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Abstract: Aquatic animals are increasingly challenged by O2 fluctuations as a result of global warm-
ing, as well as eutrophication processes. Teleost fish show important species-specific adaptability to
O2 deprivation, moving from intolerance to a full tolerance of hypoxia and even anoxia. An example
is provided by members of Cyprinidae which includes species that are amongst the most tolerant
hypoxia/anoxia teleosts. Living at low water O2 requires the mandatory preservation of the cardiac
function to support the metabolic and hemodynamic requirements of organ and tissues which sustain
whole organism performance. A number of orchestrated events, from metabolism to behavior, con-
verge to shape the heart response to the restricted availability of the gas, also limiting the potential
damages for cells and tissues. In cyprinids, the heart is extraordinarily able to activate peculiar
strategies of functional preservation. Accordingly, by using these teleosts as models of tolerance to
low O2, we will synthesize and discuss literature data to describe the functional changes, and the
major molecular events that allow the heart of these fish to sustain adaptability to O2 deprivation. By
crossing the boundaries of basic research and environmental physiology, this information may be of
interest also in a translational perspective, and in the context of conservative physiology, in which the
output of the research is applicable to environmental management and decision making.
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1. Introduction

Oxygen fluctuations are a common experience for species living in water environments,
since they naturally occur over a diurnal/seasonal rate and are exacerbated by eventual
anthropic manipulation that challenge the O2 budget. Exposure to natural O2 variations
potently shaped the evolution of a number of adaptive strategies that, in fish, require
behavioral, morphological and functional modifications. Reaching the surface to breathe
the uppermost layer of water in contact with air, increasing the activity to avoid the hypoxic
area, or decreasing the activity to reduce O2 demand, are amongst the most common
behavioral responses to low O2 [1,2]. Beyond them, changes in ventilation and hemoglobin–
O2 binding [3] contribute to ameliorate O2 extraction from the environment in order to
maintain aerobic ATP production.

Fundamental for fish adaptation to restricted O2 is a proper availability of metabolic
fuels, obtained either by reducing energy consumption or increasing substrates extraction
from energy stores, or both. This is accompanied by an appropriate blood supply for cells
and tissues, provided by the compensatory adaptation of both the heart and the circulatory
system. All the above responses are supported by cellular and molecular adaptive rear-
rangements that contribute to an orchestrated framework of events allowing to preserve
body functions, while at the same time protecting from the risk of metabolic impairment.

At the extremes of the large spectrum of adaptation to O2 availability, several fish
species evolved the ability to survive even in the presence of O2 below the critical tension
(Pcrit), thus tolerating prolonged hypoxia and/or anoxia [3–5]. An example is represented
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by the teleost belonging to cyprinids, which are champions of hypoxia/anoxia tolerance.
For this peculiarity, there is a continuously growing interest to analyze the physiological
mechanisms that, at a different degree of biological organization, make cyprinid species
able to cope with restrictions in O2.

In this review, we aim to summarize recent and classic literature to show the strategic
role of the heart in the adaptive ability of cyprinids to hypoxia/anoxia. The contribution
of metabolic reorganization for optimizing energy availability and protecting from waste
accumulation, as well as the fundamental role of the nitrergic system as a major player in
the cardiac functional response to hypoxia, will be illustrated. For the unfamiliar reader,
information will be also provided on the adaptive performance of the fish heart to the
challenge of reduced O2. In this regard, data will be analyzed by taking into account the
major frame of reference represented by the rich literature on hypoxia-intolerant species,
highlighting, when available, data on cyprinids and other hypoxia-tolerant fish.

2. The Challenge of Hypoxia for the Pumping Fish Heart

Hypoxia imposes conflicting demands on cardio-respiratory function. Being system-
ically O2 supply-dependent on cardiac output (CO) and arterial O2 concentration, fish
can respond to and cope with hypoxia through cardio-respiratory adjustments to preserve
systemic O2 delivery, thus maintaining aerobic metabolism, or by reducing O2 demands via
anaerobic metabolism or metabolic depression [3,6,7]. Depending on the time of hypoxia
exposure (i.e., acute or chronic), the heart may undergo different stimulation, and thus,
may activate different responses. Accordingly, the effects of low O2 for the pumping fish
heart require consideration by taking into account whether O2 deprivation occurs acutely
or is accompanied by a long-term adaptation.

2.1. Acute Hypoxia

Hyperventilation, stimulated by chemoreceptors sensitive to water and/or blood PO2
concentrations, represents a physiological mechanism by which fish attempt to maintain
O2 consumption to face a rapidly declining environmental O2. Consequent activation of
chemoreceptors activates an immediate response that contributes to O2 uptake regulation
thanks to a reflex increase in gill ventilation frequency and/or amplitude [8,9]. Along with
ventilatory adjustments, elevated levels of circulating catecholamines may also occur that
confer protection during hypoxia [10].

