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Abstract: Endometrial receptivity is one of the main factors underlying a successful pregnancy, with
reports substantiating the fact that suboptimal endometrial receptivity accounts for two-thirds of
early implantation event failures. The association between circRNAs and endometrial receptivity in
the goat remains unclear. This study aims to identify potential circRNAs and regulatory mechanisms
related to goat endometrial receptivity. Therefore, the endometrial samples on day 16 of pregnancy
and day 16 of the estrous cycle were analyzed using high-throughput RNA-seq and bioinformatics.
The results show that 4666 circRNAs were identified, including 7 downregulated and 11 upregulated
differentially expressed circRNAs (DE-circRNAs). Back-splicing and RNase R resistance verified the
identified circRNAs. We predicted the competing endogenous RNA (ceRNA) regulatory mechanism
and potential target genes of DE-circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses of these predicted target genes suggest that DE-circRNAs were
significantly involved in establishing endometrial receptivity. Furthermore, Sanger sequencing, qPCR,
correlation analysis and Fluorescence in Situ Hybridization (FISH) show that circ_MYRF derived
from the host gene myelin regulatory factor (MYRF) might regulate the expression of interferon
stimulating gene 15 (ISG15), thereby promoting the formation of endometrial receptivity. These
novel findings may contribute to a better understanding of the molecular mechanisms regulating
endometrial receptivity and promoting the maternal recognition of pregnancy (MRP).

Keywords: endometrium receptivity; goat; circRNAs; maternal recognition of pregnancy; ISG15

1. Introduction

Successful embryo implantation is essential for normal pregnancy development in
all mammals, while a receptive endometrium is a crucial prerequisite for embryo im-
plantation [1]. Studies have shown that the acquisition of endometrial receptivity is a
spatiotemporal process, and a large amount of crosstalk occurs between the endometrium
and conceptus, which is also known as the “window of implantation” [2]. During this pe-
riod, the proliferation of endometrial stromal cells and the differentiation of epithelial cells
change the morphology and structure of the endometrium, resulting in the endometrium
having a receptive capacity, thereby completing embryo implantation [3,4]. Previous stud-
ies have shown that endometrial receptivity is regulated by ovarian hormones, growth
and transcription factors, lipid mediators and cytokines with paracrine signaling [5,6]. The
dysfunctional receptive endometrium could cause infertility [7]. In ruminants, the establish-
ment of endometrial receptivity accompanies the maternal recognition of pregnancy (MRP).
MRP was successfully established due to the effect that embryonic-derived interferon τ

(IFNτ) plays in corpus luteum roles by inhibiting the pulsatile release of prostaglandin
F2α (PGF2α) in the goat endometrium [8,9]. During this period, and stimulated by these
hormones and IFNτ, the endometrial epithelium undergoes dynamic changes to become
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receptive, which is critical for anchoring the implanting embryo to the apical surface
of the luminal epithelium [10]. Presently, ample evidence suggests that several other
molecules regulate endometrial receptivity [11,12]. Remarkably, a dysfunctional receptive
endometrium can cause infertility [7]. Current evidence suggests that 30% of implanta-
tion failures may be attributed to embryo quality, whereas the remaining 70% result from
poor uterine receptivity [13,14]. Accordingly, it is necessary to thoroughly investigate the
molecular mechanisms regulating endometrial receptivity.

As a large class of non-coding RNAs, circular RNAs (circRNAs) are produced by the
back-splicing of precursor mRNAs and are characterized by the 3′ and 5′ ends covalently
linked to form a covalently closed loop [15,16]. It is well-recognized that circRNAs, with
a unique circular structure, are more stable and have longer half-lives than mRNAs [17].
Notably, previous studies found that most circRNAs composed of one or more exons are
conserved among different species but exhibit temporal and spatial specificity in different
tissues and developmental stages of the same species [18]. Although the functions of most
circRNAs remain unclear, previous studies have shown that circRNAs have molecular func-
tions of regulating gene expression. The competing endogenous RNA (ceRNA) hypothesis
states that mRNAs, lncRNAs, circRNAs and transcribed pseudogenes can communicate
with and regulate each other through miRNA response elements (MREs) [19]. Previous
studies have shown that ciRS-7 is one of the highly expressed circRNAs in the brains of
humans and mice, and acts as microRNA sponges to bind miR-7 in nerve tissue to hinder
midbrain development [20,21]. Some circRNAs involved in endometrial receptivity were
identified in goats [4]. For instance, circRNA-9119 can reportedly regulate the receptive
endometrium development of dairy goats through a circRNA-9119-miR-26a-PTGS2 path-
way [22]. In contrast, circRNA8073 is regarded as a miRNA sponge of miR-181a that can
reduce its expression level, thereby indirectly increasing the abundance of neurotensin in
the endometrium and promoting the establishment of endometrial receptivity [23]. The
overall analysis on the regulation of endometrial receptivity by circRNAs in endometrium,
nevertheless, is still lacking.

