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Abstract: Parkinson’s disease (PD) is characterized pathologically by abnormal aggregation of alpha-
synuclein (α-Syn) in the brain and clinically by fine movement deficits at the early stage, but the
roles of α-Syn and associated neural circuits and neuromodulator bases in the development of fine
movement deficits in PD are poorly understood, in part due to the lack of appropriate behavioral
testing paradigms and PD models without motor confounding effects. Here, we coupled two unique
behavioral paradigms with two PD models to reveal the following: (i) Focally injecting α-Syn fibrils
into the dorsolateral striatum (DLS) and the transgenic expression of A53T-α-Syn in the dopaminergic
neurons in the substantia nigra (SN, PITX3-IRES2-tTA/tetO-A53T mice) selectively impaired forelimb
fine movements induced by the single-pellet reaching task. (ii) Injecting α-Syn fibers into the SN
suppressed the coordination of cranial and forelimb fine movements induced by the sunflower seed
opening test. (iii) Treatments with the adenosine A2A receptor (A2AR) antagonist KW6002 reversed
the impairment of forelimb and cranial fine movements induced by α-Syn aggregates in the SN. These
findings established a causal role of α-Syn in the SNc-DLS dopaminergic pathway in the development
of forelimb and cranial fine movement deficits and suggest a novel therapeutic strategy to improve
fine movements in PD by A2AR antagonists.

Keywords: alpha-synuclein; Parkinson’s disease; motor skill learning; fine movement; adenosine
A2A receptor

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, with
an incidence of 1-2% of people over 60 years old [1,2]. Abnormal alpha-synuclein (α-Syn)
accumulation and the progressive loss of dopaminergic neurons in the substantia nigra are
the prominent pathological characteristics of PD patients. As a result of dopamine depletion
in the substantia nigra pars compacta (SNc)-striatum system, PD patients present cardinal
motor symptoms including resting tremor, rigidity, bradykinesia, and postural instability [3].
However, at the early phase, the most prominent symptom of PD patients is the deficits
in skilled forelimb use. PD patients are presented with impairments in hand fine motor
skills (such as pen holding, buttoning, and knotting) before the onset of cardinal motor
dysfunctions. The fine movement impairments significantly affect daily routine activity
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(such as tying a shoe and wearing a shirt) and thus reduce the quality of life of PD patients [4].
The current clinical assessment of motor function, such as the Unified Parkinson’s Disease
Rating Scale (UPDRS) [5], is not sufficiently sensitive for evaluating subtle deficits in fine
movements in PD as executive cognition elements, such as motor skill learning, which are
also involved in the control of fine movements [6]. At a PD clinic, fine movement skills
are specifically assessed by neuropsychological test such as the finger tapping test (FTT)
or the neurological test such as finger-to-thumb tapping. Current PD studies often focus
on investigation into the impairments in gross motor function and coordination in PD
models by evaluating locomotor activity, rotarod coordination, and gait function [7–10].
For example, some studies used the rotarod test to evaluate the motor coordination of
rodents, which are particularly sensitive for detecting cerebellar dysfunction [11]. However,
mice with striatal dopamine depletion show only mild or no motor deficits on the typical
accelerating rotarod test [12]. Investigations into fine movement control are hampered by a
lack of appropriate behavioral paradigms for the specific assessment of fine movement. To
address this issue, we first employed the “sunflower seed opening” test in which mice had
to use bilateral forelimbs and cranial motor activities to peel the shells of sunflower seeds to
obtain the rewards within the required time [13]. Furthermore, we analyzed the deficits of
the fine movement control of specific forelimbs by employing a “single pellet reaching” task
in which mice had to use the over-trained, skilled, and preferred forelimb to reach for small
food pellets, grasp them, and retrieve them toward the mouth for eating.

In addition to the behavioral paradigm limitation, there is still a lack of appropriate
PD animal models for the specific assessment of fine movement control. The PD neurotoxin
models by 6-OHDA and MPTP are often confounded by gross motor deficits, which can
mask fine movement deficits. The transgenic PD mice with the overexpression of wild-type
or PD-related mutant α-Syn only show scarce or low levels of α-Syn expression in midbrain
dopaminergic neurons. To overcome these limitations, we leveraged the focal injection of
α-Syn fibrils into a specific brain region to investigate the causal role of α-Syn aggregates in
the nigrostriatal pathway during the development of fine movement deficits. Furthermore,
we adopted a line of A53T α-Syn transgenic mice with the targeted expression of A53T
α-Syn in the midbrain dopaminergic neurons under the control of the PITX3 promoter
and conditionally regulated by the tet-off system [14] to determine critical control of fine
movements by the nigro-striatal dopaminergic pathway.

Furthermore, the dopaminergic system plays an important role in integrating motor
and cognitive processing considering that dopamine depletion and cortico-striatal pathway
dysfunction contribute to cardinal gross motor symptoms and fine movement deficits in
PD [15]. The adenosine A2A receptors (A2ARs) are expressed at high levels in the striatum to
integrate the cortico-striatal glutamate signaling and nigra-striatal dopamine signaling and
to control the cortico-striatal synaptic plasticity and cognition [16–18]. Striatal A2ARs can also
play a regulatory role in instrumental learning by co-localizing and forming heterodimers
with the dopamine D2 receptors and metabotropic glutamate 5 receptors in the striatum [17].
The striatal A2AR activation exerts an inhibitory control of motor activity as well as various
cognitive functions, including goal-directed behavior in normal mice [19,20] and action
sequence learning under PD conditions [21]. Accordingly, we proposed that A2AR may
represent a therapeutic target for alleviating fine movement deficits in PD.

