Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury
Abstract
:1. Introduction
2. Results
2.1. Macroscopic and Biochemical Parameters of Renal Function in +/+ and +/kl Mice after AKI
2.2. Partial Deficiency in Klotho Expression Aggravates Cellular Contractile Dysfunction after AKI
2.3. Klotho Deficiency Induces Alterations in Systolic Ca2+ Release after AKI
2.4. AKI Reduces the SR-Ca2+ Load Independently of Klotho Availability
2.5. Klotho Deficiency Aggravates Diastolic Ca2+ Leak after AKI
2.6. Klotho Deficiency Increased the Occurrence of Ca2+-Dependent Pro-Arrhythmogenic Events and Following AKI Induction
3. Discussion
4. Materials and Methods
4.1. Animal Study
4.2. Experimental FA-AKI Model
4.3. Analysis of Macroscopic Parameters and Biochemical Assays
4.4. RNA Isolation and Quantitative Real-Time PCR
4.5. Adult Ventricular Cardiomyocytes Isolation
4.6. Analysis of Intracellular Ca2+ by Confocal Microscopy
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuro-O, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Groen, A.; Molostvov, G.; Lu, T.; Lilley, K.S.; Snead, D.; James, S.; Wilkinson, I.B.; Ting, S.; Hsiao, L.-L.; et al. α-Klotho Expression in Human Tissues. J. Clin. Endocrinol. Metab. 2015, 100, E1308–E1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.C.; Shi, M.; Zhang, J.; Pastor, J.; Nakatani, T.; Lanske, B.; Razzaque, M.S.; Rosenblatt, K.P.; Baum, M.G.; Kuro-O, M.; et al. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010, 24, 3438–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuro-O, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770–774. [Google Scholar] [CrossRef]
- Kurosu, H.; Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Nandi, A.; Gurnani, P.; McGuinness, O.P.; Chikuda, H.; Yamaguchi, M.; Kawaguchi, H.; et al. Suppression of Aging in Mice by the Hormone Klotho. Science 2005, 309, 1829–1833. [Google Scholar] [CrossRef] [Green Version]
- Hum, J.M.; O’Bryan, L.; Smith, R.C.; White, K.E. Novel functions of circulating Klotho. Bone 2017, 100, 36–40. [Google Scholar] [CrossRef]
- Yuan, Q.; Ren, Q.; Li, L.; Tan, H.; Lu, M.; Tian, Y.; Huang, L.; Zhao, B.; Fu, H.; Hou, F.F.; et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 2022, 13, 438. [Google Scholar] [CrossRef]
- Semba, R.D.; Cappola, A.R.; Sun, K.; Bandinelli, S.; Dalal, M.; Crasto, C.; Guralnik, J.M.; Ferrucci, L. Plasma Klotho and Mortality Risk in Older Community-Dwelling Adults. J. Gerontol. Ser. A 2011, 66, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Navarro-García, J.A.; González-Lafuente, L.; Fernández-Velasco, M.; Ruilope, L.M.; Ruiz-Hurtado, G. Fibroblast Growth Factor-23-Klotho Axis in Cardiorenal Syndrome: Mediators and Potential Therapeutic Targets. Front. Physiol. 2021, 12, 775029. [Google Scholar] [CrossRef]
- Kitagawa, M.; Sugiyama, H.; Morinaga, H.; Inoue, T.; Takiue, K.; Ogawa, A.; Yamanari, T.; Kikumoto, Y.; Uchida, H.A.; Kitamura, S.; et al. A Decreased Level of Serum Soluble Klotho Is an Independent Biomarker Associated with Arterial Stiffness in Patients with Chronic Kidney Disease. PLoS ONE 2013, 8, e56695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buiten, M.S.; De Bie, M.K.; Krijger, A.B.-D.; Van Dam, B.; Dekker, F.; Jukema, J.W.; Rabelink, T.J.; I Rotmans, J. Soluble Klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrol. 2014, 15, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, D.; Lee, H.-J.; Choi, J.-Y.; Min, J.-Y.; Min, K.-B. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 2022, 22, 442. [Google Scholar] [CrossRef] [PubMed]