In this study, we performed RNA sequencing of the circRNAs present in goat en-
dometrial samples on day 16 of pregnancy (P16) and nonpregnant goats on day 16 of the
estrous cycle (C16). Subsequently, qRT-PCR combined with ceRNA interaction network
construction were performed to identify potential circRNAs in the endometrium linked to
endometrial receptivity. Our findings provide novel insights indicating that circMYRF is
associated with the regulation of ISG15 expression during the window of MRP in the doe,
which may provide the foothold for improving the efficiency of RMP.

2. Results
2.1. Identification and Characterization of circRNAs in the Goat Endometrium

The Illumina paired-end RNA-seq approach was used to purify and sequence RNAs
for identifying circRNAs and their corresponding changes in expression levels between the
P16 and C16 goat endometrium. A total of over 400 million raw reads were obtained from
the endometrium for these two stages, and the quality control results of the data are shown
in Table S1. We obtained a total of 4666 circRNAs from these data, and the full-length
distribution was mainly concentrated below 5000 nt (Figure 1A). The density of identified
circRNAs among different chromosomes was not uniform (Figure 1B). After comparing
with the database, we observed that the 95.74% and 95.49% of circRNAs from C16 and
P16, respectively, were extensively transcribed from the exon region, and the remaining
fraction were derived from the intron and intergenic region (Figure 1C). Following this,
further analysis shows that most host genes could produce only one circRNA, although
many genes still produced multiple circRNAs. In addition, more than 11% of host genes
generated more than 3 circRNAs per gene, and even 7 host genes produced more than
12 circRNAs (Figure 1D).
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Figure 1. Identification of circRNAs. (A) The full-length distribution of circRNAs of all goat endo-
metrium tissue samples. Each column represents 5000 nt. The x-axis length (nt) represents the length 
distribution of full-length circRNA; the y-axis represents different samples; the z-axis (count) repre-
sents the number of circRNAs. (B) The Circos plot shows the distribution of circRNAs on goat 

Figure 1. Identification of circRNAs. (A) The full-length distribution of circRNAs of all goat en-
dometrium tissue samples. Each column represents 5000 nt. The x-axis length (nt) represents the
length distribution of full-length circRNA; the y-axis represents different samples; the z-axis (count)
represents the number of circRNAs. (B) The Circos plot shows the distribution of circRNAs on goat
chromosomes. From the outside to the inside, the outside layer indicates the top 10 chromosome map
of the goat genome, and the inside layers denote the distribution of circRNAs of each sample on these
chromosomes. From outside to inside, the samples are C16_3, C16_2, P16_3, P16_1, C16_1 and P16_2,
respectively. (C) The pie charts show the genic distribution of circRNAs in P16 and C16, respectively.
(D) The amount of circRNAs produced by the host gene. Different colors represent different numbers
of circRNAs produced by host genes. The values in parentheses represent the number and proportion
of host genes that produce a corresponding number of circRNAs in total host genes.