In this study, we coupled two PD models to produce fine movement without gross
movement deficits with two behavioral paradigms for the assessment of fine movement
(i.e., “sunflower seed opening” and “single pellet reaching”) to establish the causal relation-
ship between α-Syn abnormal aggregates in the nigro-striatal dopaminergic pathways and
the impairments of fine movement. We first dissected the role of α-Syn aggregation in the
nigro-striatal pathway in controlling fine movements by the focal injection of α-Syn fibrils
into the dorsolateral striatum (DLS) and SNc. Furthermore, we identified the critical control
of fine movement by α-Syn aggregating in the dopaminergic system by overexpressing
α-Syn in midbrain dopaminergic neurons using PITX3-IRES2-tTA/tetO-A53T transgenic
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mice (A53T transgenic mice) [14]. Lastly, we investigated the ability of A2AR antagonists to
reverse fine movement deficits induced by α-Syn aggregates.

2. Results
2.1. Coordination of Bilateral Forelimbs and Cranial Motor Function Was Selectively Impaired by
α-Syn Abnormal Aggregation in SNc but Not in DLS

Since the DLS plays a critical role in motor skill learning, we first sought to identify
whether the abnormal accumulation of α-Syn in DLS impaired coordination functions,
including bilateral forelimbs and cranial motor. Quantitative analyses verified the damage
effect caused by A53T α-Syn fibrils injections (Figure 1B,C, t4 = −5.019, p = 0.007). To exclude
the gross motor confounding effects, we assessed the locomotion activity and found that there
was no difference between the PBS and the α-Syn group (Figure 1D, t20 = 1.205, p = 0.242),
demonstrating that α-Syn aggregations in DLS did not affect gross motor activity at 3 months
after the injection. To further evaluate the coordination function, animals underwent the
sunflower seed opening test (Figure 1E,F). In contrast, we did not find any differences
between the two groups, because there was neither a main effect (F(1,20) = 0.357, p = 0.557)
nor a time × α-Syn injection interaction effect (F(1.602,21.246) = 0.119, p = 0.749) (Figure 1G).

On the other hand, the nigro-striatal pathway was considered to be a significant neural
circuit for reinforcement learning behaviors. We next injected α-Syn fibrils bilaterally into
SNc (Figure 1H) to investigate the modulation effect of the nigro-striatal pathway on fine
movement activity. We confirmed the Lewy body accumulation in SNc resembling the
pathological characteristics of PD patients (Figure 1I). Quantitative analyses illustrated the
remarkable damage effect (Figure 1J, t4 = −4.840, p = 0.008). This was confirmed by the
notable decrease in TH-positive DA neurons in the SNc (Figure 1L). There was approximately
a 30% DA depletion in the SNc of A53T α-Syn-injected mice compared to that with PBS-
injected mice (Figure 1M, t4 = 4.021, p = 0.016). We then assessed the locomotion activity and
revealed no significant differences between the PBS and α-Syn injection group (Figure 1K,
t27 = 0.874, p = 0.390), excluding the confounding effect caused by gross motor functions.
Importantly, in the sunflower seed opening test, we observed that mice with α-Syn injections
obtained fewer seeds than the controls (Figure 1N, interaction effect of test duration ×
groups: F(1.341,46.948) = 8.025, p = 0.003; between groups main effect: F(1,35) = 7.851, p = 0.008),
indicating that the coordination function by bilateral forelimbs and cranial nerves was
significantly impaired by α-Syn aggregation in the SNc.
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Figure 1. The coordination function was selectively impaired by abnormal α-Syn aggregation in SNc 
but not in DLS. (A) Sketch map of α-Syn bilateral injection into DLS. (B,C) Immunohistochemistry 
stain with phosphorylated α-Syn illustrating that A53T α-Syn fibrils obviously induced Lewy body 
inclusions (black arrows head) in DLS (scale bars: left, 50 μm; right, 10 μm), and quantitative anal-
yses confirmed the damaging effect led by A53T α-Syn (t4 = −5.019, p = 0.007, PBS: n=3, A53T: n = 3, 
independent samples t-test). (D) Locomotor activity was not affected by α-Syn pathological accu-
mulation (t20 = 1.205, p = 0.242, PBS: n = 10, A53T: n = 12, independent samples t-test). (E) Schematic 
design of the sunflower seed opening test. Each mouse was placed individually into a clear plastic 
arena with 30 sunflower seeds located on one side. The total number of seeds obtained by mice was 
recorded at the end of 1, 3, 8, and 24 h. (F) The presentation of sunflower seeds obtained by mice. 
(G) There was no significant difference in the sunflower seed opening test between PBS and A53T 
α-Syn groups (testing time × group interaction effect: F(1.602,21.246) = 0.119, p = 0.749, PBS: n = 10, A53T: 
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Figure 1. The coordination function was selectively impaired by abnormal α-Syn aggregation in SNc
but not in DLS. (A) Sketch map of α-Syn bilateral injection into DLS. (B,C) Immunohistochemistry
stain with phosphorylated α-Syn illustrating that A53T α-Syn fibrils obviously induced Lewy body
inclusions (black arrows head) in DLS (scale bars: left, 50 µm; right, 10 µm), and quantitative analyses
confirmed the damaging effect led by A53T α-Syn (t4 = −5.019, p = 0.007, PBS: n = 3, A53T: n = 3,
independent samples t-test). (D) Locomotor activity was not affected by α-Syn pathological accumu-
lation (t20 = 1.205, p = 0.242, PBS: n = 10, A53T: n = 12, independent samples t-test). (E) Schematic
design of the sunflower seed opening test. Each mouse was placed individually into a clear plastic
arena with 30 sunflower seeds located on one side. The total number of seeds obtained by mice was
recorded at the end of 1, 3, 8, and 24 h. (F) The presentation of sunflower seeds obtained by mice.
(G) There was no significant difference in the sunflower seed opening test between PBS and A53T
α-Syn groups (testing time × group interaction effect: F(1.602,21.246) = 0.119, p = 0.749, PBS: n = 10,
A53T: n = 12, two-way ANOVA for repeated measurements). (H) Sketch map of A53T α-Syn bilateral
injection into SNc. (I) Representative immunohistochemical images of Lewy body (black arrows
head) aggregation in SNc (scale bars: left, 50 µm; right, 10 µm). (J) Quantitative analyses confirmed
the damaging effect led by A53T α-Syn (t4 = −4.840, p = 0.008, PBS: n = 3, A53T: n = 3, independent
samples t-test). (K) Mice with or without A53T α-Syn injections into the SNc did not show any
difference in the locomotion test (t27 = 0.874, p = 0.390, PBS: n = 18, A53T: n = 11, independent samples
t-test). (L) Immunofluorescent images of TH positive neurons in the coronal sections of PBS and
A53T α-Syn injection into SNc mice (scale bars: 1 mm). (M) Number of TH-positive neurons in the
SNc (t4 = 4.021, p = 0.016, PBS: n = 3, A53T: n = 3, independent samples t-test). (N) The coordination
function was significantly impaired by α-Syn aggregation in the sunflower opening test (testing time
× group interaction effect: F(4,136) = 1.815, p = 0.143; between groups effect: F(1,34) = 27.550, p = 0.0001,
PBS: n = 18, A53T: n = 19, two-way ANOVA for repeated measurements; * p < 0.05, ** p < 0.01, and
## p < 0.01).

