
Citation: Jeng, K.-S.; Chang, C.-F.;

Sheen, I.-S.; Jeng, C.-J.; Wang, C.-H.

Cellular and Molecular Biology of

Cancer Stem Cells of Hepatocellular

Carcinoma. Int. J. Mol. Sci. 2023, 24,

1417. https://doi.org/10.3390/

ijms24021417

Academic Editor: Nam Deuk Kim

Received: 28 November 2022

Revised: 3 January 2023

Accepted: 4 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Cellular and Molecular Biology of Cancer Stem Cells of
Hepatocellular Carcinoma
Kuo-Shyang Jeng 1,*, Chiung-Fang Chang 1 , I-Shyang Sheen 2, Chi-Juei Jeng 3 and Chih-Hsuan Wang 1

1 Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
2 Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University,

Taoyuan City 33305, Taiwan
3 Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
* Correspondence: kevin.ksjeng@gmail.com; Tel.: +886-2-8966-7000 (ext. 2320); Fax: +886-2-8966-8505

Abstract: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The
cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence,
chemoresistance, target therapy resistance and radioresistance. The reported main surface markers
used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster
differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the
Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR
and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young
but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly
differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases.
Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The
Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through
the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and
CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against
ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the
improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.

Keywords: cancer stem cells; hepatocellular carcinoma; surface markers; chemoresistance; radioresistance

1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death glob-
ally [1,2]. Despite significant advances in the studies of etiologies, molecular investigations,
imaging studies and various treatments, the 5-year overall survival rate and disease-free
survival rate remain disappointing [1,3]. The treatment options for those with advanced
HCC are limited, and finding novel treatments is an urgent necessity.

The etiologies of HCC are multifactorial, including viral infections, such as hepatitis B
virus (HBV) and hepatitis C virus (HCV); nonalcoholic steatohepatitis; excessive alcohol
consumption or cigarette smoking; and environmental toxins [4–6]. Regardless of the
etiologies, most HCCs are associated with liver inflammation, fibrosis and cirrhosis [5].
Liver cirrhosis is present in the majority of patients with HCC [5,6]. Furthermore, the
genomic instability caused by liver inflammation or liver cirrhosis and some signaling
pathways may affect both the initiation and progression of HCC [5–7].

Cancer stem cells (CSCs) are defined as a subpopulation of poorly differentiated cancer
cells that can grow, regenerate and invade tissues [8–10]. They may appear due to mutation
or genetic evolution, and they usually present characteristics similar to those of normal
stem cells [9,10]. Studies have found that the CSCs of HCC are responsible for tumor
growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and
radioresistance [8–15]. Other studies have found that, under the impact of chemotherapy
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or radiotherapy, non-CSCs can transform into CSCs, encouraging cancer recurrence and
worsening clinical outcomes [16–18]. Although there is no universal CSC marker that
can be used to identify the CSCs of HCC, studies have shown some of the main surface
markers that can identify liver CSCs, including epithelial cell adhesion/activating molecule
(EpCAM) (CD326), cluster of differentiation 90 (CD90), CD44 and CD133 [19–39]. The
reported main molecular signaling pathways attending the pathogenesis of the CSCs of
HCC include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog
(SHH), PI3K/Akt/mTOR and Notch pathways [40–79].

In this paper, we review the current literature regarding these main surface markers
and molecular signaling pathways and the crosstalk and interactions among them, along
with the role of CSCs in mitigating the effects of current therapies.

2. Surface Markers of HCC Cancer Stem Cells
2.1. Epithelial Cell Adhesion/Activating Molecule

Epithelial cell adhesion/activating molecule (EpCAM), a cancer antigen, is one of the
most frequently reported markers of CSCs of HCC [20,21,80]. Khosla et al. found that the
expression of EpCAM increases during the development of HCC [21]. Compared with
a normal liver, a significantly higher expression of “stemness genes” has been found in
liver cirrhosis and EpCAM-positive HCC. This suggests that EpCAM-positive liver CSCs
may appear both in liver cirrhosis and during the formation of HCC [21]. Some studies
have identified liver CSCs with an overexpression of EpCAM in HCC in individuals with
a history of HBV infection, suggesting that hepatitis B antigen (HBx) may upregulate
EpCAM and CSC phenotypes [81,82]. EpCAM expression in HCC is also correlated with
elevated levels of alpha-fetoprotein (AFP) [83]. Meta-analyses have shown that EpCAM is
correlated with the poor differentiation of HCC [21,83]. There is also evidence that EpCAM
can affect tumor recurrence [21,83]. Patients who are positive for EpCAM have a shorter
survival rate than patients who are negative for EpCAM (85.7%, 51.3% and 46.2% vs. 86.2%,
86.2% and 82.3% at one, two and three years, respectively) [12]. Zeng suggested that a
higher value of EpCAM staining of liver explants predicted HCC recurrence after liver
transplantation [13]. In addition, the expression of EpCAM is higher in patients with HCC
receiving preoperative chemotherapy, especially when using cisplatin treatment [82].