As a result, among the 4666 circRNAs obtained in the two stages, 4500 circRNAs were
co-expressed in these two stages, and 83 circRNAs were specifically expressed in each
stage of P16 and C16 (Figure 2A,B). To study the molecular characteristics of circRNAs,
we further analyzed the length of mature circRNAs after splicing, which primarily ranged
from 200 to 500 bp (Figure 2C). Furthermore, it is widely acknowledged that RNA binding
proteins (RBPs) play a major role in RNA metabolism, including regulating RNA splicing,
maturation and function [24] and RBPs usually contain at least one RNA recognition motif
(RRM) [25]. We hypothesized that RBPs in the flanking regions of the circRNA junction
sites might potentially regulate circRNA biogenesis in different physiological processes;
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therefore, we analyzed the potential RBPs of these identified circRNAs. Notably, we
identified some RBPs, including EGR1, EGR3, ZNF684, INSM1, ZSCAN4, KLF9 and GLI2,
whose binding motifs were enriched in the flanking regions of circRNA junction sites,
implying that these RBPs may play functional roles in circRNA biogenesis (Figure 2D).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 18 
 

 

chromosomes. From the outside to the inside, the outside layer indicates the top 10 chromosome 
map of the goat genome, and the inside layers denote the distribution of circRNAs of each sample 
on these chromosomes. From outside to inside, the samples are C16_3, C16_2, P16_3, P16_1, C16_1 
and P16_2, respectively. (C) The pie charts show the genic distribution of circRNAs in P16 and C16, 
respectively. (D) The amount of circRNAs produced by the host gene. Different colors represent 
different numbers of circRNAs produced by host genes. The values in parentheses represent the 
number and proportion of host genes that produce a corresponding number of circRNAs in total 
host genes. 

 
Figure 2. Characterization of circRNAs. (A) Venn diagram showing circRNAs co-expressed and 
specifically expressed in the goat endometrium of P16 and C16. (B) The overall analysis of the 
circRNA expression levels between the P16 and C16 endometrium. (C) The splice-length distribu-
tion of circRNAs. (D) The RRMs of RBPs enriched in the flanking regions of the circRNA junction 
sites. 

Figure 2. Characterization of circRNAs. (A) Venn diagram showing circRNAs co-expressed and
specifically expressed in the goat endometrium of P16 and C16. (B) The overall analysis of the
circRNA expression levels between the P16 and C16 endometrium. (C) The splice-length distribution
of circRNAs. (D) The RRMs of RBPs enriched in the flanking regions of the circRNA junction sites.

2.2. GO and KEGG Analysis of Host Genes of circRNAs

Previous studies have shown that circRNAs could exert biological functions by regulat-
ing the expression of their host genes. Therefore, we performed GO enrichment and KEGG
pathway analyses on the host genes of circRNAs to explore their potential physiological
functions. Five of the top 10 GO terms in biological processes were involved in the pro-
cesses of cellular changes, including cellular processes (GO:0009987), regulation of cellular
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processes (GO:0050794), positive regulation of cellular processes (GO:0048522), positive
regulation of cell communication (GO:0010647) and cell adhesion (GO:0007155) (Figure 3A
and Table S2). Furthermore, the KEGG pathway analysis yielded 296 enriched signaling
pathways (Table S3). Among the top 20 signaling pathways, focal adhesion (chx04510), the
MAPK signaling pathway (chx04010), the Ras signaling pathway (chx04014) and Adherens
junction (chx04520) were associated with endometrium development (Figure 3B).
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Figure 3. The biological function analysis of the host gene of circRNAs. (A) The GO enrichment
analysis of host genes of circRNAs. The right x-axis indicates the number of gene in a category, and
the left y-axis indicates the specific category of GO. Green: biological process, red: cellular component
and blue: molecular function. (B) Scatter plot shows the KEGG pathway enrichment analysis of the
host gene of circRNAs.

2.3. Identification of DE-circRNAs in the P16 and C16 Endometrium

To reveal DE-circRNAs in the goat endometrium during the two development stages,
we focused on circRNAs. A total of 18 DE-circRNAs (11 upregulated and 7 downregulated)
were obtained in the P16 and C16 endometrium using the criteria FDR < 0.05 and |log2(fold
change)| > 1 (Figure 4A and Table S4). Hierarchical clustering analysis shows a clear
distinction of DE-circRNAs between the P16 and C16 endometrial samples (Figure 4B).
Furthermore, 66.67% of DE-circRNAs were extensively spliced from exon regions, and the
proportion of intergenic circRNAs in identified DE-circRNAs was higher than in the full
list of circRNAs identified in goat endometrium (Figures 1C and 4C). Interestingly, the
novel_circ_0003560 and novel_circ_0003562 in these DE-circRNAs were derived from one
host gene, circ_LOC106502060 (Table S4).