2.2. Skilled Forelimb Motor Activity Was Impaired by α-Syn Abnormal Aggregations in the DLS
and SNc

Asymmetrically impaired dexterous skilled motor activity between the upper extrem-
ities is a prominent characteristic of PD patients, especially in the early phase of the dis-
ease. Hence, we investigated whether the abnormal aggregations of α-Syn in the DLS



Int. J. Mol. Sci. 2023, 24, 1365 5 of 16

affected skilled forelimb movement. With the newly developed single-pellet reaching task
(Figure 2A), mice were trained to use the preferred forelimb to reach the pellet, grasp it,
retract the paw, and to bring the pellet back to its mouth; then, they were trained to consume
it via a narrow slit. This test evaluates the comprehensive kinematics of dexterous skilled
forelimb activity, including paw, joints, and muscles. Compared to mice injected with PBS,
mice injected with A53T α-Syn fibrils in DLS showed a lower success rate, as evidenced by
the significant difference between the group effect (F(1,13) = 80.857, p = 0.0001) and testing
sessions× groups interaction effect (Figure 2C, F(1.720,22.362) = 0.087, p = 0.891). Moreover, the
reaction time was notably reduced in the α-Syn injection group compared to the PBS group
(Figure 2D, training sessions × treatment group: F(1.966,25.553) = 0.024, p = 0.975; groups main
effect: F(1,13) = 64.750, p = 0.0001).
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Figure 2. Skilled forelimb motor activity was impaired by α-Syn abnormal aggregations in the DLS
and SNc. (A) Schematic design of the single-pellet reaching task paradigm. (B) Sketch map of α-Syn
bilateral injection into DLS. (C) The success rate was obviously impaired by A53T α-Syn aggregation in
DLS in the single-pellet reaching task (testing sessions group interaction effect: F(1.720,22.362) = 0.087,
p = 0.891, between groups effect: F(1,13) = 80.857, p = 0.0001, PBS: n = 8, A53T: n = 7, two-way ANOVA
for repeated measurements). (D) The reaction time was also significantly reduced in mice with A53T
α-Syn injection in DLS (testing sessions x group interaction effect: F(1.966,25.553.362) = 0.024, p = 0.975;
between groups effect: F(1,13) = 64.750, p = 0.0001, PBS: n = 8, A53T: n = 7, two-way ANOVA for
repeated measurements). (E) Sketch map of A53T α-Syn bilateral injection into SNc. (F,G) A53T α-Syn
aggregation in SNc produced prominent impairing effect on success rates (testing sessions × group
interaction effect: F(4,136) = 1.815, p = 0.129; between groups effect: F(1,34) = 27.550, p = 0.0001, PBS: n = 17,
A53T: n = 19, two-way ANOVA for repeated measurements) and reaction time (testing sessions ×
group interaction effect: F(1.341,46.948) = 8.025, p = 0.003; between groups effect: F(1,35) = 7.851, p = 0.008,
PBS: n = 17, A53T: n = 19, two-way ANOVA for repeated measurements; ## p < 0.01, ### p < 0.001).

We further examined the effect of α-Syn abnormal aggregations in the SNc on skilled
forelimb motor activity. As expected, success rates (Figure 2F, testing sessions × groups:
F(4,136) = 1.815, p = 0.129; between groups main effect: F(1,34) = 27.550, p = 0.0001) and reaction
times (Figure 2G, testing sessions × groups: F(3.324,113.027) = 1.575, p = 0.195; between groups
main effect: F(1,34) = 8.240, p = 0.007) were dramatically impaired by SNc α-Syn abnormal
aggregations. Thus, we speculate that the SNc-DLS pathway is the critical neural circuit for
motor skill regulation.

