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Abstract: Engineered stone silicosis has become an occupational epidemic disease that progresses
rapidly to progressive massive fibrosis with respiratory failure and death, and there is no effective
treatment. Silica deposition in the lung triggers a series of inflammatory reactions with the participa-
tion of multiple cytokines and cellular mediators whose role in the development and progression
of the disease is largely unknown. We hypothesized that differences in plasma cytokine levels ex-
ist between patients diagnosed with simple silicosis (SS) and patients diagnosed with progressive
massive fibrosis (PMF). Plasma samples from 91 ES silicosis patients, diagnosed and classified by
chest radiography and/or high-resolution computed tomography with SS (n = 53) and PMF (n = 38),
were assayed by multiplex assays for levels of 34 cytokines. Additionally, a healthy volunteer control
group (n = 22) was included. Plasma levels of a high number of cytokines were significantly higher
in subjects with silicosis than in healthy control subjects. Moreover, the levels of IL-1RA, IL-8, IL-10,
IL-16, IL-18, TNF-α, MIP-1α, G-CSF and VEGF were significantly elevated in PMF compared to SS
patients. This study shows that plasma cytokine levels differ between healthy people and silicosis
patients, and some of them are also significantly elevated in patients with PMF compared with
patients with SS, which could indicate their involvement in the severity of the disease, be considered
as biomarkers and could be explored as future therapeutic targets for the disease.

Keywords: engineered stone; artificial stone; quartz agglomerate; silicosis; cytokines; biomarkers;
human

1. Introduction

Silicosis is a diffuse interstitial lung disease caused by the inhalation of free micro-
scopic particles of crystalline silica and is one of the more common diseases related to work
activities that can lead to incapacitating lung fibrosis and respiratory failure [1]. Tradition-
ally related to mining or drilling activities, in recent years, the cases of this type of disease
have been reduced in developed countries by the implementation of health and safety rules
in workplaces. However, silicosis has re-emerged in the last 20 years as a consequence of
the use of a new material, artificial stone (AS) or engineered stone (ES), mainly composed
of crystalline silica and synthetic resins and frequently used for manufacturing kitchen
and bathroom countertops; silicosis has also been considered an occupational epidemic in
some countries [2–7]. ES silicosis is characterized by a short latency period and by a greater
aggressiveness than classic silicosis [8,9], and the progression of this entity continues to
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produce progressive massive fibrosis (PMF) in up to 40% of patients even after four years
of cessation of their exposure to silica [10].

Although the physiopathological origin of ES silicosis is not completely defined,
as has occurred for traditional silicosis, it is thought to start with the interaction of silica
crystals with immune cells, mainly macrophages but not alone, present in the alveoli [11,12].
Struggling to eliminate injury, activated cells engulf and try to degrade silica particles,
but this is avoided due to the toxic nature of crystalline silica particles. Inflammasome
activation initiates cytokine cascade signaling, resulting in a chronic inflammatory process
and the development of lung fibrosis.

Cytokines are the main mediators of intercellular communication regulating a wide
range of cellular processes, including activation, proliferation, differentiation, survival/
apoptosis, inflammation, fibrosis, tissue repair and hematopoiesis, among others. Our pre-
vious studies suggest that ES silicosis patients maintain a systemic inflammatory condition
even years after the cessation of exposure to silica dust [13]. To date, many groups have
analyzed one or a few specific cytokines in serum, sputum, or bronchoalveolar lavages from
groups of patients with silicosis due to different causes, but to date, no one has analyzed
such a large and homogeneous group of patients or a broad panel of cytokines that may be
involved in the development of silicosis caused by ES.

We hypothesized that patients with ES simple silicosis (SS) or with PMF, a more
advanced stage of the disease, will exhibit differences in their systemic cytokine profiles.
The progression rate of each patient could be a helpful tool for clinicians. Furthermore, the
observed changes in systemic cytokine levels could reflect the intrinsic pathophysiological
basis for directing new or existing treatments that could be used to slow or stop the
progression of the disease.