At the cardiac level, exposure to hypoxia is accompanied by a reflex bradycardia,
mediated by vagal inhibition [11] and by increased systemic resistance [12]. This is con-
sidered a protective strategy when O2 supply is low. It ameliorates both electrical and
mechanical cardiac activity, which is crucial to preserve performance during hypoxia [11].
A lower heart rate (HR) is associated with a prolonged cardiac action potential [13,14] and
increased systolic calcium transients. This is consistent with the negative force-frequency
relationship (i.e., contractile force decreases as contraction frequency rises) typical of the fish
heart [15] that allows for the reduction of diastolic calcium levels, thus increasing systolic
calcium transients [15]. An increased diastolic interval also favors the residence time of
blood in the lumen of the heart (i.e., more time for O2 diffusion), improving myocardial
oxygen extraction. Moreover, an increased stroke volume (SV) by stretching the cardiac
chambers may reduce O2 diffusion distances. Further benefits of hypoxic bradycardia
include a reduced O2 demand, obtained by depressing the power output, and an increased
coronary blood flow, due to a prolonged diastole. This enhances O2 delivery to the heart
in species with coronary circulation [11,16]. Different from this general picture, hypoxia
bradycardia is absent in lungfish that extract O2 from the air, in Antarctic teleosts, and
in hypoxia-tolerant species (for ref. see [11]). It is also lacking in early embryonic and
larval stages when a cholinergic control is not yet established. In the zebrafish Danio rerio,
it first appeared in juvenile fish (30 days post fertilization) [17,18], while tachycardia is
present in zebrafish larvae (4 days post fertilization) [19] when the heart is sensitive to
adrenergic, but not cholinergic, stimulation [20,21]. This is intriguing since zebrafish change



Int. J. Mol. Sci. 2023, 24, 1460 3 of 17

O2 sensitivity during development, moving from hypoxia tolerance to intolerance during
growth [17]. Also in the hypoxia-sensitive trout, adrenergic tonus is established early in
development [22] and is able to mediate tachycardia until the maturation of vagal control
allows for the “switch” from hypoxic tachycardia to bradycardia [23].

During acute hypoxia CO remains constant or slightly increases in species such as
rainbow trout Oncorhynchus mykiss, Atlantic cod Gadus morhua and Atlantic hagfish Myxine
glutinosa [16,24,25] due to increased venous pressure and ventricular filling time, which
enhance stroke volume [11,16]. In fact, contrary to mammals, fish enhance cardiac output
mainly via larger changes in stroke volume than in heart rate [26,27]. Interestingly, a normal
or enhanced cardiac function is present in species showing hypoxia/anoxia tolerance,
including several cyprinids. In the common carp Cyprinus carpio and in its related specie, the
crucian carp Carassius carassius, a strong metabolic depression (about 30%) is fundamental
to survive anoxia, although interspecific differences have emerged. In fact, while in the
common carp the cardiac function is strongly depressed during 24 h of severe hypoxia, the
crucian carp conserved normal cardiac activity and autonomic cardiovascular control in
up to 5 days of anoxia at 8 ◦C [28]. Two different strategies are engaged by these species
to face reduced oxygen availability: in the anoxia-tolerant crucian carp (C. carassius), the
cardiac Power Output (PO), i.e., the product of cardiac output and ventral aortic blood
pressure (an index of cardiac ATP demand) [29] is routinely kept below the maximal
glycolytic capacity, even under normoxic conditions, thus avoiding the need to reduce it
during hypoxia [28]; in contrast, in the hypoxia-tolerant common carp (C. carpio), hypoxic
bradycardia decreases cardiac PO in order to reduce cardiac ATP demand within a level
that can be supported by glycolytic ATP production [29]. These responses indicate that
a depressed cardiac PO may represent a key component of hypoxia tolerance, allowing
to match cardiac energy demand with reduced energy supply. A reduced cardiac ATP
demand via bradycardia has also been reported in the hypoxia-tolerant tilapia [30]. The
hemodynamic analysis of the ex vivo isolated working heart of the goldfish Carassius
auratus acutely exposed to hypoxia showed a time-dependent increase in stroke volume,
indicative of a potentiated performance [31]. This was particularly evident under preload
increases (i.e., the Frank–Starling response) in which the maximum SV was reached at input
pressures lower than the normoxic heart. This feature, which appears a prerogative of the
goldfish, is proposed as a mechanism to properly support organ perfusion, thus preventing
tissue intoxication [31].