2.3. Midbrain Dopamine-Specific Depletion by A53T Transgenic Mice Selectively Impaired Skilled
Forelimb Motor Activity but Not the Coordination of Bilateral Forelimbs and Cranial Nerves

Although α-Syn fibrils injections into the DLS and SNc resulted in abnormal Lewy
body aggregation in those regions and behavioral impairments, the specific role of midbrain
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dopaminergic neurons in the regulation of fine movements is still not well defined. To
address this issue, we adopted a line of A53T transgenic mice with α-Syn specifically
expressed in midbrain DA neurons, in which the A53T α-Syn expression was controlled
by PITX3 gene and conditionally silenced by the tet-off system. This transgenic line was
obtained by crossbreeding PITX3+/IRES2-tTA heterozygous mice with the E2 line of tetO-
A53T transgenic mice (Figure 3A). The DOX diet was withdrawn 2 months before the
behavioral experiments (Figure 3B). The pathological characteristics of the transgenic line
was confirmed by immunofluorescence staining (Figure 3C). Compared with control mice,
A53T transgenic mice displayed prominent α-Syn accumulation (Figure 3D, t4 = −9.761,
p = 0.001). A moderate decrease in DA neurons (approximately 30% decrease) was observed
in the SNc of A53T transgenic mice by TH staining (Figure 3E,F, t5.515 = 2.811, p = 0.034)
after DOX withdrawal for 2 months. The open field test did not detect any locomotion
impairment caused by the transgenic line (Figure 3G, t15.520 = 0.131, p = 0.897). In the
sunflower seeds opening test, the number of seeds obtained by A53T transgenic mice
and controls increased over testing time indistinguishably (Figure 3H, between groups
effect: F(1,265) = 1.346, p = 0.254, testing time × groups interaction effect: F(1,26.003) = 1.361,
p = 0.254), implying the absent modulating effect on the coordination function of bilateral
forelimbs and cranial nerves. Conversely, in the single-pellet reaching task, the success
rates (Figure 3I, between groups effect: F(1,21) = 19.108, p = 0.0001, testing sessions × groups
interaction effect: F(2.461,51.673) = 0.232) and the reaction time (Figure 3J, between groups
effect: F(1,21) = 14.696, p = 0.001, testing sessions × groups interaction effect: F(4,84) = 0.310,
p = 0.870) were readily impaired in A53T transgenic mice.
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periments. Down: A53T α-Syn was induced in order to be expressed after DOX-containing diet 
withdrawal. (C) Immunofluorescent images show the selective expression of A53T α-Syn (white 
arrows head) in SNc after DOX diet withdrawn 2 months (scale bars: 50 μm). (D) The number of 
Lewy body inclusions in A53T transgenic mice compared to that of nTg mice (controls) (t4 = −9.761, 
p = 0.001, nTg: n = 3, A53T: n = 3, independent samples t-test). (E) The midbrain DA neurons were 
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nTg mice (scale bars: 1 mm). (F) Quantitative analysis showed that the number of TH-positive neu-
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Figure 3. Midbrain dopamine-specific depletion by A53T transgenic mice selectively impaired skilled
forelimb motor activity but not the coordination of bilateral forelimbs and cranial nerves. (A) The
diagram depicts the generation of PITX3-IRES2-tTA/tetO-A53T (A53T transgenic mice) transgenic
mice by crossbreeding PITX3-IRES2-tTA and tetO-A53T mice. (B) The tet-off system: top: to suppress
the expression of A53T α-Syn, a DOX-containing diet was provided before behavioral experiments.
Down: A53T α-Syn was induced in order to be expressed after DOX-containing diet withdrawal.
(C) Immunofluorescent images show the selective expression of A53T α-Syn (white arrows head)
in SNc after DOX diet withdrawn 2 months (scale bars: 50 µm). (D) The number of Lewy body
inclusions in A53T transgenic mice compared to that of nTg mice (controls) (t4 = −9.761, p = 0.001,
nTg: n = 3, A53T: n = 3, independent samples t-test). (E) The midbrain DA neurons were visualized
by TH immunofluorescent staining in the SNc of A53T transgenic mice and the control nTg mice (scale
bars: 1 mm). (F) Quantitative analysis showed that the number of TH-positive neurons was reduced
by approximately 30% in A53T transgenic mice compared to that of nTg mice (t5.515 = 2.811, p = 0.034,
nTg: n = 5, A53T: n = 5, independent samples t-test). (G) There was no statistical difference in the
locomotion test between the A53T transgenic mice and the nTg mice (t15.520 = 0.131, p = 0.897, nTg:
n = 19, A53T: n = 11, independent samples t-test). (H) All mice performed identically in sunflower
seed opening test (testing time × group interaction effect: F(1,26.003) = 1.361, p = 0.254, nTg: n = 17,
A53T: n = 11, two-way ANOVA for repeated measurements); between groups effect (F(1,265) = 1.346,
p = 0.254, nTg: n = 17, A53T: n = 11, two-way ANOVA for repeated measurements). (I,J) The success
rates (testing sessions× group interaction effect: F( 2.461,51.673) = 0.232, p = 0.837; between groups effect:
F(1,21) = 19.108, p = 0.0001, nTg: n = 14, A53T: n = 9, two-way ANOVA for repeated measurements)
and reaction time (testing sessions × group interaction effect: F(4,84) = 0.310, p = 0.870; groups main
effect: F(1,21) = 14.696, p = 0.001; * p < 0.05, *** p < 0.001, and ### p < 0.001) were notably reduced in
A53T transgenic mice in the single-pellet reaching task.

