Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation
Abstract
:1. Introduction
1.1. Background and Issues
1.2. BP QTLs in Mammalian Ancestry
1.3. A QTL Is Molecularly Equal to One Gene
1.4. Mechanistic Unity in Regulating Mammalian Blood Pressure by QTLs
1.5. Objectives
2. Results
2.1. Congenic Knock-In Genetics Is a Proxy in Functionally Mediating a Physiological Jump from Statistical Associations to Causation in Human BP Control
2.2. Establishing Each QTL/GWAS Gene in Directly Causing BP Changes in Physiology
2.3. Humans and Rodents Utilize a Common Mechanistic Plan of QTL Modularity in Controlling BP by Causality/Physiology
2.4. Quantity of QTL Alleles and Levels of Gene Expressions Are Not Important for QTLs’ Effects on BP by Causality/Physiology
2.5. Associating the Consequential Effect of C1QTL1 in GWAS Fortuitously Landed a SNP Close to FNDC1 as a Functional Candidate for Causing Human Essential Hypertension
2.6. The Broad C1QTL3-Residing Region Contains Multiple Functional Orthologs as QTL Candidates for Human GWAS Genes
QTLs on DSS Chromosome (Chr) 18 [25] Have Multiple Positional Orthologs from the Human GWAS [1]
3. Discussion
3.1. Principal Results from This Study
3.2. Importance in Studying QTLs by Causality/Physiology
3.3. Association/Statistics Is Not Causation/Physiology
3.4. Independence of Gene Dose from a QTL on BP in Causation/Physiology
3.5. The Effect of a GWAS Gene on Blood Pressure Is Not Miniscule in Causation/Physiology
3.6. Principal BP-Regulating Mechanisms in Humans Originated in Common Mammalian Ancestors and Are Not Due to Convergent Evolution
3.7. A Wide-Ranging Scope of Modularity in BP Control Based on Causation/Physiology
3.8. Inbreeding Reveals Modularized Mendelism, Not Mixed Inheritance, as the Mechanistic Basis of Polygenicity of BP Regulation
3.9. Inferred Pathogenic Pathways for QTLs in Causation/Physiology
3.10. Caveats and Limitations
4. Materials and Methods
4.1. Animals
4.2. Experimental Protocols
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I.; et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, A.Y.; Ménard, A. Biological convergence of three human and animal model quantitative trait loci for blood pressure. J. Hypertens. 2020, 38, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.Y.; Ménard, A. Functional Captures of Multiple Human Quantitative Trait Loci Regulating Blood Pressure with the Use of Orthologs in Genetically Defined Rat Models. Can. J. Cardiol. 2020, 36, 756–763. [Google Scholar] [CrossRef]
- Deng, A.Y.; Ménard, A. Conserved mammalian modularity of quantitative trait loci revealed human functional orthologs in blood pressure control. PLoS ONE 2020, 15, e0235756. [Google Scholar] [CrossRef]
- Deng, A.Y. Modularity/non-cumulativity of quantitative trait loci on blood pressure. J. Hum. Hypertens. 2020, 34, 432–439. [Google Scholar] [CrossRef]
- White, C.R.; Seymour, R.S. The role of gravity in the evolution of mammalian blood pressure. Evolution 2014, 68, 901–908. [Google Scholar] [CrossRef]
- Deng, A.Y. Positional Cloning of Quantitative Trait Loci for Blood Pressure: How Close Are We?: A Critical Perspective. Hypertension 2007, 49, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.Y.; deBlois, D.; Laporte, S.A.; Gelinas, D.; Tardif, J.-C.; Thorin, E.; Shi, Y.; Raignault, A.; Ménard, A. Novel Pathogenesis of Hypertension and Diastolic Dysfunction Caused by M3R (Muscarinic Cholinergic 3 Receptor) Signaling. Hypertension 2018, 72, 755–764. [Google Scholar] [CrossRef]
- Cowley, A.W. Chrm3 Gene and M3 Muscarinic Receptors Contribute to Salt-Sensitive Hypertension, But Now a Physiological Puzzle. Hypertension 2018, 72, 588–591. [Google Scholar] [CrossRef]
- Deng, A.Y.; Huot-Marchard, J.-É.; deBlois, D.; Thorin, E.; Chauvet, C.; Menard, A. Functional Dosage of Muscarinic Cholinergic Receptor 3 Signalling, Not the Gene Dose, Determines Its Hypertension Pathogenesis. Can. J. Cardiol. 2019, 35, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Alves-Lopes, R.; Neves, K.B.; Touyz, R.M. Muscarinic Receptor Type-3 in Hypertension and Cholinergic-Adrenergic Crosstalk: Genetic Insights and Potential for New Antihypertensive Targets. Can. J. Cardiol. 2019, 35, 555–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauvet, C.; Crespo, K.; Menard, A.; Roy, J.; Deng, A.Y. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci. Hum. Mol. Genet. 2013, 22, 4451–4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, W. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447, 661–678. [Google Scholar]