2.2. Chronic Hypoxia

Although the cardiac effects of chronic hypoxia received limited attention, the few
available data on hypoxia-intolerant species show that the response differs depending on
species, time, activity, and degree of exposure. An example is the Atlantic cod, in which
hypoxic acclimation saw an unchanged HR at rest [25,32], but an increase under high
swimming speeds. Differently, a decreased in vivo cardiac SV and CO is documented
both at rest and during swimming [32]. Similar results have been obtained in steelhead
trout Oncorhynchus mykiss exposed to chronic moderate hypoxia [33], suggesting a hypoxia-
dependent impaired myocardial contractile performance following chronic exposure to
hypoxia. Of note, the inability to raise cardiac output is accompanied by an improved tissue
O2 extraction for steelhead trout and Atlantic cod [32,33] thus compensating for diminished
cardiac pumping capacity. In isolated ventricular trabeculae from hypoxia-acclimated
rainbow trout, the shortening work and power (indicative of the ability to eject blood
from the heart), but not the lengthening work, were significantly reduced [34]. On the
basis of these results, authors suggested that the decreased SV documented in trout and
cod exposed to chronic hypoxia [32,33] results from an increased end-systolic volume (i.e.,
a decrease in ejection fraction).

In the channel catfish, a hypoxia-tolerant species, moderate hypoxia-acclimation sig-
nificantly increased heart rate [35,36]. In zebrafish, the ability to respond to acute hypoxia
(after the stage of 30 days) appears more effective in the animals raised under chronic
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hypoxic exposition, suggesting that acclimation to moderate hypoxic conditions improves
their tolerance to acute environmental hypoxia [17]. In the crucian carp (C. carassius),
conceivably the most anoxia-tolerant fish species, a dependence of anoxia tolerance on the
temperature has been earlier demonstrated by Blazka [37]; furthermore, its anoxia tolerance
varies seasonally, as indicated by a better anoxia tolerance in the winter-acclimatized fish
in comparison to carp caught in summer [38]. Recently, it was observed that crucian carp
acclimated at typical winter temperature responds to anoxia with a sustained bradycar-
dia, the results of which are energetically beneficial [39]. As proposed, while hypoxic
bradycardia allows more time for oxygen transfer from water to blood and then to cardiac
myocytes [11], anoxic bradycardia may represent an advantage by reducing energy con-
sumption, thus improving survival of the heart under prolonged seasonal anoxia [39]. At
the same time, cold-acclimated crucian carp shows a remarkable lengthening of ventricular
action potential (AP) duration. This allows for a constant diastole/systole duration which
is important for ensuring tissue perfusion at low heart rate under anoxia [39]. Of note,
while in mammalian hearts hypoxia results in an accelerated ventricular AP occurring via
the opening of the ATP-sensitive K+ channels [40], in the crucian carp these channels are
not activated under prolonged anoxia [41]. This is different from the slight shortening of
ventricular AP observed in the heart of warm-acclimated goldfish in which exposure to
hypoxia is associated with the opening of the ATP-sensitive K+ channels [42]. It remains
a question whether the dissimilar behavior shown by the crucian carp and the goldfish is
a peculiar species-specific trait or if it depends on different experimental temperatures and
oxygen regimes.

3. Hypoxia-Related Metabolic Responses of the Fish Heart

In 1986, Hochachka firstly proposed metabolic arrest, i.e., a simultaneous reduction in
metabolic rate and metabolic demands, as a key adaptation to O2 deprivation in organisms
capable of long-term anoxic survival [43]. Contrary to the activation of the anaerobic
pathway to sustain ATP production and maintain aerobic respiratory rates, the reduction in
energetic demand, which clues to an overall reduction in ATP turnover, preserves glycogen
stores and avoids the accumulation of waste products (i.e., acid lactic production) which
may rapidly lead to a Pasteur effect. Thus, organisms tolerating long-term anoxia lack
a Pasteur effect [44]. In fact, they do not increase glycolytic ATP production to maintain
aerobic respiratory rates. This general concept has endured over time and is corroborated
by new findings related to the identification of alternative metabolic pathways which
allow a switch to anaerobic metabolism keeping low waste product accumulation. The
extreme is exemplified by the capacity of cyprinid fish to tolerate prolonged O2 absence by
using large glycogen stores to generate ethanol as a by-product of energy metabolism, thus
avoiding acidosis [45]. This extraordinary capacity is due to the presence in Carassius genus
(C. carassius and C. auratus) of an alternative E1 pyruvate dehydrogenase enzyme, one of
the catalytic components of the pyruvate dehydrogenase complex (PDHC) which, under
anoxia, functions as an acetaldehyde-producing mitochondrial pyruvate decarboxylase
(PDC) analogous to the cytosolic pyruvate decarboxylase in brewer’s yeast [46]. This
isoform derives from an additional set of paralogs for each of the E1α and E1β sub-units,
originating from a cyprinid-specific paleotetraploidization event occurring approximately
8.2 million years ago in a common ancestor of the Carassius genus (anoxia tolerant) and
the common carp (anoxia intolerant) [46]. While one pair maintained the original function
(i.e., catalyzing the synthesis of acetyl-CoA during normoxia as an integral part of PDHC),
the other pair has apparently evolved into an E1 enzyme physically independent of PDHC,
catalyzing the formation of acetaldehyde in anoxia, which then can be effectively converted
into ethanol by a muscle-specific alcohol dehydrogenase (ADH). Authors [46] reported
a tissue-specific distribution of PDHC sub-units with E1α3, E1β2, and E2a transcripts
dominating in ethanol-producing red and white skeletal muscle, and E1α1 or E1α2, E1β1,
and E2b transcripts in heart, brain, and liver, with expression levels lower than muscle; this
suggests a minor role for these tissues in ethanol production under anoxia. Nonetheless,
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the heart of these species conserve normal cardiac activity if exposed to acute hypoxia
(C. auratus: [31]), or up to 5 days of anoxia (C. carassius: [28]). A preserved heart performance
is the basis for improving anoxia resistance of the whole piscine organism since it ensures
metabolic and functional cooperation among single organs [47]. In this view, an appropriate
perfusion of organ and tissues guarantees lactate transport to the muscle for its conversion
into ethanol and, the latter, to the gills for excretion.