2. Results
2.1. Characteristics of the Study Population

A total of 91 patients with silicosis accepted participation in the study, of whom 53
were diagnosed with SS and 38 with PMF. All subjects studied were males, and their
sociodemographic data are shown in Table 1. Mean age, starting age and duration of
exposure to engineered stone dust were all similar, without significant differences between
the groups studied. A healthy control (HC) group not exposed to silica dust was also
studied. The participants were categorized by smoking status as follows: “non-smoker”
(never smoker); “ex-smoker” (smoking cessation at least 1 year before blood draw); and
“smoker” (current smoking at the time of blood draw). Since smoking may have some
effects on inflammation and therefore likely to affect the cytokine profile in smoking
subjects, we decided to check all the analyses after removing the few smoking subjects and
we did not see any difference in the results from leaving them in the study. Therefore, we
decided to consider and include all subjects in the study regardless of their smoking status.

2.2. Analysis of Plasma Cytokines

We decided to explore the potential association of circulant cytokine levels with ES
silicosis disease, broadly accepted as a chronic inflammatory process leading to pulmonary
fibrosis. The effects or functions of cytokines are highly pleiotropic and redundant in
their functions, which makes their classification difficult, but we clustered the cytokines
analyzed into five large groups, bearing in mind that some of them could be classified into
different groups.
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Table 1. Sociodemographic data of participants and pulmonary function values of patients with SS
and PMF.

HC (n = 22) SS (n = 53) PMF (n = 38) p

Age * 36.4 ± 8.3 40.1 ± 7.7 41 ± 6.2 0.052 +

Starting Exposure Age * - 21.2 ± 7.4 21.4 ± 4.3 0.142 ++

Duration of Exposure * - 13.1 ± 6.7 13.3 ± 6.1 0.968 ++

Years since cessation of
exposure to blood draw * - 6.4 ± 2.7 7.3 ± 2.5 0.058 ++

Smoking status ** 0.099 +++

Non-Smoker 15 (65.2) 22 (41.5) 15 (39.5)
Ex-Smoker 5 (21.7) 26 (49.1) 21 (55.3)

Smoker 3 (13) 5 (9.4) 2 (5.3)
FEV1 (mL) * nd 3386 ± 647 2961 ± 631 0.003
FEV1 (%) * nd 87.8 ± 14 76.5 ± 14.8 <0.0001
FVC (mL) * nd 4341 ± 748 3961 ± 783 0.022
FVC (%) * nd 90.1 ± 13.3 82.3 ± 14.8 0.01

FEV1/FVC * nd 0.77 ± 0.05 0.74 ± 0.07 0.009
DLCO (mmol/min/kPa) * nd 9.2 ± 1.7 8.3 ± 1.4 0.006

DLCO (%) * nd 85.4 ± 14.8 77.6 ± 14 0.014

Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), diffusing capacity of lung for carbon monoxide
(DLCO). * Mean ± standard deviation. ** Number of cases (percentage). + ANOVA F test, ++ Mann–Whitney U
test, +++ χ2 test; nd, not determined.

2.2.1. Pro-Inflammatory Cytokines

The plasma pro-inflammatory cytokine levels of the SS and PMF patient groups were,
in general, elevated compared with those of the control group (Figure 1). The mean plasma
levels of IL-1β, IL-6, IL-7, IL-8, IL-17A, IL-33 and TNF-α were significantly higher in the
patient groups than in the control group. Although the IL-16 level followed the same trend,
it was only significantly increased in the PMF group compared to the HC or SS groups.
However, notable significant differences in the levels of the cytokines IL-8 (also considered
a chemokine), IL-16 and TNF-α were observed between the SS and PMF patient groups.

2.2.2. Anti-Inflammatory Cytokines

Analysis of the main anti-inflammatory cytokines also showed a general increase
(Figure 2), but some differences were observed between group comparisons. Therefore,
IL-1RA, IL-4 and IL-13 levels were higher in patients diagnosed with SS or PMF than in
HCs. Furthermore, within groups of diagnosed patients with silicosis, IL-1RA and IL-10
levels were higher in PMF than in SS patients. However, the IL-10 level did not show
differences between HCs and SS patients, but it did in the comparison of either of these
groups with patients diagnosed with PMF.