- Deng, A.; Ménard, A. Animal Model Studies Reveal that Common Human-Centric Non-Coding Variants from Epidemiology are By-products of Primate Evolution Unrelated to Physiological Control of Blood Pressure. Cardiol. Cardiovasc. Med. 2021, 05, 471–501. [Google Scholar] [CrossRef]
- Deng, A.Y. Genetic basis of polygenic hypertension. Hum. Mol. Genet. 2007, 16, R195–R202. [Google Scholar] [CrossRef] [Green Version]
- Birchler, J.A. Mendel, Mechanism, Models, Marketing, and More. Cell 2015, 163, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Charron, S.; Lambert, R.; Eliopoulos, V.; Duong, C.; Menard, A.; Roy, J.; Deng, A.Y. A loss of genome buffering capacity of Dahl salt-sensitive model to modulate blood pressure as a cause of hypertension. Hum. Mol. Genet. 2005, 14, 3877–3884. [Google Scholar] [CrossRef] [Green Version]
- Crespo, K.; Menard, A.; Deng, A.Y. Hypertension Suppression, Not a Cumulative Thrust of Quantitative Trait Loci, Predisposes Blood Pressure Homeostasis to Normotension. Circ. Cardiovasc. Genet. 2015, 8, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Harrap, S.B.; Morris, B.J. Blood Pressure Genetics Just Don’t Add Up. Circ. Cardiovasc. Genet 2015, 8, 541–543. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.Y. Genetics of Normotension Preventing Hypertension Leads to a Novel Physiological Paradigm. Rev. Cardiovasc. Med. 2022, 23, 119. [Google Scholar] [CrossRef]
- Atanur, S.-á.; Diaz, A.-á.; Maratou, K.; Sarkis, A.; Rotival, M.; Game, L.; Tschannen, M.-á.; Kaisaki, P.-á.; Otto, G.-á.; Ma, M.-á.-á.; et al. Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat. Cell 2013, 154, 691–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, A.Y. Genetic mechanisms of polygenic hypertension: Fundamental insights from experimental models. J. Hypertens. 2015, 33, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Dene, H.; Deng, A.Y.; Hoebee, B.; Bihoreau, M.T.; James, M.; Rapp, J.P. Genetic mapping of two blood pressure quantitative trait loci on rat chromosome 1. J. Clin. Investig. 1996, 97, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Chauvet, C.; Menard, A.; Deng, A.Y. Two candidate genes for two quantitative trait loci epistatically attenuate hypertension in a novel pathway. J. Hypertens. 2015, 33, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.Y.; Chauvet, C.; Ménard, A. Alterations in Fibronectin Type III Domain Containing 1 Protein Gene Are Associated with Hypertension. PLoS ONE 2016, 11, e0151399. [Google Scholar] [CrossRef] [Green Version]
- The Genomes Project, C.; Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Saad, Y.A.S.S.; Garrett, M.R.; Rapp, J.P. Multiple blood pressure QTL on rat chromosome 1 defined by Dahl rat congenic strains. Physiol. Genom. 2001, 4, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, C.; Crespo, K.; Menard, A.; Wu, Y.; Xiao, C.; Blain, M.; Roy, J.; Deng, A.Y. alpha-Kinase 2 is a novel candidate gene for inherited hypertension in Dahl rats. J. Hypertens. 2011, 29, 1320–1326. [Google Scholar] [CrossRef]
- Fisher, R.A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef] [Green Version]
- Garrett, M.R.; Dene, H.; Walder, R.; Zhang, Q.; Cicila, G.T.; Assadnia, S.; Deng, A.Y.; Rapp, J.P. Genomic scan and congenic strains for blood pressure quantitative trait loci using Dahl salt-sensitive rats. Genome Res. 1998, 8, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.Y.; Rapp, J.P. Locus for the inducible, but not a constitutive, nitric oxide synthase cosegregates with blood pressure in the Dahl salt-sensitive rat. J. Clin. Investig. 