- Ricci, Z.; Romagnoli, S.; Ronco, C. Cardiorenal Syndrome. Crit. Care Clin. 2021, 37, 335–347. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Odutayo, A.; Wong, C.; Farkouh, M.; Altman, D.G.; Hopewell, S.; Emdin, C.A.; Hunn, B.H. AKI and Long-Term Risk for Cardiovascular Events and Mortality. J. Am. Soc. Nephrol. 2016, 28, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Ronco, C.; Bellasi, A.; Di Lullo, L. Cardiorenal Syndrome: An Overview. Adv. Chronic Kidney Dis. 2018, 25, 382–390. [Google Scholar] [CrossRef]
- Navarro-García, J.A.; Rueda, A.; Romero-García, T.; Aceves-Ripoll, J.; Rodríguez-Sánchez, E.; González-Lafuente, L.; Zaragoza, C.; Fernández-Velasco, M.; Kuro-O, M.; Ruilope, L.M.; et al. Enhanced Klotho availability protects against cardiac dysfunction induced by uraemic cardiomyopathy by regulating Ca 2+ handling. J. Cereb. Blood Flow Metab. 2020, 177, 4701–4719. [Google Scholar] [CrossRef]
- Gil-Fernández, M.; Navarro-García, J.A.; Val-Blasco, A.; González-Lafuente, L.; Martínez, J.C.; Rueda, A.; Tamayo, M.; Morgado, J.L.; Zaragoza, C.; Ruilope, L.M.; et al. Genetic Deletion of NOD1 Prevents Cardiac Ca. Int. J. Mol. Sci. 2020, 21, 8868. [Google Scholar] [CrossRef]
- González-Lafuente, L.; Navarro-García, J.A.; Rodríguez-Sánchez, E.; Aceves-Ripoll, J.; Poveda, J.; Vázquez-Sánchez, S.; Mercado-García, E.; Fernández-Velasco, M.; Kuro-O, M.; Liaño, F.; et al. Interplay between mineral bone disorder and cardiac damage in acute kidney injury: From Ca2+ mishandling and preventive role of Klotho in mice to its potential mortality prediction in human. Transl. Res. 2022, 243, 60–77. [Google Scholar] [CrossRef]
- Junho, C.V.C.; González-Lafuente, L.; Navarro-García, J.A.; Rodríguez-Sánchez, E.; Carneiro-Ramos, M.S.; Ruiz-Hurtado, G. Unilateral Acute Renal Ischemia-Reperfusion Injury Induces Cardiac Dysfunction through Intracellular Calcium Mishandling. Int. J. Mol. Sci. 2022, 23, 2266. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Gillings, N.; Flores, B.; Takahashi, M.; Kuro-O, M.; Moe, O.W. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017, 91, 1104–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junho, C.V.C.; González-Lafuente, L.; Neres-Santos, R.S.; Navarro-García, J.A.; Rodríguez-Sánchez, E.; Ruiz-Hurtado, G.; Carneiro-Ramos, M.S. Klotho relieves inflammation and exerts a cardioprotective effect during renal ischemia/reperfusion-induced cardiorenal syndrome. Biomed. Pharmacother. 2022, 153, 113515. [Google Scholar] [CrossRef]
- Navarro-García, J.A.; Salguero-Bodes, R.; González-Lafuente, L.; Martín-Nunes, L.; Rodríguez-Sánchez, E.; Bada-Bosch, T.; Hernández, E.; Mérida-Herrero, E.; Praga, M.; Solís, J.; et al. The anti-aging factor Klotho protects against acquired long QT syndrome induced by uremia and promoted by fibroblast growth factor 23. BMC Med. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, L.; Bellasi, A.; Russo, D.; Cozzolino, M.; Ronco, C. Cardiorenal acute kidney injury: Epidemiology, presentation, causes, pathophysiology and treatment. Int. J. Cardiol. 2017, 227, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Cha, S.-K.; An, S.-W.; Kuro-O, M.; Birnbaumer, L.; Huang, C.-L. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 2012, 3, 1238. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Yoon, J.; An, S.-W.; Kuro, M.; Kuro-O, M.; Huang, C.-L. Soluble Klotho Protects against Uremic Cardiomyopathy Independently of Fibroblast Growth Factor 23 and Phosphate. J. Am. Soc. Nephrol. 2015, 26, 1150–1160. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wang, S.; Sun, Q.W.; Zhang, B.; Ullah, M.F.; Sun, Z. Klotho Deficiency Causes Heart Aging via Impairing the Nrf2-GR Pathway. Circ. Res. 2021, 128, 492–507. [Google Scholar] [CrossRef]