2.2.3. TH1/TH2 Cytokine Profiles in Diagnosed Silicosis Patients

As T lymphocytes have a key role in inflammatory processes, we analyzed the status
of some cytokines implicated in the TH1 (INF-γ, IL-2, IL-12p70, IL-18) and TH2 (IL-3, IL-5,
IL-9, IL-15, IL-23) responses. Plasma levels of IL-2, IL-12p70, IL-5 and IL-23 cytokines were
all under the level of detection to be analyzed and compared. IL-15 levels were undetectable
in the HC group (not shown), and for this reason, it was not further analyzed, but it was
detected in the SS and PMF groups, suggesting that IL-15 was increased in ES silicosis
patients. As shown in Figure 3, the main cytokines involved in the TH1/TH2 responses,
i.e., INF-γ and IL-3, did not show significant differences between any of the groups studied.
The exceptions were IL-4 and IL-13, considered cytokines related to the TH2 response,
but we have previously shown them as anti-inflammatory cytokines (see Figure 2), and
IL-9 levels were only significantly different between HC and PMF groups but not between
HC and SS or between SS and PMF. A notable exception was IL-18 levels, which showed
a progressive and highly significant increase in the direction HC→ SS→ PMF and are
considered to facilitate both TH1/TH2 responses [14].
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Figure 1. Levels of inflammatory cytokines in plasma from peripheral blood were assayed in pa-
tients diagnosed with simple silicosis (SS), progressive massive fibrosis (PMF) and healthy controls 
(HC). All cytokines were assayed by the Bio-Plex assay, except IL-16 and IL-33, which were assayed 
by R&D Systems Assay. * and ** indicate significance p < 0.05 and p < 0.01, respectively. 
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(Figure 2), but some differences were observed between group comparisons. Therefore, 
IL-1RA, IL-4 and IL-13 levels were higher in patients diagnosed with SS or PMF than in 

Figure 1. Levels of inflammatory cytokines in plasma from peripheral blood were assayed in patients
diagnosed with simple silicosis (SS), progressive massive fibrosis (PMF) and healthy controls (HC).
All cytokines were assayed by the Bio-Plex assay, except IL-16 and IL-33, which were assayed by
R&D Systems Assay. * and ** indicate significance p < 0.05 and p < 0.01, respectively.
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Figure 3. Levels of TH1/TH2 response cytokines in plasma from peripheral blood were assayed in all
participants. IL-9 cytokine levels were assayed by the Bio-Plex assay, and IL-18 levels were assayed
by the R&D Systems Assay. * and ** indicate significance p < 0.05 and p < 0.01, respectively.

2.2.4. Chemokines

The levels of some chemokines, such as CXCL1/GRO-α, IP-10, MCP-1, RANTES,
Eotaxin, MIP-1α and MIP-1β, were also measured. Among them, CXCL1/GRO-α, Eotaxin
and RANTES did not show differences between the groups studied (not shown). Others,
such as IP-10, MCP-1, MIP-1α and MIP-1β, showed significant differences when either of
the silicotic groups was compared to the HC group, as shown in Figure 4. Additionally,
MIP-1α levels showed a significant increase in PMF patients compared to SS patients. IL-8,
also considered a strong chemokine, was previously analyzed in the pro-inflammatory
cytokine group (see Figure 1).
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Figure 4. Levels of chemokines in plasma from peripheral blood were assayed in all participants. All
chemokines were assayed by the Bio-Plex assay. ** indicate significance p < 0.01.

2.2.5. Growth Factors

Finally, several growth factors were also analyzed, and the results are shown in
Figure 5. TGF-β1, considered the main profibrotic factor, showed a significant increase
in the SS and PMF groups compared to the HC group but not between the SS and PMF
groups. A similar pattern to TGF-β1 was observed for basic FGF. In the case of VEGF and
G-CSF, a weak increasing trend is observed from HC to SS, but it is only significant when
we compare any of these groups with the PMF group. Other factors, such as PDGF-BB and
GM-CSF, did not present differences at all between the studied groups (not shown).

