Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases
Abstract
:1. Introduction
2. Results
2.1. Sequence Similarity Network of Berberine Bridge Enzymes
2.2. Production of Cannabinoids Catalyzed by Potential Cannabinoid Synthase Orthologs
2.3. Mass and NMR Analysis of Cannabielsoin
3. Discussion
4. Materials and Methods
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karche, T.; Singh, M. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Baiton, A.; Salami, S.A.; Jones, A.M.P. New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges. Plants 2022, 11, 2383. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bhushan, S.; Agrawal, D.C.; Dhar, M.K.; Kaul, S. Cannabis as a Potent Therapeutic Agent for Pharmaceutical Drugs: Recent Advancement in Drug Discovery and Human Healthcare. In Cannabis/Marijuana for Healthcare; Agrawal, D.C., Kumar, R., Dhanasekaran, M., Eds.; Springer Nature: Singapore, 2022; pp. 77–99. [Google Scholar]
- Luo, X.; Reiter, M.A.; d’Espaux, L.; Wong, J.; Denby, C.M.; Lechner, A.; Zhang, Y.; Grzybowski, A.T.; Harth, S.; Lin, W.; et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019, 567, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Pepe, M.; Baiton, A.; Jones, A.M.P. Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol. Adv. 2023, 62, 108074. [Google Scholar] [CrossRef] [PubMed]
- Shoyama, Y.; Tamada, T.; Kurihara, K.; Takeuchi, A.; Taura, F.; Arai, S.; Blaber, M.; Shoyama, Y.; Morimoto, S.; Kuroki, R. Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J. Mol. Biol. 2012, 423, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Zirpel, B.; Degenhardt, F.; Martin, C.; Kayser, O.; Stehle, F. Engineering yeasts as platform organisms for cannabinoid biosynthesis. J. Biotechnol. 2017, 259, 204–212. [Google Scholar] [CrossRef]
- Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 2015, 1854, 1019–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlt, J.A. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017, 56, 4293–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zallot, R.; Oberg, N.; Gerlt, J.A. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019, 58, 4169–4182. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P.J.; Penzes, C.; Johnson, A.G.; Bull, D. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol. 1996, 112, 1669–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, K.; Schmid, A.; Julsing, M.K. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids. J. Biotechnol. 2015, 211, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Zirpel, B.; Stehle, F.; Kayser, O. Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol. Lett. 2015, 37, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Jeong, M.; Lee, S.; Kim, E.J.; Rho, S.; Cho, M.; Lee, Y.S.; Hong, J. Thermal decarboxylation of acidic cannabinoids in Cannabis species: Identification of transformed cannabinoids by UHPLC-Q/TOF–MS. J. Anal. Sci. Technol. 2022, 13, 42. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2022, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Winston, F.; Dollard, C.; Ricupero-Hovasse, S.L. Construction of a set of convenient saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 1995, 11, 53–55. [Google Scholar] [CrossRef]
- Baker Brachmann, C.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14, 115–132. [Google Scholar] [CrossRef]
- Bergkessel, M.; Guthrie, C. Chemical transformation of yeast. Methods Enzym. 2013, 529, 311–320. [Google Scholar]
- Schmidt, T.G.M.; Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2007, 2, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
Uniprot ID | Organism |
---|---|
M4DIE5 | Brassica rapa subsp. pekinensis |
A0A1J6KPK0 | Nicotiana attenuata |
P93479 | Papaver somniferum |
Uniprot ID | kcat (s−1) | KM (mM) | kcat/KM (M−1 s−1) |
---|---|---|---|
M4DIE5 | 1.8 ± 0.8 × 10−2 | 6.4 ± 3.4 | 2.7 × 103 |
A0A1J6KPK0 | 2.0 ± 0.8 × 10−2 | 8.1 ± 3.8 | 2.5 × 103 |
P93479 | N.S. | N.S. | 1.3 ± 0.1 × 103 |
Q8GTB6 | M4DIE5 | A0A1J6KPK0 | P93479 |
---|---|---|---|
H114 | - | H112 | H108 |
C176 | - | C176 | C170 |
H292 | L98 | V291 | L286 |
Y417 | N211 | N408 | N394 |
Y484 | Y278 | Y477 | H463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, M.K.; Zhu, T.; Lim, K.J.H.; Hartono, Y.D.; Xue, B.; Fan, H.; Yew, W.S. Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. Int. J. Mol. Sci. 2023, 24, 1259. https://doi.org/10.3390/ijms24021259
Go MK, Zhu T, Lim KJH, Hartono YD, Xue B, Fan H, Yew WS. Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. International Journal of Molecular Sciences. 2023; 24(2):1259. https://doi.org/10.3390/ijms24021259
Chicago/Turabian StyleGo, Maybelle Kho, Tingting Zhu, Kevin Jie Han Lim, Yossa Dwi Hartono, Bo Xue, Hao Fan, and Wen Shan Yew. 2023. "Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases" International Journal of Molecular Sciences 24, no. 2: 1259. https://doi.org/10.3390/ijms24021259
APA StyleGo, M. K., Zhu, T., Lim, K. J. H., Hartono, Y. D., Xue, B., Fan, H., & Yew, W. S. (2023). Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. International Journal of Molecular Sciences, 24(2), 1259. https://doi.org/10.3390/ijms24021259