Yamashita et al. categorized HCC into subgroups according to EpCAM expression
and AFP level [83]. Patients with EpCAM-positive and AFP-positive HCC are usually
young but in advanced TNM stages. Those with EpCAM-negative and AFP-negative
HCC are usually older but in earlier tumor-node-metastasis (TNM) stages [83]. EpCAM-
positive and AFP-positive HCC may present the characteristics of hepatic stem/progenitor
cells, whereas EpCAM-negative and AFP-negative HCC only has similar features to adult
hepatocytes [83].

2.2. Cluster of Differentiation 90

Cluster of differentiation 90 (Th-1 cell surface antigen; CD90), a 25–37 kDa
glycophosphatidylinositol-anchored cell surface protein, is another well-known HCC
stem cell marker [22–24]. Yang et al. isolated CD90-positive HCC cell lines from both
tumor tissues and blood samples, and they found that, compared with CD90-negative HCC
cells, CD90-positive HCC cells have a higher malignant level with metastatic potential [24].
Further, Sukowati et al. reported that CD90-positive HCCs are usually poorly differentiated
with a worse prognosis compared to the cells of cirrhotic liver or normal liver [22,84].

Guo et al. compared patients with CD90-positive HCC and those with CD90-negative
HCC and found that the overall survival rates at one, two and three years were 87.5% vs.
100%, 72.9% vs. 94.1% and 54.7% vs. 88.2%, respectively [12]. Meta-analyses have also
shown that the specificity of CD90 is about 91.9% and that the sensitivity is about 48.22%
when predicting the poor differentiation of HCC [15].
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2.3. CD44

CD44, belonging to the transmembrane glycoprotein family, can be found in monocytes
and neutrophils [85,86]. It plays a pivotal role in various cellular processes [25–29]. CD44
and its variants can also be found in various cancers and tissues, including HCC, peri-
HCC tissue, hepatoblastoma, liver tissue with viral hepatitis infection and even normal
liver tissue [87]. CD44-positive HCC cells present the characteristics of CSCs [25,26,87].
In HCC, coexisting expressions of other CSC markers, such as CD133 and CD90, can
usually be found in CD44-positive CSCs [28,37,87,88]. The role of CD44 in HCC still
remains controversial. It affects the epithelial–mesenchymal transition (EMT) and enhances
glutathione synthesis to interact with the glutaminecysteine transporter, thereby enhancing
the antioxidant potential of CSCs [25].

Luo et al., using a meta-analysis, reported that CD44 expression correlates with more
advanced stages of HCC with a worse 5-year survival [29]. The correlation between CD44
and cell differentiation grade, AFP level and disease-free survival has no statistical signif-
icance [29]. In addition, another meta-analysis showed a correlation between CD44 and
poorly differentiated HCC [12,29,87]. In resected HCC specimen studies, the survival of
individuals with HCC with a low expression of CD44 was better than that of individuals
with HCC with a high expression of CD44 (mean 73.2 months vs. 44.84 months, respec-
tively) [12]. In particular, one study showed that HCC expressing one isoform (CD44v6)
had a high incidence of extrahepatic metastasis [89]. However, there is no correlation
between CD44v6 expression and tumor characteristics, such as encapsulation, vascular
invasion, tumor size and the grade of cellular differentiation [89]. Some investigators have
found that a higher expression of CD44 is present in circulating HCC cells than in the
primary HCC [19]. They also found that CD44-positive HCC cells develop metastases more
rapidly in mice than CD44-negative HCC cells [19]. This evidence, therefore, suggests that
the CD44 phenotype may play an important role in the metastasis of HCC [12,29].

2.4. CD133

CD133, a penta-span transmembrane protein, may play a pivotal role in membrane
topology organization [36]. CD133 appears in the CSCs of various tumors and diseased
livers, such as in HCV infection, but it is absent in normal liver tissue [30,31,33]. The
activation of CD133 affects the growth of HCC [36,37].