As a summary, all the cytokine levels that are altered, and those that are not, among
the different groups studied are included in Table 2.

Table 2. Summary of cytokine levels observed.

Groups Compared Cytokines Augmented (→)

HC→ SS IL-1β, IL-1RA, IL-4, IL-6, IL-7, IL-8, IL-13, IL-15*, IL-17A, IL-18, IL-33,
TNF-α, IP-10, MCP-1, MIP-1α, MIP-1β, TGF-β1, FGF-basic

HC→ PMF
IL-1β, IL-1RA, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-13, IL-15 *, IL-16, IL-18,
IL-33, TNF-α, IP-10, MCP-1, MIP-1α, MIP-1β, TGF-β1, FGF-basic, G-CSF,

VEGF

SS→ PMF IL-1RA, IL-8, IL-10, IL-16, IL-18, TNF-α, MIP-1α, G-CSF, VEGF

Progressive increase HC→ SS→ PMF IL-1RA, IL-8, IL-18, TNF-α, MIP-1α

No significant differences between any of the groups IL-2, IL-3, IL-5, IL-12 (p70), IL-23, Eotaxin, GM-CSF, IFN-γ, PDGF-BB,
RANTES, CXCL1/GROα

* Not detected in HCs but detected in the SS and PMF groups.
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3. Discussion

Previously, it has been shown that patients diagnosed with ES silicosis continue
progressing to more advanced stages of the disease and present a chronic inflammatory
process even years after exposure cessation [10,13]. Several groups have reported different
plasma/serum cytokines and other molecules as biomarkers in silicosis caused by different
agents from ES (miners, quarry workers, etc.) [15–24]. However, ES silicosis has some
differences from silicosis originating from natural stones, characterized by faster radiologi-
cal progression, a decline in lung function and mortality [9]. In addition, scarce data are
available regarding plasma biomarkers, specifically in a numerous and well-studied group
of patients with ES silicosis. Knowing which are the altered cytokines in ES silicosis patients
could guide us for future treatments to stop or slow the progression of the disease. To our
knowledge, this is the first study to analyze plasma cytokine levels in patients postexposure
to ES, and furthermore, it uses a broad panel of cytokines, some of which have not been
previously evaluated in patients with silicosis.

Surprisingly, many of the plasma cytokine levels remained altered in diagnosed pa-
tients compared to the healthy control group even after more than 6 years of having stopped
working with ES, the hazard source. Patients with silicosis seem to have a chronic inflam-
matory process that is consistent with the augmented levels of some pro-inflammatory
cytokines, i.e., IL-1β, IL-6, IL-7, IL-8, IL-16, IL-17A, IL-33 and TNF-α were observed in
this work.

In vitro experiments have demonstrated that IL-1β and TNF-α secretion by alveolar
macrophages is considered an early inflammatory response that leads to progressive tissue
damage and fibrosis in coal worker pneumoconiosis (CWP) [25,26]. However, the pro-
duction of TNF-α and IL-6, but not IL-1β, was observed by human alveolar macrophages
exposed to coal dust [27]. Initial TNF-α levels released by stimulated peripheral blood
monocytes were related to a progression in CWP even after the end of occupational expo-
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sure [28,29]. In human plasma/serum, TNF-α levels in patients with silicosis [16] or IL-1β,
IL-6 and TNF-α in CWP patients [30] have also been reported to be increased compared to
control groups and even between simple pneumoconiosis and PMF groups, in accordance
with the results in the present study. We only observed a significant and progressive
increase in TNF-α levels in the HC→SS→PMF groups, suggesting that this factor could
play an important role in the development of silicosis. However, contradictory results
have been obtained in other studies where only increased plasma IL-6 levels, but not IL-1β,
IL-10 and TNF-α levels, were observed [15,31] or in CWP patients in whom the IL-6 level,
but not TNF-α, was augmented and correlated with the severity of the disease [32]. Our
results showed a clear increase in IL-1β, TNF-α and IL-6 levels in the plasma of patients
compared to controls, and for TNF-α, a significant difference was observed between SS
and PMF. These results are in line with the results obtained for IL-1β, TNF-α, IL-6 and IL-8
in the bronchoalveolar lavage fluid (BALF) of silicosis patients [33]. On the other hand,
no significant difference has been described for these cytokines, IL-1β, TNF-α and IL-6,
in patients with natural stone silicosis using the same detection technique [19]. Further
studies are necessary to test whether the differences in the levels of those cytokines could
be involved in the aggressiveness or rapid progression observed in ES silicosis patients
compared to natural stone silicosis patients.