The Carassius ability to maintain routine cardiac activity during anoxia implies a car-
diac ATP demand which is lower than their maximum glycolytic potential [29], thus
protecting the heart from the accumulation of anaerobic waste products. In the goldfish,
the enhancement of myocardial contractility in response to low O2 is associated with low
amounts of cardiac lactate together with a slight reduction in pyruvate levels [48]. By using
mass spectrometry-based proteomic analysis, authors identified two isoforms of fructose-
bisphosphate aldolase, i.e., aldolase C and aldolase B, differently expressed in homogenates
of goldfish heart exposed to normoxic or hypoxic medium, with aldolase B predomi-
nantly expressed in the hypoxic heart [48]. Aldolase catalyzes the reversible conversion
of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone
phosphate (DHAP). While aldolase C appears to be more effective in participating in gly-
colysis, aldolase B has evolved to have a role in gluconeogenesis [49,50]. This supports the
possibility that in the goldfish exposed to reduced O2, a tight modulation of the aldolase
enzyme isoforms may finely regulate glycolytic vs. gluconeogenic flux, thus enhancing
anaerobic ATP yield and minimizing metabolic acidosis [48]. Of note, under O2 limita-
tion, a number of glycolytic enzymes show increased binding to subcellular components,
particularly mitochondria [51] or the particulate fraction, and this is proposed to finely
regulate glycolytic flux rates through the modulation of enzyme-specific kinetics [52]
(Figure 1). Examples are represented by the increased binding of hexokinase to mito-
chondria observed in the heart of goldfish maintained in anoxic water [53], as well as the
increased binding capacity of phosphofructokinase, aldolase, and pyruvate kinase to the
particulate fraction observed in ventricular sheets of armored catfish (Liposarcus pardalis)
exposed to hypoxia [52].

The cardiac response of fish to low O2 requires an analysis in relation to fuel substrates.
Carbohydrates represent the energy source of choice for the heart of several fish species [54].
In the isolated and perfused eel heart, glucose supply maintains the cardiac performance
during acute anoxia (see references in [55]) while, in the American eel Anguilla rostrata, char-
acterized by a marked anoxic endurance, the inhibition of oxidative phosphorylation with
NaCN activates glycogen stores degradation regardless of glucose levels in the medium [56].
Prolonged survival under anoxia requires large stores of fermentable substrate (normally
glycogen), whose conservation is facilitated by a strong metabolic depression [44]. In the
anoxic crucian carp, cardiac glycogen stores are quickly mobilized during the first week of
anoxia with little further degradation when anoxia is protracted to 3 and 6 weeks [57]. This
suggests that, after the first week of anoxia, the heart performance relies on exogenous glucose.
Of note, glycogen depletion is not paralleled by increased glucose or lactate concentration,
the latter even reduced if compared to the normoxic control [57]. It has been proposed that
the early mobilization of glycogen (and other glycolytic intermediates) is not an advantage
to the fish in relation to its anoxia tolerance, but it is crucial for adapting body fluids
osmolarity, which is perturbed in the presence of an increase in body mass (6.2%) occurring
under anoxia [57]. An accumulation of glycolytic intermediates has also been detected
in the cardiac and skeletal muscle of anoxic goldfish [58]. Protracted hypoxia (2.1 kPa
for 4 weeks) suppresses goldfish metabolic rate by 74% [59] in the whole animal with no
direct effects on the heart, which retains a normal mitochondrial respiration rate [60]; car-
bohydrates represent the election fuel in maintaining mitochondrial respiration [60]. This
apparently contrasts with in vitro data showing that, on ventricular strips from goldfish,
hypoxia depresses myocardial contractility and O2 consumption rate [61]. However, this
does not significantly change O2 utilization capacity (i.e., the ratio of twitch force to O2
consumption), and this may reflect a lower activation of anaerobic energy production. This
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suggests that the goldfish heart is able to maintain a higher degree of aerobic metabolism
at low O2 tensions without increasing anaerobic energy production [61].
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Figure 1. Model for alternative routes of pyruvate metabolism in the Carassius auratus heart. In the
presence of O2, pyruvate from glycolysis is converted to acetyl-CoA and addressed to mitochondria
for the oxidative phosphorylation. Under hypoxia, a tight modulation of glycolysis enzymes may
finely regulate anaerobic ATP production by modulating glycolytic vs. gluconeogenic flux. Pyruvate
conversion to ethanol is reduced by a low cardiac expression of alternative PDHC sub-units (see the
text for details). A hypoxia-dependent modulation of mitochondria dynamics in relation to the expo-
sure time is proposed. HK: hexokinase; Aldo B: aldolase B; PDHC: pyruvate dehydrogenase complex.