2.4. Prediction and Construction of ceRNA Regulatory Network

Previous studies have confirmed that the circRNAs function as miRNA sponges
competitively bind miRNAs, and indirectly regulate miRNA-mediated target gene expres-
sion [26,27]. To explore the functional mechanism of circRNAs involved in endometrial
receptivity, we predicted the potential circRNAs-miRNAs interactions for DE-circRNAs.
The result indicates that a total of 55 target miRNAs identified to the 15 DE-circRNAs while
1968 mRNAs were bound by the 55 miRNAs and suggests that a single circRNA regulates
multiple miRNAs and mRNAs (Figure 5).
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Figure 4. The detected DE-circRNAs in goat endometrium. (A) Volcano plot visualization of the sta-
tistical difference of the DE-circRNAs. The horizontal axis represents the fold-change of detected cir-
cRNAs, and the vertical axis represents the FDR. Red, up-regulated circRNAs; blue, down-regulated
circRNAs; gray, not significantly changed circRNAs. (B) Hierarchical clustering shows the expression
profiles of all DE-circRNAs. Each row represents one DE-circRNA, while columns represent different
samples. The color scale is from −2.0 (blue, lower circRNA expression level) to 2.0 (red, higher
circRNA expression level). (C) The pie chart shows the genic distribution of DE-circRNAs.
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2.5. Functional Annotation of DE-circRNAs

GO enrichment and KEGG pathway analyses were performed on the predicted target
genes of DE-circRNAs to analyze the potential functions of DE-circRNAs in endometrial
receptivity. During GO enrichment analysis, 612 GO terms were enriched, including a
response to cytokine (GO:0034097), a cellular response to cytokine stimulus (GO:0071345),
positive regulation of cell differentiation (GO:0045597), negative regulation of cell death
(GO:0060548) and negative regulation of programmed cell death (GO:0043069) (Figure 6A
and Table S5). Meanwhile, KEGG pathway analysis shows that DE-circRNAs were involved
in regulating 316 signaling pathways, such as the MAPK signaling pathway (chx04010),
TGF-beta signaling pathway (chx04350), Rap1 signaling pathway (chx04015), regulation
of actin cytoskeleton (chx04810) and metabolic pathways (chx01100) (Figure 6B and Table
S6), which significantly influenced the cellular processes involved in goat endometrium
development.

2.6. Validation of DE-circRNAs in the Goat Endometrium

Six DE-circRNAs were randomly selected to design primers (Table S7) in their junc-
tion sites and validate the identified circRNAs from the RNA-seq data. The qPCR re-
sults revealed that the expression levels of novel_circ_0007697, circ_LOC106502447 and
circ_ZNF568 were significantly lower, while circ_CRIM1, circ_MYRF and circ_LOC106502060
levels were significantly higher in P16 compared to C16, which is consistent with the RNA
sequencing data (Figure 7A). In addition, the RNA samples of C16 and P16 were treated
with exonuclease RNase R to verify the resistance. The results show that the expression lev-
els of these circRNAs after RNase R treatment were not significantly different from controls,
while the linear gene expressions were significantly decreased (Figure 7B). Meanwhile,
Sanger sequencing confirmed the presence of head-to-tail splice junctions in the circRNAs
(Figure 7C). These results further suggest that circRNAs have covalently closed circular
structures and indicate that the RNA-seq data are reliable.
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Figure 7. Validation of DE-circRNAs in the goat endometrium. (A) The relative expression level
of DE-circRNAs were measured by qPCR in P16 and C16. (B) Validation of the resistance of DE-
circRNAs and mRNAs to RNase R. There are three independent replicates per group, and the
data are shown as the mean ± standard error of the mean (SEM) values. *, p < 0.05; **, p < 0.01;
***, p < 0.001. (C) The head-to-tail splice junctions for circRNAs were confirmed by Sanger sequencing.
Black arrows represent the junction sites.
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2.7. Functional Prediction of circ_MYRF in Goat Receptive Endometrium