A relevant result was also obtained for IL-8 levels, which were highly increased not
only between HCs and patients but also between patients with SS and the group with
a more advanced stage of the disease, PMF, which means that this cytokine, along with
others, could be a good candidate marker to discriminate between disease stages. This is
in line with recently published data where IL-8 levels were associated with progression
and death in silicosis [15], with pulmonary impairment in copper smelter workers [34] and
with progression in CWP disease [35]; however, in another study with CWP patients, no
significant differences were observed in IL-8 levels [36].

Other pro-inflammatory cytokines we found to be significantly elevated in the patient
groups compared to the control group were IL-7, IL-16, IL-17A and IL-33, with only IL-16
being significantly different in the PMF group compared to any other group. Elevated IL-7
serum levels have been described in patients with natural stone silicosis [19] and sarcoido-
sis [37] and are associated with the severity of coronavirus disease 19 (COVID-19) [38]. IL-16
acts as a chemoattractant for lymphocytes and monocytes, and their derived macrophages
secrete different pro-inflammatory cytokines [39,40]. Although the increase in IL-16 has
been related to inflammatory processes such as asthma, colitis, systemic lupus erythe-
matosus and rheumatoid arthritis in silicosis, a decrease in induced sputum has been
reported [41]. IL-17 has also been related to inflammation and fibrosis in a silicosis mouse
model [42,43]. IL-33 is augmented in plasma patients, and it has been described as promot-
ing the polarization of M1 macrophages to M2 macrophages, producing anti-inflammatory
and profibrotic effects [44].

With respect to mainly anti-inflammatory cytokines, all of them are elevated in plasma
from patients compared to HC. The significant augmentation observed for IL-1RA in the
PMF group compared to the SS group and comparing the SS and HC groups is especially
remarkable. Thus, this cytokine is a good candidate to be included as a biomarker of disease
progression. IL-1RA could be augmented as a mechanism to balance the effect of IL-1β, as
has been recently proposed in response to RNA vaccines [45]. We also observed a significant
increase in IL-4 and IL-13 levels in plasma in ES silicotic patients, both cytokines are mainly
associated with the TH2 response and associated with inflammation and lung fibrosis.
Controversial results have reported the role of the TH1/TH2 response in experimental
silicosis using animal models [46]. In humans, no clinical trials testing the possible role
of IL4 or IL13 in silicosis are known, but some IL4 gene polymorphism studies indicate
some susceptibility in CWP [47]. The IL-10 level was also significantly increased in our
PMF group compared to the SS or HC groups, in accordance with a previous study [19]
but contrary to the results reported in another study with a more limited number of
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participants comparing silica-exposed versus unexposed subjects [31]. The possible role of
this anti-inflammatory cytokine in human silicosis has yet to be reported.

Our data support that some cytokines (IL-4, IL-13 and IL-9) associated with a TH2
response are increased in the plasma of patients with silicosis, while cytokines associated
with the TH1 response are practically not altered. Considering that our patients were in
a chronic stage for several years, a dominant TH2 response is consistent with the results
reported by others [48,49]. IL-18, which can mediate both TH1 and TH2 responses, was
significantly augmented in the SS and PMF groups compared to the HC group and in the
PMF group compared to the SS group. However, possible changes in INF-γ levels induced
by IL-18 were not observed. IL-18 has also been associated with idiopathic pulmonary
fibrosis and CWP [50,51].