Some studies have reported a significant correlation between CD133 expression and the
clinicopathological characteristics of HCC, including tumor grade, tumor stage, AFP serum
level, malignant potential, a higher recurrence rate and a shorter overall survival [31–34].
CD133, therefore, shows potential as an independent prognostic factor [33]. Song et al.
compared patients with HCC with high CD133 and those with low CD133, finding that the
5-year overall survival rate was 19.23% vs. 50%, respectively [33].

3. Signaling Pathways Involved in Cancer Stem Cells of HCC

Recent studies have shown that the main molecular pathways involved in liver CSCs
include the Wnt/β-catenin, TGF-β, SHH, P13K/Akt/mTOR and Notch

3.1. Wnt/β-Catenin

Abnormal β-catenin activity is correlated with HCC in individuals with HCV and HBV
infections [42]. The activation of the Wnt/β-catenin pathway enhances the intracellular
accumulation of β-catenin, and β-catenin could then translocate into the nucleus to trigger
the transcription of Wnt target genes, such as c-Myc and matrix metalloproteinases (MMPs),
in order to facilitate HCC progression [40–45]. Chen et al. reported a high expression of
Wnt/β-catenin in HCC [40]. In upregulated Wnt/β-catenin CSCs, the overexpression of its
target genes, proto-oncogene c-MYC and cyclin D1 also could be found in CD44-positive
CSCs [90]. This overexpression facilitates proliferation and tumor sphere formation, and it
increases the tumor growth [90]. The role of β-catenin and its gene mutation (CTNNB1)
in HCC progression has been emphasized in some clinical studies. β-catenin signaling
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enhances the activity of cancer stem cells to promote HCC growth [47]. It may also modulate
the expression of angiogenic growth factor [47,91]. Furthermore, EpCAM and β-catenin
could develop a complex to activate proto-oncogene c-MYC and cyclins A and E [90].

Some cross-interactions occur among Wnt/β-catenin signaling and different com-
ponents of the tumor microenvironment (TME) of HCC [91]. The TME of HCC includes
immune cells, stem cells, tumor vasculature and noncellular components. The Wnt/β-
catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through
the enhancement of angiogenic factors, such as matrix metalloproteinase-2 (MMP-2), matrix
metalloproteinase-9 (MMP-9), basic fibroblast growth factor (bFGF), vascular endothelial
growth factor (VEGF) and VEGF-C [91]. Furthermore, β-catenin protects HCC cells from
apoptosis and enhances cell migration via the activation of the epithelial–mesenchymal
transition (EMT) and the upregulation of MMP. Upstream mediators, including non-coding
RNAs (ncRNAs), may regulate β-catenin signaling in HCC, which, in turn, may participate
in mediating drug resistance and immunoresistance in HCC [91]. As a result, anti-cancer
agents that inhibit β-catenin signaling and mediate its proteasomal degradation are a
possible avenue for HCC therapy.

Mutations in the β-catenin gene 1 (CTNNB1) exist in about 20–40% of all patients
with HCC [47]. Mutations of the CTNNB1 gene encoding β-catenin and its overexpression
could trigger the progression and migration of HCC [47]. Cieply et al. found that the
presence of CTNNB1 mutations is correlated with a larger tumor size and macrovascular
or microvascular invasion [92]. Overall, CTNNB1 mutation causes aberrant β-catenin
signaling to contribute to tumor aggressiveness [47,93].

A molecular classification of HCC into two groups based on Wnt-pathway aberrations
in HCC was proposed by Lachenmayer: the CTNNB1 molecular class and the Wnt-TGF-β
molecular class [93]. The Wnt-TGF-β class is correlated with the cytoplasmic accumula-
tion of β-catenin, vascular invasion and a higher risk of early recurrence after surgical
resection [93]. Cytoplasmic β-catenin expression is associated with poor histological differ-
entiation, a tumor size over 5 cm and a shorter disease-free survival [93].

As a potential counter to this, investigators have found that CWP232228, a Wnt/β-
catenin small-molecule inhibitor, inhibited CD133+/acetaldehyde dehydrogenase (ALDH)+
liver CSCs, possibly decreasing the self-renewal capacity of CSCs and suppressing tumori-
genicity in vitro and in vivo [94].