Because of their ability to detect changes in O2 availability, mitochondria are known
for their role in coordinating the responses to low O2 [62]. Mitochondrial respiration is
differently affected by hypoxia acclimation depending on metabolic fuels, species, and
tissue. In fish, many studies on the effects on mitochondrial function under hypoxia and/or
anoxia-reoxygenation have been mainly performed on muscle and liver tissues [63–65].
Only a few investigations examined the effects of chronic hypoxia on cardiac mitochondrial
function, providing conflicting information. By using permeabilized cardiac fibers and
isolated mitochondria, Cook et al. [66] showed no effect on complex I and II respiration
in juvenile snapper (Pagrus auratus) acclimated to 10.2–12.1 kPa for 6 weeks. In contrast,
oxidative phosphorylation decreased in permeabilized ventricle fibers from the hypoxia-
intolerant shovelnose ray (Aptychotrema rostrata) following a 2 h in vivo hypoxic insult,
while it was preserved in the hypoxia-tolerant epaulette shark (Hemiscyllum ocellatum) [67].
In the hypoxia-tolerant sablefish (Anoplopoma fimbria Pallas), cardiac mitochondrial respira-
tion was maintained following exposure to chronic hypoxia (8 ± 1 kPa for 6 months) and
similar P50 values between normoxic and hypoxic groups suggest that the O2 dependence
of complex IV, the primary site of O2 consumption in the mitochondrion, is not affected by
low O2 acclimation [68]. In addition, the cardiac activity of citrate synthase, a marker of ox-
idative capacity, increases in both ventricular homogenates and mitochondrial suspension
of hypoxia-acclimated sablefish [68], suggesting that a sustained cardiac mitochondrial
capacity primarily involves changes in the intrinsic properties of the mitochondria and not
in the abundance of these organelles [69]. In the goldfish, chronic hypoxia decreased COX
activity in different tissues, except for the heart [60].
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An increased activity of the oxidative phosphorylation enzymes often coincides with
an enhancement of the percentage of cell volume displaced by mitochondria [70]. Different
stimuli may affect the mitochondrial compartment in fish. Examples are the increased
mitochondrial density documented in response to cold acclimation in the oxidative muscle
fibers of European eel (Anguilla anguilla), striped bass (Morone saxatilis), crucian carp
(C. carassius), goldfish (C. auratus) and stickleback (Gasterosteus aculeatus) [70], as well as in
the hypertrophic zebrafish heart in response to humoral stimulation by angiotensin II [71],
and in the ventricle of the European eel during ontogenetic growth [72]. Of note, in the
hypoxia-acclimated goldfish heart, a modulation of transcripts coding for mitochondrial
fission (fis1) and fusion (mfn1 and mfn2) proteins has been reported [73]. Specifically, 1-week
exposure to hypoxia elicits a significant reduction in the relative transcript abundance of
mitofusin mfn1 and an increase in the mitochondrial fission factor fis1 [73], calling for
activation of the fission process. On the contrary, protracting hypoxia to 4 weeks, the
relative transcript abundance of mitochondrial fusion and fission proteins is restored at
normoxic values [73]. This modulation of mitochondria dynamics allows for the hypothesis
that in the early phase of hypoxia adaptation, an augmented mitochondrial density, due to
the activation of fission events, may maximize energy delivery to the contractile apparatus
needed to sustain the enhanced pumping behavior of the heart [31]. In contrast, if hypoxia is
protracted, mitochondrial fusion occurs and promotes mitochondrial membrane stability to
protect mitochondria from damage, mitophagy and the induction of cellular apoptosis [73]
(Figure 1).

4. The NOS/NO System as a Cardiac Molecular Actor in the Hypoxia Response

Experimental evidence of the last decade has recognized the crucial role of the gaso-
transmitter NO and its derivatives in the molecular mechanisms that sustain heart function
under hypoxia (e.g., [74–78]). NO is mainly produced by NO synthases (NOSs) isoenzymes
(i.e., the constitutive endothelial (eNOS; NOS3) and neuronal (nNOS; NOS1), and the
inducible (iNOS; NOS2) isoforms) which catalyze the oxidation of the guanidino group
of L-arginine with molecular O2 to produce L-citrulline and NO. The stringent depen-
dance by O2 makes the NOS enzyme susceptible to a hypoxia-related modulation. To date,
nos genes have been found in teleosts, with the exception of nos3, whose identification
so far remains elusive, despite several approaches that suggest the presence of all NOS
enzymes in fish (see for references [47,79,80]). In fact, by using physio-pharmacological
approaches, NADPH-diaphorase and immunolocalization studies with mammalian anti-
eNOS antibodies, an endocardial-endothelial NO source involved in cardiac modulation
was demonstrated in several teleost species [55,81–84]. In fish, NOS1-type proteins appear
more closely related to NOS3 than to NOS2 proteins [75]. It has been proposed that some
functional traits of the eNOS isoform are covered by a (set of) nNOS isoform(s), showing
an endothelial-like consensus [85]. Accordingly, it is possible that one of the different
isoforms evolved to provide the cell with eNOS-like functions [75].