2.4. The Specific A2AR Antagonist KW6002 Recovered the Coordination Deficit Caused by SNc
Dopamine Depletion Selectively

Currently, there is still a lack of an appropriate pharmacological therapeutic method
to treat subtle motor deficit in PD patients. According to our recent studies [20–22] and
others [23], activation striatal A2ARs exert an inhibitory control of a variety of cognitive
and motor functions, implying a potential role of A2AR antagonist in improving the motor
skill function. Therefore, we investigated whether the specific A2AR antagonist KW6002
was able to recover the impaired coordination function and skilled forelimb motor activ-
ity. Interestingly, KW6002 did not improve skilled forelimb motor activity when α-Syn
aggregation in SNc, as evidenced by the absence of effects on the single-pellet reaching
task (Figure 4E, success rate, testing sessions × groups interaction effect: F(4,80) = 0.037,
p = 0.994; between groups effect: F(1,20) = 0.510, p = 0.483 and Figure 4F, the reaction time,
testing sessions × groups interaction effect: F(4,80) = 0.173, p = 0.912; between groups effect:
F(1,20) = 0.320, p = 0.578). However, the pharmacological blockade of A2ARs significantly
increased the number of seeds obtained in the sunflower seed opening test (Figure 4D, test-
ing time × groups interaction effect: F(1,294,23.297) = 42.846, p = 0.001; between groups effect:
F(1,18) = 35.252, p = 0.0001). Therefore, the pharmacological blockade of A2ARs selectively
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promoted the coordination function of bilateral forelimbs and cranial nerves, indicating its
potential treating effect on the coordination deficit of PD patients.
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Figure 4. The specific A2AR antagonist KW6002 recovered the coordination deficit caused by SNc
dopamine depletion selectively. (A) Sketch map of A53T α-Syn bilateral injections into SNc. (B) The
time course of the α-Syn fibers injection and behavioral experiments. (C) The representative sunflower
seed shells peeled by A53T α-Syn injected in the SNc mice with KW6002 treatments versus the vehicle
at the end of 8 h of the sunflower seed opening test. (D) Mice treated with KW6002 showed significant
improvement of the coordination function in the sunflower seed opening test (testing time × group
interaction effect: F(1,294,23.297) = 42.846, p = 0.001; between groups effect: F(1,18) = 35.252, p = 0.0001,
A53T-αS-Vehicle: n = 12, A53T-αS-KW6002: n = 9, two-way ANOVA for repeated measurements).
(E,F) The success rates (testing sessions × group interaction effect: F(4,80) = 0.037, p = 0.994; between
groups effect: F(1,20) = 0.510, p = 0.483, A53T-αS-Vehicle: n = 12, A53T-αS-KW6002: n = 10, two-
way ANOVA for repeated measurements) and reaction time (testing sessions x group interaction
effect: F(4,80) = 0.173, p = 0.912; between groups effect: F(1,20) = 0.320, p = 0.578, A53T-αS-Vehicle:
n = 12, A53T-αS-KW6002: n = 10, two-way ANOVA for repeated measurements; *** p < 0.001, and
### p < 0.001) of SNc A53T α-Syn aggregation mice were not recovered by KW6002, as evidenced by
the single-pellet reaching task.

3. Discussion
3.1. Alpha-Synuclein Aggregates in the SNc-DLS Pathway Distinctly Affects Forelimbs and
Cranial Fine Movements

In addition to cardinal motor impairments, PD patients also experience disability with
respect to impaired fine movement/manual dexterity with difficulty in routing tasks such
as fastening buttons, tying shoelaces, and handwriting, significantly affecting their quality
of life [24]. The impairments in fine movement differ from bradykinesia [25], which mainly
includes impairments with respect to locomotion, velocity, and amplitude of movement.
Skilled fine movement is acquired by practice over several sessions [26,27] and the success-
ful execution of fine movement involves the control of gross movement as well as other
motor coordination [28]. Recent studies have shown that the striatum and cortico-striatal
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interactions play an important role in controlling fine skill movement [26,29–32] and skill
learning, which are evaluated by reach-to-grasp task paradigms [33]. The DLS is an important
subcortical motor area that receives extensive monosynaptic inputs from both the M1 and
M2 motor cortex [34–36]. The DLS also receives DA signal inputs from the SNc, which is
crucial for fine movement regulations [37]. Accordingly, previous studies have shown that
DLS inactivation or lesion impairs forelimb fine movements, but the grasping action was
intact; i.e., animals were able to retrieve the pellet when the task was made easier by reducing
the transport distance. This suggests that the DLS exerts an important effect on regulating
the timing, amplitude, and the reliability of an action which is requisite for fine movement
execution [13,28,32,38,39].

However, the neural circuit bases for fine movement under pathological (such as
α-Syn aggregation) conditions are poorly defined. In the present study, we compared
dexterous skilled forelimb motor activities and the coordination of bilateral forelimbs and
cranial motor functions using two newly developed behavioral paradigms, i.e., single-pellet
reaching task and sunflower seed opening test. The “single-pellet reaching” task mainly
focuses on the use of a skilled forelimb to target the pellet, grasp it, and bring it to the
mouth for consumption. On the other hand, the “sunflower seed opening” test involves
varying degrees of both forelimbs and tongue/jaw function. This test relies heavily on
the forelimbs to adjust the position of the seed so that they can bite off pieces of shells,
thus representing a mixed task [13]. Our results revealed that α-Syn aggregates in DLS
only impair skilled forelimb activity by the single-pellet reaching task, but it still preserves
the motor coordination function of bilateral forelimbs and cranial motor nerves by the
sunflower seed opening test and gross motor function by the locomotion test. Moreover,
abnormal α-Syn aggregation in the SNc impairs both dexterous skilled forelimb use and
the coordination function of bilateral forelimbs and cranial fine movements with intact
locomotion activities. Thus, α-Syn aggregation in the nigro-striatal pathway impairs fine
movement without the overt effect on ambulation in these PD models. Our findings of
the impairment in fine movement by α-Syn aggregation in the DLS collaborate with
previous reports that the nigro-striatal system influences forelimb behaviors by modulating
the DLS’s neuron activities [13]; moreover, with the correlation of skilled fine and gross
movements with a loss of forelimb movement representations in the motor cortex M1 and
DLS [26], this observation confirms the critical role of the DLS in the development of fine
movement deficits in PD. Moreover, the coordination function of bilateral forelimbs and
cranial activity depends on more complicated neural mechanisms with a possibility of
involving the dorsomedial striatum (DMS) and cerebellum [40,41].