3.2. Transforming Growth Factor β (TGF-β)

During the process from chronic inflammation to HCC, cancer cells grow in an envi-
ronment enriched with extracellular matrix proteins. TGF-β may orchestrate the crosstalk
between tumor cells and the host stroma, and they could also promote EMT [53,55,58,95].

In HCC cells, when TGF-β induces EMT, it may trigger a switch to express stem cell
genes and their potential for stemness, migration and invasiveness [58,95]. However, the
induction of EMT by TGF-β is probably only partial. In some epithelial HCC cells, EMT
may enhance the mesenchymal genes and CD44 to maintain epithelial gene expression.
In human HCC tissues, the expression of CD44 correlates with the overexpression of
EpCAM and CD133, suggesting that the co-expression of both epithelial and mesenchymal
stem-related genes could occur concomitantly [53,56–58,60]. Epithelial cells show a higher
stemness potential than mesenchymal cells. The expression of TGF-β is associated with
partial EMT augments, mesenchymal genes and CD44, and it maintains the activation of
epithelial-related genes [95].

TGF-β could activate CD133 expressions and suppress the expressions of DNA methyl-
transferase (DNMT) 1 and DNMT 3 beta, which could maintain DNA in a methylated
state [60]. The demethylation of CD133 promoter-1 in CD133-negative cell lines may cause
the overexpression of CD133. TGF-β-induced CD133 cells have the potential to initiate
tumor development in vivo [60].
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3.3. Sonic Hedgehog (SHH) Signaling Pathway

The SHH signaling pathway (SHH) plays a pivotal role in the proliferation and
invasiveness of HCC cells [48–52]. The activation of the SHH signaling pathway occurs after
the HH ligand binds to its receptor Patched1 (PTCH1) [51,52]. Then, smoothened (SMO),
the G-protein-coupled receptor (GPCR)-like signal transducer, spares the suppression
by PTCH1. It is possible that the activated SMO inhibits the release of transcription-
factor glioma-associated oncogene (GLI) 2/3. Subsequently, GLI binds to the promoters
in the nucleus in order to initiate the transcription of target genes, such as CYCLINs
(cell proliferation), BCL2 (antiapoptotic) and SNAIL (EMT induction) [51,52]. Jeng et al.
reported that the activation of the SHH signaling pathway is found in CD133+ Hepa1-6
HCC mouse cells [49]. SHH also affects the tumor microenvironment of HCC [51]. Jeng
et al. also reported that inhibitors of the SHH pathway inhibited the growth of HCC in
mice [51,96]. The SHH signaling pathway has potential as a treatment target for HCC if
using a combination of inhibitors and other therapies [52,97].

3.4. PI3-Kinase/AKT/Mammalian Target of the Rapamycin (P13K/AKT/mTOR) Signaling Pathway

The activation of the PI3K/AKT/mTOR signaling pathway plays a role in the in-
vasiveness of HCC, and it is frequently detected in immunohistochemical analyses of
patients’ HCC tissues [61–67]. Furthermore, the activation of mTOR is usually correlated
with poorly differentiated or advanced-stage HCC, early recurrence after surgical resec-
tion and worse prognosis [66,67]. Furthermore, problems remain due to the rapid drug
resistance against AKT and mTOR inhibitor treatment in HCC cells, both in vitro and
in vivo, which may be attributed to the rapid outgrowth of CSCs [61–67]. Another possible
mechanism of drug resistance is the activation of some closely related signaling pathways
(such as the RAS/RAF/MEK/MAPK signaling pathway) [98]. In addition, the activation of
P13K/AKT/mTOR signaling also plays a role in HCC irradiation resistance [99]. Targeting
PI3K/AKT signaling is a potential strategy for cancer [65].

3.5. Notch Signaling Pathway

The Notch family consists of evolutionarily conserved genes that encode for single-
pass transmembrane receptors participating in stem cell maintenance [68–77]. During
embryonic development and adulthood, intracellular Notch signaling is essential for cell
specification, the maintenance of progenitor cells and lineage commitment [45,70–72,75].

In mammals, the canonical Notch pathway includes four receptors (1, 2, 3 and 4)
and two ligand families (jagged 1 and 2 and delta-like ligand (DLL) 1, 3 and 4) [74,75].
The interaction between ligands Notch (Jagged 1 and 2 and Delta-like (DLL-1, 3 and
4)) and receptors (Notch 1, 2, 3 and 4) may activate the Notch pathway, especially after
the interaction between the Notch 1 receptor and its ligand JAG1 [74,75]. The Notch
intercellular domain (NICD) could translocate into the nucleus to initiate the transcription
of the Notch-targeted genes hairy and enhancer of split 1 (HES1) and the HES1-related
(HESR1) families. These transcription factors trigger cell proliferation, differentiation and
apoptosis [74–77].