In oxygenated media, NO is rapidly metabolized to nitrite (NO2
−) and nitrate (NO3

−).
Since the reactions leading to NO3

− production are slower than those leading to NO2
− [86],

NO2
− is considered the major NO metabolite. Nitrite and nitrate represent a bioavailable

reservoir of NO in blood and tissues [87,88]. The reduction of nitrite to NO may occur
via acidic disproportionation [89], or enzymatic reduction via xanthine oxidoreductase,
mitochondrial enzymes or deoxygenated Hb, Mb, cytoglobin-1, neuroglobin, globin-X
and eNOS (see references in [90–93]). Nitrate may also contribute to NO homeostasis,
since it can be reduced to nitrite by xanthine oxidoreductase [94,95]. However, under
hypoxic conditions, the production of NO from nitrite seems to be more pronounced.
Thus, depending on O2 tension, a balance between the oxidative pathway (NOS) and the
reductive pathway (NO2

−) of NO production preserves NO homeostasis. Of note, O2 levels
can impact the oxidation/reduction properties of heme- and molybdopterin-containing
proteins, so that proteins that at physiological O2 conditions are involved in oxidative
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processes can become reductive enzymes able to catalyze the reduction of nitro compounds
to release NO when O2 is lacking [96–98].

During hypoxia or anoxia, when NOS enzymes are unable to produce NO, the possibil-
ity to maintain internal nitrite levels is particularly important for securing NO availability.
If compared to terrestrial animals, in fish, an important source of nitrite for the internal NO
generation is represented by the exogenous supply. It has been reported that when exposed
to deep hypoxia, the crucian carp takes up ambient nitrite across the gills and directs it
to tissues, including the heart [99]. Of note, the carp, as other hypoxia-tolerant species,
such as the goldfish, show basal plasma nitrite levels (0.75–1.75 µM) higher than those re-
ported in hypoxia-intolerant fish (e.g., European flounder Platichthys flesus, eelpout Zoarces
viviparus, oyster toadfish Opsanus tau, brown trout Salmo trutta) (about 0.2 µM) [100–102].
As shown in the zebrafish, exposure to high nitrite is accompanied by high levels of HbNO,
a biomarker of NO generation from nitrate [103]. However, at high concentrations nitrite
is toxic and can influence ion, respiratory and circulatory homeostasis [101]. Moreover,
a high nitrite-derived NO could perturb physiological processes, and may induce tissue
nitrosative stress, resulting in high levels of S-nitrosylated proteins and cell damage [101].
For these reasons, fish living in nitrite-contaminated environments need to balance the
advantages of a rich ambient pool of nitrite for internal NO production with the potentially
dangerous effects of nitrite-polluted habitats [104].

NO has numerous potential reactions that may influence a variety of physiological
and pathophysiological processes. The direct interaction of NO with metal-containing
proteins or with organic free radicals represents two of the best characterized direct effects
of NO in biological systems. The reaction of NO with certain metals to form nitrosyl
complexes occurs in vivo primarily with iron-containing proteins [105]. A well-known
reaction of NO is with proteins that contain a heme moiety to form stable nitrosyl adducts.
The most notable of these is the interaction of NO with guanylate cyclase, which leads
to the formation of cGMP [106–109]. cGMP has several regulatory effects, including
modulation of the vascular tone, angiogenesis and vascular remodeling, and inhibition
of platelet aggregation [110,111]. Yet, this same type of chemistry can also inhibit other
metalloproteins such as cytochrome P-450, NOS, cytochrome oxidase and catalase [105].

In addition to being a signal transduction agent through reversible reactions with
heme protein targets, the radical character of NO makes it a central player in free rad-
ical and redox biology. NO shows a limited chemical reactivity and, consequently, its
direct toxicity is less than that of reactive O2 species (ROS). However, it is able to react
with O2

−, producing peroxynitrite anion (ONOO−) [112], a very damaging species [113].
Peroxynitrite may lead to the formation of secondary oxidizing species (i.e., hydroxyl
radicals (OH•), carbonate radicals (CO3

•−) and nitrogen dioxide (NO2
•)), that cause ox-

idative modifications of biomolecules, including thiol oxidation and tyrosine nitration,
thus causing permanent modifications of cellular components and severe alterations of cell
and mitochondrial homeostasis [114]. By reacting with molecular O2 and nitrogen, nitric
oxide forms nitrogen dioxide or dinitrogen trioxide, both toxic oxidizing and nitrosating
agents [112]. Collectively, nitric oxide, nitrogen dioxide and peroxynitrite represent reactive
nitrogen species (RNS) capable of damaging lipids, proteins and DNA [114].