During the screening of candidate circRNAs, circ_MYRF (log2(fold change) = 3.63;
FDR = 0.0009, exonic circRNA) attracted our interest. We found that circ_MYRF was derived
from 2 exons, including exons 9 (40573323-40573399) and 10 (40573581-40573691) of the host
gene MYRF (NC_030836.1) (Figure 8A). We constructed one ceRNA network showing the
relationship among circ_MYRF-miRNAs-mRNAs, including six putative miRNA sponges
and 56 targeted genes (Figure 8B). Subsequently, we used qPCR to examine the expression
levels of two randomly selected target genes, and the results were in line with the expression
of circ_MYRF (Figure 8C). Interestingly, interferon stimulating gene 15 (ISG15) was one of
the target genes of circ_MYRF in the network analysis. ISG15 is well-established as one of
several proteins generated by conceptus-derived Type I and/or a Type II interferon and can
reportedly regulate endometrial receptivity and conceptus development [28]. Correlation
analysis confirmed that the expression of circ_MYRF was significantly associated with
the ISG15 mRNA expression (Figure 8D). FISH analysis was performed to determine the
circ_MYRF location in the endometrium tissues of P16 and C16 (Figure 9). It is abundantly
expressed in the uterine glandular epithelium (GE) and stroma, which is consistent with
ISG15 expression in the endometrial tissue, as reported in a previous study [29].
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3. Discussion

Current evidence suggests that endometrium receptivity determines successful em-
bryo implantation and embryonic mortality [30]. It is essential to conduct a comprehensive
study of the molecular regulation underlying endometrial receptivity of specificity to
pregnancy in the doe. The past decade witnessed the advent of high-throughput RNA
sequencing, enabling us to better understand the molecular regulation processes of en-
dometrial receptivity. In a previous study, it was revealed that hundreds of genes are
involved in regulating endometrial receptivity by transcriptome studies [31]. In addi-
tion, it has reported that dozens of miRNAs found in both humans and mice were could
potentially modulate endometrial receptivity [3]. In this study, we investigated the cir-
cRNA profiles of goat endometrium at C16 and P16 and identified circRNAs involved in
regulating endometrial receptivity. Importantly, our research expanded the repertoire of
goat endometrium-expressed circRNAs and provided information for future studies on
endometrial development and embryo implantation. Notably, the RNAs used in this study
were not treated with RNase R to remove all linear RNAs; however, they were predicted
by the unique back-splicing structure of circRNAs, which may have some limitations in
parsing all circRNA expression profiles.

A previous study has shown that circRNAs are formed by back-splicing the corre-
sponding linear transcript [32]. In the present study, we found that novel_circ_0003560 and
novel_circ_0003562 were derived from one host gene, indicating that diverse circRNAs
could be expressed by a single gene locus, which is consistent with previous results [33].
Furthermore, growing evidence suggests that circRNAs could regulate the expression
of their host gene to participate in the regulation of biological processes [32,34]. In this
study, the host gene of the DE-circRNA, novel_circ_0009698 (circ_CRIM1), CRIM1, can be
promoted by hormones and IFNτ in goat endometrium, and a deficiency of CRIM1 hin-
dered cell proliferation, adhesion and prostaglandin secretion and thus disrupted normal
endometrial receptivity [12,35,36], suggesting that it plays a vital role in the establishment
of pregnancy. In contrast, circ_CRIM1 may contribute to cell proliferation, cell adhesion
and the formation of normal endometrial receptivity by promoting CRIM1 expression. This
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hypothesis, however, should warrant validation in further study. In the study by Song
et al. [4], there were 334 DE-circRNAs identified in the endometrium from goats at gesta-
tional day 5 and goats at gestational day 15 using Illumina Solexa technology. Interestingly,
both Song’s study and ours found that the circRNA deriving from CRIM1 gene was highly
expressed in the receptive endometrium, which further suggests that circ_CRIM1 may be
involved in regulating endometrial receptivity. In our study, most of the circRNAs were
termed as exonic circRNAs. Intriguingly, we found that the proportion of intergenic circR-
NAs in identified DE-circRNAs was higher than in the full list of circRNAs identified in the
goat endometrium. Substantial evidence suggests that exonic circRNAs can usually interact
with host genes and regulate the roles of host genes in biological processes [37–39]. Since
intergenic circRNAs do not have corresponding host genes, they might exert dominant
functions by acting as miRNA regulators [40], suggesting that DE-circRNAs identified in
this study may serve as miRNAs sponges to regulate the endometrial receptivity.