Villanueva et al. found that Notch occurs in about one-third of cases of HCC [74].
Notch signaling plays pleomorphic roles in HCC, enhancing tumor growth, invasiveness
and stem-cell-like properties [73–75]. The Notch signaling pathway is a key regulator of
macrophage polarization in liver disease [70].

Among the Notch receptors, only Notch 3 is present in the liver tissue during the
middle embryonic stage [79]. Compared with the human adult liver and with the mature
Buffalo rat liver cell line, a higher expression of Notch 3 was found in the differentiation
of stem/progenitor cells (fetal liver stem/progenitor cells) [79]. Compared with normal
liver tissue, Notch 3 is the most highly upregulated Notch pathway gene in HCC tis-
sues [68,72,74,75,77,78]. An abnormal accumulation of Notch 3 is found among 78% of
early HCCs [68]. It could, therefore, be a specific therapeutic target for HCC. The Notch
target gene HES5, as a driver gene to promote tumorigenesis with its interaction partner
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AKT, has both pro- and anti-tumorigenic functions in HCC [68]. It has demonstrated a
negative feedback loop, downregulating pro-proliferative MYC-target lactate dehydroge-
nase A (LDHA) and ornithine decarboxylase 1 (ODC1) and suppressing the Notch target
HES1 [68].

4. Crosstalk among Pathways

Crosstalk among signaling pathways can occur [43,45,47,56,100]. Either the Notch
or the Wnt/β-catenin signaling pathways could increase the stemness characteristics of
the CSCs of HCC [45]. After the intersection of the Notch and Wnt/β-catenin signaling
pathways, the liver CSCs of HCC may be enhanced [45]. Following the activation of Notch
and Wnt/β-catenin in CSCs, tumorigenicity and self-renewal could be facilitated by the
overexpression of CD44, CD133 and CD90. The accumulation of β-catenin increases the
expressions of Jagged 1 and β-catenin, suggesting a crosstalk between these two pathways.
Notch1 is downstream of Wnt/β-catenin, and the activation of the Wnt/β-catenin pathway
could also facilitate the Notch1 intracellular domain (NICD) [45]. Moreover, Notch1
negatively affects the modulation of Wnt/β-catenin signaling. Using lentivirus N1ShRNA
to knockdown Notch1 could upregulate the active form of β-catenin [45]. Furthermore,
Zhang reported that Notch3 could modulate the stemness of HCC cells after the inactivation
of the Wnt/β-catenin pathway [71].

Steinway et al. reported that the network modeling of TGF-β signaling in the EMT of
HCC involves the activation of the SHH and Wnt pathways [55].

5. The Co-Expression and Interactions of Liver Cancer Stem Cell Markers and the
Tumor Microenvironment

The clinical significance of the co-expression and interaction among these different
liver CSC markers has been studied. A significantly poor differentiation of HCC is found
in individuals with liver CSC with the co-expression of CD44 and CD133 [87]. Compar-
ing individuals with HCC with high values of co-expression of CD44 and CD133 and
those with low values, the survival is significantly different [88]. Higher expressions of
octamer-binding transcription factor 4 (Oct4) (a self-renewal gene) and ATP-binding cas-
sette super-family G member 2 (ABCG2) (the well-known drug resistance gene) are found
in patients with a high co-expression of CD90 and CD133 [101]. It is also possible that these
two gene expressions influence each other. Some investigators have found that CD133
expression could be suppressed via the mTOR-AKT pathway following the downregula-
tion of CD90 [64]. Moreover, the overexpression of CD90 could occur through the mTOR
pathway after the overexpression of CD133 and CD24 [62–65]. Based on a mouse model,
CD90-positive and CD44-positive cells are more prone to lung metastasis with a higher
tumorigenicity, and the downregulation of the CD44 could, therefore, inhibit the growth
and metastasis of tumors [100].

The tumor microenvironment may also affect the extent to which liver CSCs facilitate
the progression and maintenance of HCC [52,91,102–104]. CD44 and CD90 exist not only
in the liver CSCs but also in cancer-associated fibroblasts (one main component of tumor
stromal cells), and tumor-associated macrophages (TAM) could trigger an increase in
CD44-positive liver CSCs [103].