In fish, NO is an important signaling molecule involved in many physiological pro-
cesses. Currently, a still growing body of literature is available on its role in the modulation
of the fish heart [55,82,115–118]. Data on trout alevins (Salmo trutta) show that L-arginine-
derived NO reduces heart rate, while NOS inhibition induces tachycardia, an event that was
considered an indirect consequence of vasoconstriction [119]. However, a direct chronotropic
control mediated by the gas is reported in developing zebrafish, in which NOS inhibition
was found to depress heart rate, and also to induce arrhythmic behavior [120]. Interestingly,
in fish NO is involved also in shaping early cardiac development. It is reported in the
zebrafish that administration of an exogenous NO donor (DEANO) induces a change in
heart position, the organ being located to the right side, instead of the left side of the
embryo. This situ inversion was proposed to occur by controlling cardiac progenitor cell
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migration [121]. Of note, despite the lack of direct evidence, it is possible that the above
NO-dependent events are under an O2-dependent modulation. In fact, it is known that
limited hypoxia is beneficial for zebrafish cardiac development [122].

In adult fish, NO is deeply involved in controlling cardiac performance under basal
and stressful conditions [31,82,83,115,116,123]. Many of the observed effects have been
related to the specific source of the gas. For example, in ventricular strips from trout
and goldfish, the NOS-derived NO inhibits respiration rate and improves myocardial
efficiency [61], while in trout but not in goldfish, the NO generated from nitrite conversion
reduces O2 consumption without changing force development. Species-specific differences
in O2 affinity of cardiac Mb and then, in its nitrite reductase capacity, have been used to
explain these different responses. In fact, under conditions of low O2, Mb may readily
de-oxygenate and generate NO from nitrite in trout, while in the goldfish, Mb remains
saturated with O2, and thus prevents nitrite reduction [61].

As shown in mammals, during O2 limitation, NO influences mitochondrial signal-
ing [124] and modulates mitochondrial O2 consumption and ROS production [125–128].
These effects are mainly related to NO’s competition for O2 binding sites on cytochrome
oxidase (complex IV) [129–131] and the S-nitrosylation of complex I [132–134]. In the gold-
fish heart, NO inhibits mitochondrial respiration without changing contractility [61]; in the
presence of reduced O2, this sustains myocardial function, thus contributing to myocardial
efficiency [28]. This is in agreement with the enhanced performance shown by the heart of the
goldfish when exposed to acute hypoxia, and is correlated to an increased NO production [31].
Of note, in the goldfish heart, the hypoxia-induced increase in NO levels could activate
sarcolemmal KATP channels, a response that may enhance hypoxia tolerance [135], simi-
larly to the mammalian preconditioning protection of ischemic myocardium, in which the
opening of ATP-sensitive K+ channels represent a crucial event [136]. Interestingly, the po-
tentiated heart function observed in the goldfish heart exposed to hypoxia is accompanied
by an increased expression of NOS, which likely helps to keep adequate myocardial NO
levels [31]. The major role of NO in the increase in contractility observed in the goldfish
heart exposed to hypoxia is supported by data obtained when the hypoxic heart is treated
with the NO scavenger PTIO, as well as with the NOS inhibitor L-NMMA [31]. More-
over, an activation of the PI3-K/Akt signaling has been observed in the hypoxic goldfish
heart [76], evidence that clearly resembles the molecular pattern that in mammals controls
NO generation through eNOS activation [137,138].

Of note, in the goldfish heart exposed to hypoxia, the increased NOS expression is
accompanied by an enhanced expression of HIF1α, suggesting a role in the NO/HIF1a
system in the cardiac response to decreased O2 [31]. In fish, HIF1a is expressed in the
heart of several species, such as the Atlantic croaker (Micropogonias undulatus; [139]) and
the Antarctic red-blooded teleost Notothenia coriiceps [140], and is positively modulated
by hypoxia, an effect which is reversed by the restoration of normoxic O2 values (for
a recent review see, e.g., [141]). The parallel enhancement of HIFα and NOS expression
observed in the goldfish heart under O2 limitation is noticeable since it is similar to the
events occurring in the ischemic mammalian myocardium, in which HIF-1α contributes
to cell survival by activating hypoxia-related genes, including Nos [142–145]. It has been
reported in mammals that at high concentrations (>1 µM) NO may stabilize HIF-1α that,
after dimerization, binds HIF responsive elements, thus promoting NOS expression [146].
Although specific evidence on a putative interplay between HIF-1α and NOS is still lacking
in the fish myocardium, the available information suggests that the relationship between
these important molecular mediators represents a crucial pathway of the cardiac response
to hypoxia. It also suggests that this pathway appeared early in the evolution and is
retained up through the vertebrates.