With the different sensitivities of dexterous skilled forelimb motor activity and the coor-
dination of bilateral forelimbs and cranial motor function relative to the α-Syn aggregation,
the nigro-striatal and midbrain dopaminergic neurons are largely attributed to the gradual
progression course of PD and the gradient functional heterogeneity of these pathways in
the neural circuit [42]. The dexterous skilled forelimb motor activity was first affected due
to α-Syn aggregation in the DLS. Progressively, as the entire SNc is affected, more compli-
cated behavioral tasks, including the coordination control of both limbs and cranial motor
function, become impaired, indicating that additional neural circuits such as “SNc-DMS”,
“ventral tegmental area (VTA)-nucleus accumbens (NAc)”, or even “cerebellum-striatum”
circuits are involved in regulating coordination behavior. Furthermore, other skill learning
elements including instrumental learning [19] and sequence learning [21] may contribute
to the DLS’s modulation of fine movement in PD.

3.2. Alpha-Synuclein in the Midbrain Dopaminergic Pathway Affects Forelimbs and Cranial
Fine Movements

The nigro-striatal dopaminergic pathway plays a critical role in gross motor control,
as evidenced by the cardinal motor symptoms and L-dopa-induced improvement of motor
activity in PD. Although the motor symptoms of PD can be relieved by levodopa (L-dopa)
treatments, they were unable to improve functional plasticity in the motor cortex [43] as
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well as motor skill learning [44]. Thus, it is important to critically evaluate the effect of
dopamine depletion and α-Syn aggregation in the nigro-striatal pathway on a complex,
finely coordinated and dexterous motor skill. Importantly, midbrain dopamine-specific
depletion by A53T transgenic mice selectively impaired skilled forelimb motor activity but
not the coordination of bilateral forelimbs and cranial nerves. This is consistent with recent
studies demonstrating a role for dopamine in the control of motor skill learning [28,45,46].
The specific involvement of the SNc-DLS pathway in the control of skilled forelimb ac-
tivity was confirmed by A53T transgenic mice. Before the onset of widespread neuronal
loss in the transgenic line, there is a severe depletion with respect to dopamine release
specifically in the DLS of 2-month-old A53T transgenic mice (i.e., the DOX-containing diet
was removed after 2 months), the exact same time point for our experimental analysis [14].
On the other hand, the discrepancy between α-Syn fibrils injections into the SNc group
and A53T transgenic line group in the sunflower seed opening test, i.e., the coordination
function of bilateral forelimbs and cranial nerves, might partly be attributed to the spe-
cific impairment of dopaminergic neurons in A53T transgenic mice. Other neurons, e.g.,
glutamatergic and GABAergic neurons, and neurogliocyte were possibly involved when
α-Syn fibrils were injected into SNc. The exact role of other cell types in the modulation of
fine movement needs to be further investigated. The reversal of fine movements induced
by α-Syn aggregations in the midbrain dopaminergic neurons can be attributed to two
distinct functions of dopamine signaling, namely invigorating movement and improving
motor skill learning by providing “reward prediction error” teaching signals. The “vigor”
function of dopamine derives from the L-dopa responsiveness of bradykinesia in PD and is
supported by extensive experimental evidence [47,48]. Furthermore, dopamine is required
for the formation of the bidirectional plasticity of medium spiny neurons (MSNs), i.e., LTP
in the D1 receptor expressing neurons and LTD in D2 receptor expressing neurons, provid-
ing the possible mechanism for motor skill learning [49]. The DA depletion resulted in the
marked instability of synaptic connections and dysregulated synapses that are remodeled
in the motor cortex. Pathologically, motor-learning-induced newly formed spines failed
to stay stable and were eliminated immediately, possibly contributing to the impaired
maintenance of motor leaning memory [50].

Current PD diagnosis in clinic is primarily performed on the clinical presentation of
cardinal motor symptoms (with UPDRS) and L-dopa drug responses, although various
molecular biomarkers and neuroimaging approaches have been attempted for early PD
diagnosis. Our findings of the impairment of dexterous skilled forelimb activities with gross
motor activities induced by α-Syn aggregation in the nigro-striatal dopaminergic pathway
indicate a possible behavioral approach for assisting early PD diagnosis. The behavioral
assessment in PD diagnosis has the unique advantages of being non-invasive, cost-effective,
and easy to administer at clinic, home, or online by the participants themselves.