According to the ceRNA hypothesis, circRNAs are molecular sponges of miRNAs that
ultimately regulate mRNA expression [19]. For instance, the ciR3175-miR182-TES pathway
was identified in the endometrium of dairy goats; ciR3175 regulates the expression of
TES by adsorbing miR182 and then decreases the expression of BCL-2/BAX through the
MAPK pathway, thereby inhibiting EEC apoptosis [41]. This regulatory mechanism of
circRNAs indicates that there are communication networks among RNAs. In our study, a
circRNAs-miRNA-mRNA network analysis performed on DE-circRNAs shows that most
DE-circRNAs predicted only one or two target sites for miRNAs, which is consistent with
the literature [42]. This result suggests that circRNAs can act as a miRNA sponge and do
not require many target sites.

It was reported that the receptive endometrium results from the normal development
of the endometrium following successful pregnancy recognition. In addition to the domi-
nant pregnancy recognition hormones, including PGF2α and IFNτ, many growth factors,
cytokines and inflammatory factors can coordinate the hormones mentioned above to
co-regulate the process [43,44]. Notably, circ_0012647, which is specifically expressed in
P16 endometrium, was predicted to upregulate OAS1 expression by sponging miR-671-
5p. Previous studies confirmed that OAS1 expression in luteal cells could be increased
under the function of IFNτ to maintain corresponding corpus luteum roles [45,46], sug-
gesting that circRNAs may cooperate with IFNτ to act on the corpus luteum to establish a
successful pregnancy.

Subsequently, a functional analysis of the putative target genes was performed. Dur-
ing GO annotation, most target genes were enriched in cell-related biological processes,
including a response to cytokine (GO:0034097), a positive regulation of cell differentiation
(GO:0045597) and a negative regulation of the apoptotic process (GO:0043066). Mounting
evidence substantiates that the endometrial events are mediated by cell proliferation, dif-
ferentiation and apoptosis [47,48]. In the present study, the KEGG pathway analysis of
target genes shows that pathways such as the MAPK signaling pathway (chx04010), the
Rap1 signaling pathway (chx04015) and regulation of actin cytoskeleton (chx04810) were
enriched. Previous studies have confirmed that the MAPK signaling pathway could be
involved in regulating EEC proliferation [49], the Rap1 signaling pathway was involved
in regulating the function of endometrial stromal cells [50] and the regulation of actin
cytoskeleton participated in regulating the remodeling of adherens junctions [51]. Overall,
these results indicate that circRNAs may regulate goat endometrial receptivity through
these pathways by ceRNA competition regulation mechanisms.

We further explored the detailed regulatory mechanism of circRNAs. ISG15 is a
ubiquitin homolog whose expression is induced by the conceptus IFN in a temporal and cell-
specific manner in the uterus, to degrade proteins detrimental to fetal/embryo survival [52].
Previous literature suggests that ISG15 plays a critical role in determining endometrial
receptivity and regulating embryo development [28,53]. Chandrakar et al. consistently
found an increase of ISG15 mRNA concentration in the goat endometrium during the
early stages of pregnancy (16–24d) [54]. In this study, ceRNA network analysis and qPCR
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analysis shows that, compared with C16, the mRNA expression level of ISG15 was higher in
P16. Moreover, the FISH analysis results show that circ_MYRF was abundantly expressed
in the GE and stroma of P16 and slightly expressed in C16. In contrast, the ISG15 mRNA
was also mainly localized in GE and stromal cells and exhibited limited localization in
the luminal epithelium (LE) [29]. Hence, we hypothesize that circ_MYRF may regulate
goat endometrial receptivity by targeting ISG15 in GE and stroma. This also suggests that
circ_MYRF may serve as a potential biomarker to identify non-receptive endometrium
and a therapeutic target to improve human endometrial receptivity for the treatment of
infertility. Future mechanistic studies should be warranted to confirm the precise roles of
circ_MYRF and ISG15 in pregnancy establishment.