The intracellular targets activated by NO have been widely assessed in fish, par-
ticularly in relation to its role as a major organizer of complex cardiac transduction sig-
nals [55,82,83,147,148]. More recent studies pointed the attention to the molecular targets
involved in the control of the cardiac response to low O2. In this regard, it has been
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proposed that under hypoxic conditions in fish the cardiac downstream NO activated path-
ways do not involve cGMP-activation [76]. cGMP-independent pathways recently emerged
as an important route for NO to control its molecular targets. In particular, the degree of
protein S-nitrosylation, the covalent attachment of NO to the thiol group of cysteine (Cys)
residues, significantly decreases in the hypoxic goldfish heart with respect to the normoxic
counterpart [76]. In mammals, dysregulated protein S-nitrosylation has been correlated
with either cardiac disorders [149] or with the activation of protective mechanisms against
the development of stress-induced myocardial dysfunction [150]. Although information
about the type of proteins encountering denitrosylation is not yet available in the hypoxic
fish heart, it is possible that, under hypoxic conditions, this process may activate protective
programs, thus contributing to preserving the myocardium [76]. In addition, in the hypoxic
goldfish heart, the reduction of protein S-nitrosylation is accompanied by an increased ex-
pression of Nox2, the catalytic sub-unit of NADPH oxidase [76], and of 3-nitrotyrosine [151].
This suggests that NO may modulate the response of the fish heart to hypoxia by utilizing
protein nitration, i.e., the substitution, mainly under the action of peroxynitrite (ONOO–),
of a nitro group to tyrosine residues. The nitration process has been generally associ-
ated with alterations of protein catalysis, protein–protein interaction, and tyrosine kinase
signaling [152]; however, a nitration-dependent control of redox homeostasis has also been
observed in normally functioning cardiac muscle [153].

The presence of cysteine and tyrosine residues makes several proteins possible targets
of nitrosative and oxidative modifications [153,154]. Amongst others, the SERCA2a pump,
the protein controlling the calcium-dependent homeostatic myocardiocytes activity [155], is
of particular interest to understand the events occurring in the goldfish heart under hypoxia.
Its structural proximity to mitochondria exposes it to reactive O2/nitrogen species gener-
ated as by-products of the oxidative phosphorylation [156]. Of note, nitrated SERCA2a is
used as a cardiac marker of nitrative stress [153]. The inhibition of the SERCA2a pump,
which is expressed in the fish heart [157,158], is accompanied by a significant reduction
of the hypoxia-induced increase in the goldfish heart performance [76]. This is in line
with possible involvement of SERCA2a pump in the nitrergic-dependent control of the
response of the fish heart to low O2. These data open the possibility that, in fish, NO may
activate a protective program that contributes to sustaining the performance of the heart
challenged by hypoxia. In light of the NO-dependent modulation of the cardiac sarcolem-
mal KATP channels observed in the goldfish heart [135], this response, similarly to the
KATP-dependent protection observed in the ischemic mammalian myocardium [136], may
contribute to the cardiac hypoxia tolerance of this teleost. In this perspective, a relationship
between NO and other cardioprotective substances may be hypothesized. For example,
it has been recently observed that in the goldfish hypoxia induces an increase in cardiac
β3-adrenoceptors-(ARs) expression [159], and that the pretreatment of the isolated working
heart with a selective β3-ARs inhibitor (the SR59230A) abolishes the hypoxia-dependent
increase in myocardial contractility [159]. The cardioprotective role of β3-ARs is well
documented in mammals [160]. In addition, in mammals, the β3-AR is upregulated in
response to hypoxia, and by activating the NO signaling, it is involved in the angiogenic
responses to hypoxia [161]. Although yet to be elucidated, the above evidence suggests
that in hypoxia-tolerant fish (e.g., the goldfish), NO may coordinate the complex networks
triggered by humoral cardioprotective mediators. An overview of the role of nitric oxide
and its metabolites in the modulation of the goldfish heart performance is depicted in
Figure 2.
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5. Conclusions

A growing effort of research significantly contributed in the last decades to uncovering
a number of strategies that, from genes to the whole organ, allow the heart of several teleost
species to cope with hypoxia, enabling adaptation and survival under conditions mostly
detrimental for non-adaptable species. Although many gaps are still present, the evidence
of aspects of unity in the cardiac response to low oxygen in terms of whole heart functional
responses, metabolic reorganization, and the fundamental role of molecular systems, such
as the NOS/NO pathway and its related signals, makes the information available so far
a useful background for studies aimed to decipher the mechanisms that in fish provide
adaptive flexibility to the heart in response to environmental stress. They may also be
useful to complement results deriving from more traditional models, in order to better
understand the response of the more fragile mammalian heart to oxygen levels variations.
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