3.3. Pharmacological Blockade of A2ARs more Likely Recovered the Coordination deficit of PD
rather Than Skilled Forelimb Motor Activity

As dopamine replacement treatments markedly improve gross motor activity, their
effects on motor skill learning and fine movement control are unclear; it is important to
explore the non-dopaminergic therapeutic targets for the improvement of deficits in fine
movement and motor skill learning in PD patients. Based on the selective colocalization of
the A2AR and D2 dopamine receptor in the striatopallidal neurons and their antagonistic
functional interaction in the striatum, the adenosine A2AR antagonist has been pursued for
improving the motor symptoms of PD in recent decades; it has finally received approval
in the US and Japan for the treatment of adult PD patients experiencing OFF time who
are currently taking levodopa (plus a decarboxylase inhibitor) [51,52]. The overall effect
size in reducing OFF time (−0.38 to −0.82 h) was comparable with other adjuncts relative
to levodopa therapy—such as MAO-B inhibitors and COMT-inhibitors; however, the
full potential of this drug class remains to be explored. Furthermore, our study [21] and
other [23] studies demonstrate the ability of the A2AR antagonist to reverse impairments
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caused by α-Syn in motor skill learning, such as motor sequence learning. Therefore, we
sought to investigate the exact effect of the blockade of A2ARs on the improvement of
subtle forelimb use and the more complicated coordination of both limbs and cranial motor
function. Notably, the pharmacological blockade of A2ARs selectively relieved the forelimbs
and cranial motor function deficits caused by α-Syn aggregation in SNc. However, A2AR
antagonist treatments did not improve the skilled forelimb motor activity deficits induced
by α-Syn pathological accumulation in SNc. As the sunflower seed opening test may
involve not only the forelimb fine movement but also more complicated coordination and
executive control elements with the possible involvement of DMS, our results indicated
that A2ARs played a more significant role in coordination control, which requires a more
demanding cognitive load. This is consistent with our recent study [19] showing that
A2AR in DMS plays a predominant role in controlling model-based goal-directed behaviors,
and this requires more analyses and computation [53]; moreover, we observed that the
associative cortico-striatal (DMS) loop was the default model of striatal functions [54] and
that a previous finding showed that the deletion of the indirect pathway in the DMS (but
not DLS) produces pronounced psychomotor and cognitive effects [55].

The ability of A2AR antagonists to enhance fine movements may be attributed to A2AR
acting as a cognitive “brake” controlling for a range of cognitive behaviors, including work-
ing memory [31], reversal learning [32], Pavlovian fear conditioning [33], set-shifting [34],
goal-directed behavior [15,35], and motor sequence learning [17] in normal animals. On the
other hand, the improvement effect on fine movement exerted by A2AR antagonists might
be caused by the upregulated expression of A2ARs in the hippocampus induced by α-Syn
aggregation [56]. Furthermore, recent studies show that the A2AR blockade decreases
α-Syn aggregation in Syn T-Synphilin-1 neuroglioma cells [57] and rescues synaptic and
cognitive deficits in α-Syn-transgenic mice [58], and A2AR gene disruption protects in the
α-Syn model of PD by preventing the loss of dopamine and dopaminergic neurons [59].
In contrast to targeting the hippocampus cortex by cholinesterase and NMDA inhibitors,
the selective localization of A2AR in the striatopallidal pathway would provide a novel
and promising target for selectively alleviating cognitive deficits in PD. This assumption
was verified in our demonstration that A2AR antagonists reversed the action sequence
learning deficit caused by A53T and WT α-Syn abnormal accumulation in SNc [21]. With
the approval of the A2AR antagonist istradefylline [60] for treating PD patients by the
FDA, the ability of A2AR antagonists, which not only enhanced gross motor activity but
also improved cognition, led us to propose that A2AR antagonists may represent a novel
therapeutic target for reversing fine movement deficits in PD patients (with the finger
tapping or finger-to-thumb tapping test).

4. Materials and Methods
4.1. Animals

PITX3-IRES2-tTA/tetO-A53T transgenic mice were obtained by crossbreeding
PITX3+/IRES2-tTA heterozygous mice with tetO-A53T transgenic mice [14] (Figure 3A) (kindly
provided by Peking University, Beijing, China). All animals were handled in accordance
with the protocols approved by the Institutional Ethics Committee for Animal Use in
Research and Education at Wenzhou Medical University, China. The transgenic mice used
in the experiment included female and male mice about 12–14 weeks old, with a weight
range of 19–27g. C57BL/6 male mice, at least 8 weeks old and 23–27g each, were used in
the experiments. Mice were housed in an ambient temperature of 22 ± 0.5 ◦C and a relative
humidity of 60 ± 2% with a 12h light/dark cycle. Mice were single-housed and underwent
experiments in the light cycle. The numbers of animals used in all experiments were shown
in the Supplementary Material (Table S1).

4.2. Doxycycline Treatment

A regular diet was replaced with DOX-containing (200 mg/kg of diet) food pellets
(Bio-Serv, Flemington, NJ, USA) to suppress the expression of A53T α-Syn from the early
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embryonic stages to the weaning age [14]. The DOX diet was then consistently supplied
to the newly weaned mice until two months before the experiment, at which point the
animals were back on a regular diet. Thus, α-Syn expression was controlled by the PITX3
gene and conditionally regulated by the tet-off system (Figure 3B).

4.3. Drug Administration

KW6002 ((E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-
dioe), a selective adenosine A2AR antagonist, 5 mg/kg (Sundia, Walnut, CA, USA), was
fully dissolved in a 1:1 mixture of dimethylsulfoxide (DMSO, Sigma, Burlington, MA, USA)
and ethoxylated castor oil (Sigma). This mixture (30%) was then further diluted in water
(70%) to obtain a KW6002 suspension. The control mice were treated with vehicle. Drugs
were injected intraperitoneally (i.p.) routinely in a volume of 0.1 mL/10 g of body weight.
In the single-pellet reaching task, drugs were administrated only during the testing phase
(5 consecutive days) 30 min before testing. The drug was given every 6 h in the sunflower
seed opening test.

4.4. Analysis of Recombinant α-Syn Protein and Stereotactic Surgery

The purification of recombinant α-Syn proteins and in vitro fibril formation was per-
formed as previously described [61,62] and has been successfully used in our previous
studies [21,56]. Briefly, the full-length cDNA of human α-Syn-His6 containing A53T muta-
tions was synthesized and cloned into the E. coli expression vector pET24a. The expression
vector was then transformed into BL21 (DE3) cells. An appropriate chromatography method,
including nickel affinity and gel filtration, was implemented to purify the target proteins.
α-Syn fibrils were briefly placed in an ultrasound bath before intracerebral injections.