- Val-Blasco, A.; Piedras, M.J.G.; Ruiz-Hurtado, G.; Suarez, N.; Prieto, P.; Gonzalez-Ramos, S.; Gómez-Hurtado, N.; Delgado, C.; Pereira, L.; Benito, G.; et al. Role of NOD1 in Heart Failure Progression via Regulation of Ca 2+ Handling. J. Am. Coll. Cardiol. 2017, 69, 423–433. [Google Scholar] [CrossRef]
- Ruiz-Hurtado, G.; Li, L.; Fernández-Velasco, M.; Rueda, A.; Lefebvre, F.; Wang, Y.; Mateo, P.; Cassan, C.; Gellen, B.; Benitah, J.P.; et al. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes. J. Gen. Physiol. 2015, 146, 295–306. [Google Scholar] [CrossRef]
- Scholze, A.; Jankowski, V.; Henning, L.; Haass, W.; Wittstock, A.; Suvd-Erdene, S.; Zidek, W.; Tepel, M.; Jankowski, J. Phenylacetic Acid and Arterial Vascular Properties in Patients with Chronic Kidney Disease Stage 5 on Hemodialysis Therapy. Nephron 2007, 107, c1–c6. [Google Scholar] [CrossRef] [PubMed]
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Belevych, A.; Kubalova, Z.; Terentyev, D.; Hamlin, R.L.; Carnes, C.A.; Györke, S. Enhanced Ryanodine Receptor-Mediated Calcium Leak Determines Reduced Sarcoplasmic Reticulum Calcium Content in Chronic Canine Heart Failure. Biophys. J. 2007, 93, 4083–4092. [Google Scholar] [CrossRef] [Green Version]
- Kubalova, Z.; Terentyev, D.; Viatchenko-Karpinski, S.; Nishijima, Y.; Györke, I.; Terentyeva, R.; da Cuñha, D.N.Q.; Sridhar, A.; Feldman, D.S.; Hamlin, R.L.; et al. Abnormal intrastore calcium signaling in chronic heart failure. Proc. Natl. Acad. Sci. USA 2005, 102, 14104–14109. [Google Scholar] [CrossRef] [Green Version]
- Bers, D.M. Calcium Cycling and Signaling in Cardiac Myocytes. Annu. Rev. Physiol. 2008, 70, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.; Izquierdo, M.C.; Sanchez-Niño, M.D.; Suárez-Alvarez, B.; Lopez-Larrea, C.; Jakubowski, A.; Blanco, J.; Ramirez, R.; Selgas, R.; Ruiz-Ortega, M.; et al. The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB. J. Am. Soc. Nephrol. 2011, 22, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Seibert, E.; Radler, D.; Ulrich, C.; Hanika, S.; Fiedler, R.; Girndt, M. Serum klotho levels in acute kidney injury. Clin. Nephrol. 2017, 87, 173–179. [Google Scholar] [CrossRef]
- Neyra, J.A.; Li, X.; Mescia, F.; Ortiz-Soriano, V.; Adams-Huet, B.; Pastor, J.; Hu, M.-C.; Toto, R.D.; Moe, O.W. Urine Klotho Is Lower in Critically Ill Patients With Versus Without Acute Kidney Injury and Associates With Major Adverse Kidney Events. Crit. Care Explor. 2019, 1, e0016. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shi, M.; Zhang, J.; Addo, T.; Cho, H.J.; Barker, S.L.; Ravikumar, P.; Gillings, N.; Bian, A.; Sidhu, S.S.; et al. Renal Production, Uptake, and Handling of Circulating αKlotho. J. Am. Soc. Nephrol. 2016, 27, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.C.; Shi, M.; Cho, H.J.; Adams-Huet, B.; Paek, J.; Hill, K.; Shelton, J.; Amaral, A.P.; Faul, C.; Taniguchi, M.; et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J. Am. Soc. Nephrol. 2015, 26, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.; Shlipak, M.; Gutiérrez, O.M.; Newman, A.; Hoofnagle, A.; Fried, L.; Semba, R.D.; et al. Association between Soluble Klotho and Change in Kidney Function: The Health Aging and Body Composition Study. J. Am. Soc. Nephrol. 2017, 28, 1859–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olejnik, A.; Krzywonos-Zawadzka, A.; Banaszkiewicz, M.; Bil-Lula, I. Klotho protein contributes to cardioprotection during ischaemia/reperfusion injury. J. Cell. Mol. Med. 2020, 24, 6448–6458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-García, J.A.; Delgado, C.; Fernández-Velasco, M.; Val-Blasco, A.; Rodríguez-Sánchez, E.; Aceves-Ripoll, J.; Gómez-Hurtado, N.; Bada-Bosch, T.; Mérida-Herrero, E.; Hernández, E.; et al. Fibroblast growth factor-23 promotes rhythm alterations and contractile dysfunction in adult ventricular cardiomyocytes. Nephrol. Dial. Transplant. 