Jeng et al. reported that SHH plays a role in the tumor microenvironment of HCC,
while CSCs affect the resistance to the treatment modalities of HCC [51].

6. Chemotherapy May Encourage Liver CSCs

Chemotherapy for HCC to improve survival is limited in its effectiveness [105–108].
The commonly used chemotherapy (usually monotherapy) for HCC consists of cisplatin,
vincristine (VIN), 5-fluorouracil (5-FU) or doxorubicin. There is no significant difference
in the survival rates among these drugs [105–107]. Treatment failure may be attributed to
liver CSCs evading chemotherapy. Hu et al. found an increase in sphere formation and
the cancer cell stemness of liver CSCs after carboplatin therapy [16]. Wada et al. found



Int. J. Mol. Sci. 2023, 24, 1417 7 of 16

that, after cisplatin treatment, CD44 cells manipulate the glutamine–cysteine transporter to
avoid apoptosis and regenerate HCC cells [108].

Both overexpressed EpCAM CSCs and activated Wnt/β-catenin signaling CSCs could
contribute to 5-FU treatment resistance [109,110]. CD133-positive HCC cells also resist 5-FU
and VIN therapies [111]. Compared with CD133-positive cells, the upregulated adeno-
sine triphosphate-binding cassette (ABC) superfamily transporters (ABCB1, ABCC1 and
ABCG) could amplify resistance to 5-FU and VIN [111]. Adenosine triphosphate-binding
cassette (ABC) family G member-2 (ABCG2) affect the chemoresistance of CD90+ CD133+
CSCs [101]. Chen found that CD133/EpCAM-positive liver CSCs enhancing EMT and the
SHH signaling pathway have the possibility to facilitate resistance to chemotherapy [112].
The increase in liver CSC markers after the impact of chemotherapy suggests that HCC
cells may shift to CSCs [16].

An activated SHH signaling pathway also affects chemoresistance [113]. However, it
is possible that Notch inhibition increases the sensitization of CD133-positive HCC cells to
VIN and 5-FU [111]. One group of investigators pre-incubated the Huh7 cell line with a
Notch inhibitor, g-secretase dual antiplatelet therapy (DAPT)(N-[N-(3,5-difluorophenoacetyl-
1-alanyl]-S-phenylglycine t-butyl ester), prior to treatment with an IC50 dose of VIN or
5-FU [111]. Then, they isolated the CD133-positive cells to analyze the cell viability, apop-
tosis, migration, spheroid formation and expressions of genes and proteins, finding that
Notch inhibition sensitized the HCC CD133-positive cells to VIN and 5-FU via enhancing
B-cell lymphoma 2 (BCL2)-binding component (BBC3-3)-mediated apoptosis [111]. The
Notch/HES1/BBC3 axis may also play a role in the resistance of CD133-positive cells
to VIN and 5-FU [111]. Zhang et al. found that Saikosaponin-d could inhibit HCC cells
and enhance chemosensitivity via the inhibition of GLI 1 SUMOylation (SUMO: small
ubiquitin-like modifier) under hypoxia [114]. The inhibition of mTOR also could increase
the chemosensitivity of HCC [115].

7. Sorafenib and Liver CSCs

Sorafenib, a multi-targeted receptor tyrosine kinase inhibitor used as a standard target
therapy, may suppress various kinases (consisting of vascular endothelial growth factor
receptor 2 (VEGFR2), RAS/RAF/MAPK/ERK signaling pathways, etc.). However, the
single use of sorafenib or the combination use of sorafenib with some chemotherapeutic
agents failed to significantly increase patients’ survival [116–122]. This failure may be
attributable to the presence of liver CSCs with some other molecular mechanism with
chemoresistance [14,123,124]. Liver CSCs are also an important subpopulation of liver
CSCs contributing to the resistance to sorafenib therapy [124]. Kim et al. compared patients
with a high-CD133-expression HCC and those with a low CD133 expression and found that
the progression-free survival (PFS) after sorafenib therapy was 4 months vs. 5.5 months, re-
spectively [37]. When comparing individuals with high co-expressions of CD133 and CD90
and those with a low expression of both markers, the PFS was 2.7 months vs. 5.5 months,
respectively [37]. For individuals with a high co-expression of CD133 and EpCAM and a
low co-expression of both markers, the PFS was 4.2 months vs. 7.0 months, respectively [37].
It is possible that the overexpression of the ATP-binding cassette transporter family member
(ABCG2) in CD133-positive liver CSCs resists sorafenib [37,111,125]. Kim suggested that
the genes CD133 and CD90 may predict the response to sorafenib therapy [37].