Conditional impairment was achieved by stereotaxic injections with α-Syn fibrils
(the A53T locus mutation, 1.5 mg/mL) into the bilateral dorsolateral striatum (DLS, AP,
+0.98 mm; ML, ±2.20 mm; DV, −2.60 mm) and SNc (AP, −3.16 mm; ML, ±1.25 mm; DV,
−4.00 mm) 5 µg/side, and the control (PBS) was bilaterally injected into DLS and SNc with
a speed of 0.25ug/min and the retention of the needle for 10 min after the injection for full
diffusion. Based on our pilot studies, the time required for establishing the animal model
was 1 month for SNc and 3 months for DLS [61].

4.5. Locomotion

To evaluate general locomotor activities, mice were tested in an open field arena two
days before the behavioral test. The locomotion test was conducted by employing the
standard open field apparatus (40 cm× 40 cm× 35 cm) with a video camcorder fixed at the
top. On the first day, each mouse was placed in an open field cage to habituate for 5 min.
On the second day, each mouse was recorded individually for 15 min. The total distance
traveled in 15 min was analyzed by the EthoVision XT program (Noldus, Wageningen,
The Netherlands).

4.6. Single-Pellet Reaching Task

The single-pellet reaching test was performed as previously described [63], and the
mice were trained to reach through an opening to retrieve food pellets (45 mg) placed
on an elevated grid floor that was indented 2 cm away from the front wall (Figure 2A).
Skilled forelimb use and motor learning were evaluated by a custom-made clear Plexiglas
chamber (8 cm × 15 cm × 20 cm) with 3 vertical slits (0.5 cm × 13 cm) made in the front
wall. A stage (0.9 cm tall) was placed in front of the slits to hold the food pellets. Mice
were food-restricted to keep 85–90% of their initial body weight throughout the experiment.
Animals underwent the training/shaping phase (for 3–5 days) before the testing phase
(5 consecutive days). Both the training/shaping session and testing phase were terminated
until the mouse spent 20 min in the chamber. Mice that showed greater than 70% preference
for either hand (more than 70% reaches are performed with one forelimb) were used for
the test. During the testing process, the mice had to stretch out the preferred forelimb
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via the slit to reach the pellet and then grasp it; the mice then retracted the paw and
brought the pellet back to its mouth and consumed it. “Reach” was scored each time an
animal extended its forelimb through the slits. A “Successful” attempt was scored if the
animal smoothly grasped the food and placed it in its mouth. “Success rate” was calculated
by “the Successful attempts/Reach”. “Reaction time” was defined by “the Successful
attempts/Time”. Finally, quantitative statistics were made depending on the “Success rate”
and “Reaction time” in the testing phase.

4.7. Sunflower Seed Opening Test

To test object manipulation abilities, each mouse was placed individually into a clear
plastic arena with 30 sunflower seeds located on one side. Mice were allowed to have free
access to sunflower seeds for 24 h. The mice needed to pick the sunflower seeds up with
their forepaws and obtain the seed’s kernel by peeling the shells of the seeds. The primary
outcome measure for sunflower seed testing was the total number of peeled seeds at 1 h,
3 h, 8 h, and 24 h.

4.8. Immunohistochemistry

On the second day after all behavioral experiments were performed, mice were
deeply anesthetized with avertin (Sigma) and then transcardially perfused with 0.01 M PBS
(pH = 7.4) followed by an ice-cold 4% paraformaldehyde wash. Immunohistochemistry was
performed on 30 µm free-floating sections. The free-floating sections were washed in 0.01 M
PBS (pH = 7.4) and then incubated for 60 min in PBS containing 0.3% Triton X-100 and 15%
normal donkey serum. Primary antibodies were incubated following manufacturer proto-
cols: tyrosine hydroxylase (abcam; polyclonal antibody; ab112; 1:1000), anti-alpha-synuclein
(phospho S129) (Wako; monoclonal antibody; 015-25191; 1:1000), and anti-alpha-synuclein
(abcam; monoclonal antibody; ab138501; 1:300). An Alexa 568-conjugated secondary an-
tibody (Invitrogen; 1:1000) was used to visualize the staining. For immunohistochemical
analysis, the sections were immunostained using the avidin-biotin complex (ABC) system
(VectastainABC Elite Kit; Vector Laboratories, Burlingame, CA, USA), and immunocom-
plexes were visualized with chromogen 3.3′-diaminobenzidine. Sections were counter-
stained with hematoxylin and images were acquired with a brightfield microscope. Fluo-
rescence images were captured using a laser-scanning confocal microscope (Leica DM6B).
TH-positive neurons and α-Syn quantitative data were obtained by counting the number
of TH-positive neurons and α-Syn-expressed neurons in the non-overlapping field of the
intact unilateral SNc region under a 20-fold microscope. P-Syn was calculated by counting
the number of neurons that contain Phosphorylated α-Syn in a single 20-fold field of vision
in DLS and SNc. About seven to nine brain slices from each animal were counted, and their
averages were taken. Three to five animals in each group were included in the quantitative
staining analyses.

4.9. Statistical Analysis

All data were presented as mean ± SEM and were processed with SPSS 20.0. Inde-
pendent sample t-tests were used for immunofluorescence staining, and locomotion data
analyses. Two-way ANOVA for repeated measurements were used with testing sessions as
the within-subject effect and different α-Syn fibrils as between-subject effects, with p < 0.05
as representing a statistically significant result.
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