4. Materials and Methods
4.1. Animals and Sample Collection

This study complied with the Ethical Principles in Animal Research, and was per-
formed in accordance with the ethical standards of the Animal Care and Use Committee
of South China Agricultural University (permit number: SYXK-2022-0136). Six healthy
and disease-free primiparous Chuanzhong black goats (Capra hircus) were provided by
Guangdong Wen’s Foodstuffs Group Co., Ltd. (Yunfu, China), and were randomly divided
into a cyclic group (n = 3) and a pregnancy group (n = 3). Goats that belonged to the
pregnant group were twice artificially inseminated using extended semen from one ram
at the onset of estrus (day 0) and 12 h after. Subsequently, the goats were slaughtered
at the local slaughterhouse on day 16 of the estrus cycle (C16) or pregnancy (P16). For
each animal, the uterus was quickly removed and transported to the laboratory in an
icebox, and pregnancy was confirmed by the presence of apparently normal filamentous
conceptuses during uterine flushing [55]. The uteri were opened longitudinally along the
antimesometrial side. Approximatly 1 cm2 of endometrial tissue samples were taken from
the middle of each uterine horn at the antimesometrial side of the uterus, and endometrial
samples were snap-frozen in liquid nitrogen and stored at −80 ◦C for RNA extraction.

4.2. Library Preparation and RNA Sequencing

Total RNA was isolated from the endometrium using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) following the manufacturer’s procedure. Total RNA quality and concentra-
tion was checked using the NanoDrop 2000 equipment (Thermo Scientific, Waltham, MA,
USA), and integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, CA, USA). High throughput transcriptome sequencing
was carried out by an Illumina Hiseq platform at Novogene (Beijing, China). Briefly, about
3 µg of total RNA per sample removed ribosomal RNAs using the Epicentre Ribo-zeroTM
rRNA Removal Kit (Epicentre Madison, WI, USA), and rRNA free residue was cleaned
up by ethanol precipitation. Then, the rRNA-depleted RNA was used to generate the
sequencing library using the NEBNext® UltraTM Directional RNA Library Prep Kit (NEB,
Ipswich, MA, USA), according to the recommendations of the manufacturer.

4.3. RNA-seq Data Analysis

During this step, clean reads were obtained by removing adapter sequences, reads
with more than 10% ploy-N and low-quality from the raw data. Simultaneously, Q20,
Q30 and GC content of the clean reads were calculated, and all follow-up bioinformatics
analyses were based on clean reads with high quality. Subsequently, the clean reads were
mapped to the goat reference genome using Bowtie (v.0.12.9) [56]. Due to the high false-
positive identification of circRNAs [57], we used two software, find_circ [21] and CIRI2 [58],
to detect and identify circRNAs, and only circRNAs that were intersected between the two
software were selected for further analyses.



Int. J. Mol. Sci. 2023, 24, 1531 13 of 17

4.4. Analysis of Differentially Expressed circRNAs (DE-circRNAs)

The expression level of circRNAs in each sample was counted and normalized with
TPM [59]. The differential expression analysis between the P16 and C16 endometrium of
goats was performed using the DESeq2 package [60]. The p values were adjusted using
Benjamini-Hochberg’s approach for controlling the false discovery rate [61]. Differentially
expressed circRNAs were identified using FDR < 0.05 and | log2(foldchange) | > 1 as
screening criteria.

4.5. Motif Enrichment Analysis and ceRNA Network Construction

The 100 bp flanking region of the back-splicing site with circRNAs was retrieved from
the goat genome, and then the short, ungapped motifs relatively enriched in these regions
was compared with shuffled sequences and were detected using Dreme (v.5.1.1) [62]. The
enriched motifs with p < 0.05 were selected for subsequent analysis. To associate the
enriched motifs to potential RBPs, all selected motifs were compared against the JASPAR
database [63] of known motifs using Tomtom (v.5.1.1) [64]. The top 5 target motifs with the
most significant matches to the query motif were identified as potential RBPs, which might
regulate the biogenesis of circRNAs.