The activation of SHH signaling is another possible mechanism for CD133-related
sorafenib resistance. The cells induce sorafenib resistance via their overexpression of
ATP-binding cassette (ABC) C1 (ABCC1) transporter [37,115,125]. Chemotherapy could
reduce the effectiveness of sorafenib therapy by enhancing the expression of the inflamma-
tory cytokine gene (including IL1, IL8 and IL11) in liver CSCs to prolong the survival of
CSCs [126]. Following glucose deprivation, CD133+ liver CSCs could enhance the uptake
of glucose via the overexpression of glucose transporters (GLUT1 and GLUT3) through the
IL-6/STAT3 pathway [127]. Suppressing this process may sensitize the cells and encourage
sorafenib-induced apoptosis [127]. However, Fekir et al. found that, in a hypoxic state,
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sorafenib-resistant liver CSCs could alter glucose metabolism via the activation of pyruvate
dehydrogenase kinase 4 (PDK4) to avoid oxidative phosphorylation [17]. Suppressing
PDK4 and reactivating oxidative phosphorylation may increase the chemosensitivity of the
HCC of the CSCs via mitochondria reactivation [17]. Thus, overall, an altered liver CSC
metabolism may enhance resistance to sorafenib therapy [17].

Another possible mechanism for sorafenib resistance in CD133+/EpCAM+ CSCs
is the Wnt/β-catenin signaling pathway [128]. Compared with CD133-/EpCAM cells,
the overexpression of Src-homology 2 domain-containing phosphatase 2 (Shp2) occurs in
sorafenib-resistant CD133+/EpCAM+ liver CSCs [128]. Shp2 could activate the nuclear
translocation of catenin via the dephosphorylation of cell division cycle 73 (belonging
to the Paf1/RNA polymerase II complex) [128]. The dephosphorylated complex may
bind to catenin in order to avoid degradation by glycogen synthase kinase 3 and induce
nuclear translocation in order to enhance liver CSC self-renewal [128]. The catenin signaling
pathway could affect the expression of testis-associated highly conserved oncogenic long
non-coding RNA (THOR) in EpCAM+ liver CSCs, leading to the inactivation of FH535,
a catenin inhibitor [46]. Some studies have reported that the PI3K/Akt/mTOR pathway
may enhance the growth of liver CSCs in sorafenib-resistant advanced HCC via AKT
activation [61,62,98].

EpCAM+ cells, another important liver CSC population, also play a crucial role in
affecting sorafenib therapy. Guan et al. found that, after sorafenib therapy, the activation of
the tuberous sclerosis complex protein kinase β (TSC-AKT) cascade increased from 38.5%
to 58.7% in EpCAM+ cells [129]. This avoids the inhibition of TSC2 via extracellular-signal-
regulated protein kinase (ERK) to form the TSC1/2 complex. The complex enhances the
mTOR pathway to activate AKT [129].

In those with CD133+ liver CSCs, NANOG-dependent genes (Yap1 and Igf2bp3)
could inactivate TGF-β signaling via the cytoplasmic retention of phosphorylated SMAD3
(SMAD: mothers against decapentaplegic and C. elegans protein SMA) to suppress SMAD3
phosphorylation and activate the IGF2BP3/AKT/mTOR pathway [130].

mTOR pathway activation also contributes to sorafenib resistance in CD133+/EpCAM+
liver CSCs and CD44+ liver CSCs [61,62,98,131,132]. CD133+/CD44+ liver CSCs may also
resist sorafenib [9,133]. However, when Gedaly et al. incubated CD133+/CD44 liver
CSCs for 72 h with sorafenib, the suppression of the cell cycle was found in 39% of
CD133+/CD44+ liver CSCs [133]. The AKT is activated by the autocrine stimulation of
the TGF-β of CD44+ liver CSCs, and it is correlated with the mesenchymal characteristics
of these cells (the overexpression of SNAI1 and Vimentin) [131,134,135]. TGF-β affecting
sorafenib is limited to CD44+ liver CSCs; the association does not exist in EpCAM+ or
CD90+ liver CSCs [131,132,134–137].

Trials of second-line multi-kinase therapy agents (such as regorafenib, cabozantinib
and ramucirumab) are currently ongoing [138–140].

