 = 0.005531 * T1*T3 = 0.017318 * T2*T3 = 1.000 |
ABCC6 | −0.616 | 0.9689 | −0.979 | 1.0944 | −1.036 | 1.0852 | T1*T2 = 0.000000 * T1*T3 = 0.000000 * T2*T3 = 1.000 |
ABCG2 | −0.893 | 0.7430 | −0.597 | 0.9739 | −0.620 | 0.9741 | T1*T2 = 0.000006 * T1*T3 = 0.001194 * T2*T3 = 0.876 |
Characteristic | Patients with TNBC (n = 68) |
---|---|
Age | |
≤50 | 16 (≈23.53%) |
>50 | 52 (≈76.47%) |
Gender: | |
Male | 0 (0%) |
Female | 68 (100%) |
Lymphovascular invasion | |
Yes | 17 (25%) |
No | 51 (75%) |
Invasion of the fat tissue | |
Yes | 12 (≈17.65%) |
No | 56 (≈82.35%) |
Tumor size | |
T1 | 8 (≈11.76%) |
T2 | 45 (≈66.18%) |
T3 | 15 (≈22.06%) |
Lymph nodes | |
N0 | 32 (≈47.06%) |
N1 | 21 (≈30.88%) |
N2 | 10 (≈14.71%) |
N3 | 5 (≈7.35%) |
SBR grade | |
SBR I | 4 (≈5.88%) |
SBR II | 15 (≈22.06%) |
SBR III | 49 (≈72.06%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuch-Kocka, A.; Kocki, J.; Brzozowska, A.; Bogucki, J.; Kołodziej, P.; Bogucka-Kocka, A. Analysis of Changes in the Expression of Selected Genes from the ABC Family in Patients with Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 1257. https://doi.org/10.3390/ijms24021257
Makuch-Kocka A, Kocki J, Brzozowska A, Bogucki J, Kołodziej P, Bogucka-Kocka A. Analysis of Changes in the Expression of Selected Genes from the ABC Family in Patients with Triple-Negative Breast Cancer. International Journal of Molecular Sciences. 2023; 24(2):1257. https://doi.org/10.3390/ijms24021257
Chicago/Turabian StyleMakuch-Kocka, Anna, Janusz Kocki, Anna Brzozowska, Jacek Bogucki, Przemysław Kołodziej, and Anna Bogucka-Kocka. 2023. "Analysis of Changes in the Expression of Selected Genes from the ABC Family in Patients with Triple-Negative Breast Cancer" International Journal of Molecular Sciences 24, no. 2: 1257. https://doi.org/10.3390/ijms24021257
APA StyleMakuch-Kocka, A., Kocki, J., Brzozowska, A., Bogucki, J., Kołodziej, P., & Bogucka-Kocka, A. (2023). Analysis of Changes in the Expression of Selected Genes from the ABC Family in Patients with Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 24(2), 1257. https://doi.org/10.3390/ijms24021257