The miRNA binding sites of the DE-circRNAs were predicted using the miRanda (v.3.3)
software [65]. Then, miRNA-mRNA interactions were predicted using miRanda. Targetscan
and RNAhybrid were used to determine the gene targets of each filtered miRNA. Using
these data, the outline of the ceRNA regulatory network was generated using Cytoscape
(v.3.7.2, http://www.cytoscape.org/, accessed on 30 October 2021) [66].

4.6. Functional Analysis of DE-circRNAs

To reveal the potential biological functions and principal pathways of DE-circRNAs
of P16 and C16, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were used. The enriched GO terms of these target
genes were identified using the clusterProfiler package in R, and the KEGG pathways were
determined using KEGG Orthology Based Annotation System (KOBAS) [67].

4.7. Quantitative Real-Time PCR (qPCR)

Total RNAs were extracted from the same 6 samples of goat endometrium of P16 and
C16 and used for RNA sequencing. Next, 2 µg of total RNA of each sample was incubated
for 10 min at 37 ◦C with or without RNase R (3 U/µg RNA, GENESEED, Guangzhou,
China), followed by inactivation for 10 min at 70 ◦C. All RNA samples were processed
simultaneously to ensure equally effective RNase R treatment. The qPCR assay was
conducted to quantify the amount of circRNA and mRNA. Initially, the first strand cDNA
was synthesized using the Evo M-MLV RT Kit with gDNA Clean for qPCR II (Accurate
Biology, Changsha, China). Then, qPCR reactions were conducted employing a SYBR®

Green Premix Pro Taq HS qPCR Kit (Accurate Biology, Changsha, China). The PCR volume
was 10 µL, consisting of 1 µL cDNA, 0.2 µM of each primer, 5 µL 2 × SYBR Green Pro
Taq HS Premix, 0.4 µM of ROX Reference Dye and RNase free water to make up the total
volume. The thermal cycling conditions were as follows: 95 ◦C for 30 s followed by 40 cycles
at 95 ◦C for 5 s and 60 ◦C for 30 s. Linear GAPDH was chosen as an internal reference to
regulate the expression of circRNAs, and all reactions were performed in triplicate samples.
To further identify the junction sequence of circRNAs, the RT-PCR products of divergent
primers were analyzed by electrophoresis and Sanger sequenced at BGI Genomics Co., Ltd.
(Shenzhen, China). The primer sequences used are listed in Table S7.

4.8. Fluorescence In Situ Hybridization (FISH) Analysis

The location of circ_MYRF in goat endometrium was determined by conducting a
FISH analysis, as previously described [68]. In brief, micrometer sections (4 µm thick) were
deparaffinized, digested with proteinase K and hybridized using FAM-labeled circ_MYRF

http://www.cytoscape.org/
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probes (green). Simultaneously, cell nuclei were stained with DAPI. Images were then
photographed using a positive fluorescence microscope (Nikon, Tokyo, Japan).

4.9. Statistical Analysis

Data were statistically analyzed using SPSS (version 26.0, SPSS Inc., Chicago, IL,
USA), GraphPad Prism (version 8.0, Graphpad Software, San Diego, CA, USA) and
R programming language (version 3.6). All qPCR results of circRNAs and mRNAs in
goat endometrium of P16 were normalized using the calibrator group, C16, and the cir-
cRNA and linear mRNA treated with RNase R were normalized using control values.
The Kolmogorov-Smirnov test was used to assess the normality of the data. All experi-
ments were performed in three independent replicates, and data were expressed as the
mean ± standard error of the mean (SEM). Differences between the two groups were
analyzed using Student’s t-test. A p value < 0.05 was statistically significant, and *, **, and
*** indicate p < 0.05, p < 0.01, and p < 0.001, respectively.

5. Conclusions

In summary, this study identified 4666 novel circRNAs, including 18 significantly
differentially expressed circRNAs (11 upregulated and 7 downregulated). The ceRNA
network and functional analyses of circRNAs suggests the potential roles of circRNAs in
endometrial receptivity. Our study provides the circRNA expression profiles during early
pregnancy and data on the estrus periods to study the molecular regulation mechanism
of mammalian early pregnancy and further promotes research in embryo implantation,
cancer and gynecological diseases.
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