8. Radiotherapy May Enhance Liver CSCs

The irradiation of mesenchymal stem cells (IR-MSCs), which pre-exist in the tumor
microenvironment, could promote CD133+ cells in HCC [141]. IR-MSCs facilitate the
stemness maintenance of liver CSCs via the activation of the Wnt/β-catenin signaling
pathway [141]. After co-culturing with IR-MSCs, the colony and tumor formation potential
of liver CSCs may be enhanced [141]. IR-MSCs also could facilitate the Wnt expression of
CSCs. The addition of the Wnt inhibitor in the culture medium may suppress the stemness
maintenance of IR-MSCs [141]. Chen et al. found that SHH signaling could protect HCC
cells against ionizing radiation in an autocrine manner [142]. There is also evidence that
the knockdown of GLI-1 could reverse radioprotective effects [142]. Tsai et al., using a
cyclopamine study, found that the combined use of a SHH inhibitor and radiotherapy may
enhance the radiosensitivity of HCC cells and orthotopic HCC tumors [143].

Based on preclinical evidence, Bamodu indicated that phosphoinositide-dependent
kinase-1 (PDK1) is an active driver of irradiation (IR) resistance following the activation
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of PI3K/AKT/mTOR signaling [99]. Cancer stemness signaling is activated, and DNA
damage is suppressed. Projecting PDK1 targeting could be a putative enhancer of radiosen-
sitivity and a potential new therapeutic approach for those with IR-resistant HCC [99].

Hong et al. suggested that a subpopulation of CD133+ liver CSCs could resist sublethal
irradiation and enhance the invasion and migration of HCC cells [144]. They found that
A distintegrin and metallopeptidase domain 17 (ADAM17) silencing in ADAM17/Notch
signaling could significantly inhibit the invasiveness and migration of enriched CD133+
CSCs after irradiation [144]. Thus, combining radiotherapy with cellular- or molecular-
targeted therapies may probably affect the sensitivity or resistance to irradiation therapy.
Targeting CSCs or signaling pathway proteins may lead to novel combination modalities
capable of overcoming radioresistance. The phenotypical characteristics and functions of
the surface markers of CSCs and the main signaling pathways are summarized in Table 1
and Figure 1.

Table 1. Phenotypical characteristics and functions of the main cancer stem cell markers of hepatocel-
lular carcinoma.

Phenotypical Characterists
and Functions EpCAM CD90 CD44 CD133

Organogenesis +
Tumorigenesis + + +
Self-renewal + + + +
Progression +

Poorly differentiated + + + +
Early recurrence + + +

Metastatic potential +
Shorter survival + + + +

Drug resistance sorafenib doxorubicin doxorubicin
Doxorubicin

5-Fu
sorafenib

Others If AFP(+) young but
advanced stage

The possibly involved
activating signaling pathway Wnt/β-catenin mTOR

Wnt/β-catenin
TGFβ

Akt/GSK-3β/β-catenin
ERK/snail

Akt/pKB

References [129,145,146] [22,101,147] [28,134,148,149] [28,31,150–152]
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9. Challenges of Targeting Cancer Stem Cells of HCC and Future Perspectives

Reducing the CSC population of HCC is crucial for the improvement of therapy
for advanced HCC [7,8]. Drug delivery systems (DDs) aimed at CSCs are increasingly
under investigation [153]. However, targeting the CSCs of HCC presents three key chal-
lenges. The first challenge is that HCC itself has heterogeneity, which contributes to
tumor progression [145]. Furthermore, the heterogeneity of the CSCs of the same HCC
remains [84]. Examinations of the circulating biomarkers of those with HCC may be a
further issue [19,154]. The second challenge is that the treatment of the tumor microenvi-
ronment is relatively complex, with pre-tumor fibroblasts in the tumor microenvironment
continuing to recruit CSCs in order to promote intrahepatic metastasis [104]. The impact
of the microenvironment upon CSCs needs more investigations. The third challenge is
the coexistence of different tumor markers and the co-expression of different signaling
pathways in the CSCs of individual HCCs. This requires further detailed examinations
before personalized treatment.

10. Conclusions

The CSCs of HCC are responsible for growth, invasion, recurrence, drug resistance
and radioresistance. Various surface markers and different signaling pathways affect the
CSCs of HCC. There are co-expressions, interactions and crosstalk among them. Reducing
the population of CSCs is crucial for the treatment of advanced HCC. However, challenging
problems still remain.
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