1995, 95, 2170–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palijan, A.; Lambert, R.; Dutil, J.; Sivo, Z.; Deng, A.Y. Comprehensive congenic coverage revealing multiple blood pressure quantitative trait loci on Dahl rat chromosome 10. Hypertension 2003, 42, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, C.; Charron, S.; Deng, Y.; Xiao, C.; Menard, A.; Roy, J.; Deng, A.Y. Individual QTLs controlling quantitative variation in blood pressure inherited in a Mendelian mode. Heredity 2007, 98, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.K.; Kim, S.-H.; Kim, Y.H.; Lee, D.G.; Oh, H.S.; Han, C.; Kim, Y.I.; Jeon, Y.; Lee, H.; Kwon, B.S. RELT negatively regulates the early phase of the T-cell response in mice. Eur. J. Immunol. 2018, 48, 1739–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, S.; Graham, L.; Ferreri, N.R.; Graham, D.; McBride, M.; Dominiczak, A.F. Uromodulin, an Emerging Novel Pathway for Blood Pressure Regulation and Hypertension. Hypertension 2014, 64, 918–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trudu, M.; Janas, S.; Lanzani, C.; Debaix, H.; Schaeffer, C.; Ikehata, M.; Citterio, L.; Demaretz, S.; Trevisani, F.; Ristagno, G.; et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 2013, 19, 1655–1660. [Google Scholar] [CrossRef]
- Fang, X.; Bogomolovas, J.; Wu, T.; Zhang, W.; Liu, C.; Veevers, J.; Stroud, M.J.; Zhang, Z.; Ma, X.; Mu, Y.; et al. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. J. Clin. Investig. 2017, 127, 3189–3200. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswamy, J.K.; Singh, A.; Gowthaman, U.; Wu, R.; Gorrepati, P.; Sales Nascimento, M.; Gallman, A.; Liu, D.; Rhebergen, A.M.; Calabro, S.; et al. Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc. Natl. Acad. Sci. USA 2015, 112, 3056–3061. [Google Scholar] [CrossRef] [Green Version]
- Kakinuma, N.; Zhu, Y.; Wang, Y.; Roy, B.C.; Kiyama, R. Kank proteins: Structure, functions and diseases. Cell. Mol. Life Sci. 2009, 66, 2651–2659. [Google Scholar] [CrossRef]
Rat QTL Name | Functional Magnitude BP Effect (Figure 1) | Rat Functional Candidate Gene | Human GWAS SNP (See Table 2) | Rat GWAS SNP Ortholog (See Table 2) | Closest Human Functional Gene | # Probable Human Coding Mutations |
---|---|---|---|---|---|---|
C1QTL1 | 52% | missensed Fndc1 § | rs449789 | Non-existent | FNDC1 | 63 |
C1QTL2 | 57% | No candidate | ||||
C1QTL3 | 63% | missensed § Relt Umod Bag3 Cbwd1 Dock8 Kank1 | Multiple intergenic/ intronic SNPs | All non-existent except for 1 SNP at 3′UTR | RELT UMOD BAG3 CBWD1 DOCK8 KANK1 | 6 6 8 8 20 14 |
C18QTL2 | 72% | No candidate | ||||
C18QTL3 | 43% | No candidate | ||||
C18QTL4 | 61% | No candidate |
Human SNP/ Marked Gene | Rat Homology | Note |
---|---|---|
rs449789/FNDC1 (intergenic) | No | Haphazard hits in 1Kb sequence used for blast; several mini- regions of 20–24 bp of homology randomly distributed on rat Chr1, but not in the right region. |
rs7115605/RELT (intergenic) | No | Similar to above |
rs13333226/UMOD (intron) | No | Similar to above |
rs72842207/BAG3 (intron) | No | Similar to above |
rs2992854/CBWD1 (intergenic) | No | Similar to above |
rs643058/DOCK8 (intergenic) | No | Similar to above |
rs520015/DOCK8 (intron) | No | Similar to above |
rs604470/DOCK8 (intron) | No | Similar to above |
rs16923342/KANK1 (intergenic) | No | Similar to above |
rs60191654/KANK1 (intergenic) | No | Similar to above |
rs17369029/KANK1 (3′UTR) | Yes | 197 bases hit (90.2%homology) in 1 Kb sequence used for blast on Chr1; SNP present, but the surrounding sequence in less conserved. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, A.Y.; Menard, A.; Deng, D.W. Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation. Int. J. Mol. Sci. 2023, 24, 1262. https://doi.org/10.3390/ijms24021262
Deng AY, Menard A, Deng DW. Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation. International Journal of Molecular Sciences. 2023; 24(2):1262. https://doi.org/10.3390/ijms24021262
Chicago/Turabian StyleDeng, Alan Y., Annie Menard, and David W. Deng. 2023. "Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation" International Journal of Molecular Sciences 24, no. 2: 1262. https://doi.org/10.3390/ijms24021262
APA StyleDeng, A. Y., Menard, A., & Deng, D. W. (2023). Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation. International Journal of Molecular Sciences, 24(2), 1262. https://doi.org/10.3390/ijms24021262