2019, 34, 1864–1875. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Xie, J.; An, S.-W.; Oliver, N.; Barrezueta, N.X.; Lin, M.-H.; Birnbaumer, L.; Huang, C.-L. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney Int. 2017, 91, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Ramez, M.; Rajabi, H.; Ramezani, F.; Naderi, N.; Darbandi-Azar, A.; Nasirinezhad, F. The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression. BMC Cardiovasc. Disord. 2019, 19, 118. [Google Scholar] [CrossRef]
- Lee, J.; Ju, K.D.; Kim, H.J.; Tsogbadrakh, B.; Ryu, H.; Kang, E.J.; Kang, M.J.; Yang, J.; Kang, H.G.; Ahn, C.; et al. Soluble α-klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously. Am. J. Physiol. Physiol. 2021, 320, F559–F568. [Google Scholar] [CrossRef]
- Bode, E.F.; Briston, S.J.; Overend, C.L.; O’Neill, S.C.; Trafford, A.W.; Eisner, D.A. Changes of SERCA activity have only modest effects on sarcoplasmic reticulum Ca2+content in rat ventricular myocytes. J. Physiol. 2011, 589, 4723–4729. [Google Scholar] [CrossRef]
Parameters | +/+ | +/+-FA | +/kl | +/kl-FA |
---|---|---|---|---|
BW (g) | 24.0 ± 0.4 | 22.5 ± 0.3 | 24.8 ± 0.8 | 23.1 ± 0.8 |
TL (mm) | 17.1 ± 0.2 | 17.7 ± 0.5 | 17.1 ± 0.2 | 17.2 ± 0.7 |
KW (g) | 158.2 ± 8.4 | 202.9 ± 14.8 * | 163.1 ± 8.6 | 216.1 ± 17.1 δδ |
KW/BW (mg/g) | 6.8 ± 0.2 | 9.0 ± 0.6 *** | 6.6 ± 0.2 | 9.3 ± 0.5 δδδ |
KW/TL (mg/mm) | 9.6 ± 0.3 | 11.6 ± 1.0 | 9.6 ± 0.5 | 12.8 ± 1.4 δ |
HW (g) | 172.9 ± 10.6 | 187.0 ± 8.6 | 182.8 ± 12.4 | 180.3 ± 17.7 |
HW/BW (mg/g) | 7.2 ± 0.4 | 8.3 ± 0.3 | 7.4 ± 0.5 | 7.7 ± 0.6 |
HW/TL (mg/mm) | 10.1 ± 0.6 | 10.6 ± 0.5 | 10.7 ± 0.7 | 10.7 ± 1.3 |
Parameters | +/+ | +/+-FA | +/kl | +/kl-FA |
---|---|---|---|---|
Urea (mg/dL) | 33.8 ± 1.8 | 389.0 ± 27.3 *** | 40.9 ± 3.4 | 418.2 ± 45.5 δδδ |
BUN (mg/dL) | 15.8 ± 0.8 | 181.8 ± 12.8 *** | 19.1 ± 1.6 | 195.4 ± 21.3 δδδ |
Phosphates (mg/mL) | 12.8 ± 0.5 | 33.9 ± 3.3 *** | 9.6 ± 0.5 | 23.7 ± 2.5 ϕϕϕ, δδδ |
FGF23 (pg/mL) | 237 ± 21 | 13190 ± 1820 *** | 250 ± 18 | 8648 ± 2560 ϕ, δδδ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Lafuente, L.; Navarro-García, J.A.; Valero-Almazán, Á.; Rodríguez-Sánchez, E.; Vázquez-Sánchez, S.; Mercado-García, E.; Pineros, P.; Poveda, J.; Fernández-Velasco, M.; Kuro-O, M.; et al. Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury. Int. J. Mol. Sci. 2023, 24, 1322. https://doi.org/10.3390/ijms24021322
González-Lafuente L, Navarro-García JA, Valero-Almazán Á, Rodríguez-Sánchez E, Vázquez-Sánchez S, Mercado-García E, Pineros P, Poveda J, Fernández-Velasco M, Kuro-O M, et al. Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury. International Journal of Molecular Sciences. 2023; 24(2):1322. https://doi.org/10.3390/ijms24021322
Chicago/Turabian StyleGonzález-Lafuente, Laura, José Alberto Navarro-García, Ángela Valero-Almazán, Elena Rodríguez-Sánchez, Sara Vázquez-Sánchez, Elisa Mercado-García, Patricia Pineros, Jonay Poveda, María Fernández-Velasco, Makoto Kuro-O, and et al. 2023. "Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury" International Journal of Molecular Sciences 24, no. 2: 1322. https://doi.org/10.3390/ijms24021322
APA StyleGonzález-Lafuente, L., Navarro-García, J. A., Valero-Almazán, Á., Rodríguez-Sánchez, E., Vázquez-Sánchez, S., Mercado-García, E., Pineros, P., Poveda, J., Fernández-Velasco, M., Kuro-O, M., Ruilope, L. M., & Ruiz-Hurtado, G. (2023). Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury. International Journal of Molecular Sciences, 24(2), 1322. https://doi.org/10.3390/ijms24021322