In mice, it has been demonstrated that IP-10, MCP-1, MIP-1α and MIP-1β, chemokines
that could facilitate the trafficking, activation state and recruitment of inflammatory cells
into the lungs, are mediated, at least in part, through TNF-α signaling [52]. This is in
accordance with the data presented in our work, in which we observed an increase in
all chemokine levels in SS and PMF patients compared to the control group, as well
as in TNF-α levels (Figure 1). Indeed, the MIP-1α level, as for TNF-α, also exhibited a
significant difference between the two silicotic groups, the SS and PMF groups. However, no
differences were also reported for TNF-α and MCP-1 levels in plasma in a study including
57 silica-exposed workers (miners and stone carvers) [20]. Previously, MCP-1 has been
associated with progression in CWP [53], and an inhibitory role has been assigned to IP-10
in pulmonary fibrosis [54]. The discrepancies observed between the different studies could
be attributable to several reasons, such as the different techniques used, representative
subject groups, and the nature or composition of the silica particles. All these possible
variables will need further study.

TGF-β1 is considered a key fibrogenic cytokine implicated in the manifestation and de-
velopment of silicosis that can be produced by a plethora of cells in the human lung [55,56].
TGF-β1 levels were significantly increased in SS and PMF patients compared to HCs, but
contrary to expectations, no differences were observed between SS and PMF patients. This
could indicate that other fibrotic mechanisms could have a role in the progression of lung
fibrosis. In this sense, anti-inflammatory cytokines such as IL-4, IL-10 and IL-13 have been
proposed to have a profibrotic role in the development of lung fibrosis [57], and precisely,
in this work, we have presented data in which the levels of IL-4, IL-10 and IL-13 in plasma
are increased in silicotic patients, in line with the TGF-β1 level increase. Because our data
were obtained from plasma, we have the limitation of actually knowing the cell sources of
TGF-β1 production, but suppressing the general activation and/or expression of TGF-β1
may help us to identify novel and effective therapeutic strategies for silicosis [58–60].

VEGF indirectly augments inflammation through the upregulation of cytokine expres-
sion (IP-10, MCP-1, IL-8, etc.) and, consequently, chemoattracting inflammatory cells. In
addition, although VEGF has been associated with the development of lymphangiogenesis
in the early stage of inflammation in silicosis, no significant difference in VEGF-C was
observed in the BALF of silicotic patients compared to controls [61]. In human plasma,
we also did not observe differences between the HC and SS groups, but we observed a
significant difference when comparing the PMF group with either of the aforementioned
groups. The VEGF plasma level can be considered another candidate biomarker to discrim-
inate between SS and PMF. Augmenting the expression of soluble VEGF receptor (sVEGFR,
acting as a decoy receptor) in mice resulted in an attenuation of pulmonary fibrosis [62],
which could be a therapeutic strategy against lung inflammation and pulmonary fibrosis.

Basic fibroblast growth factor (bFGF) has been reported to be produced by mast cells,
lung epithelial cells, macrophages and endothelial cells and to be augmented in patients or
animal models of silicosis [63–65]. However, a previous study using the same technique
we used in the present study did not observe any differences in bFGF between a healthy
control group and a silicosis group [19]. The explanation of this discrepancy could be due
to the number of subjects studied, that they used serum and that we used plasma as a
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source of metabolites, or just because ES silicosis patients included in our study versus
silicosis patients recruited in their work have different behaviors and cytokine production
is quite different.

G-CSF and GM-CSF are prototypical granulocyte-mobilizing and granulocyte-macrophage-
mobilizing cytokines, respectively. In the present work, as seen by Chen et al. [19], we found
that G-CSF levels did show significant differences when comparing the PMF group with the SS
or HC groups, but GM-CSF did not show differences at all. In rat models of pulmonary fibrosis,
G-CSF treatment exacerbates acute lung injury and pulmonary fibrosis through a mechanism
that probably involves the recruitment of neutrophils into the lungs [66,67]. No clinical data on
the treatment of silicosis patients with G-CSF have been reported, but its pathway inhibition, as
with PDGF, VEGF and FGF signaling inhibition, could attenuate lung fibrosis [68].

This study has some limitations, including the following: (1) It is a cross-sectional
study designed to evaluate the cytokine levels in the different studied groups that could be
used as a biomarker of ES silicosis disease, and no more conclusions or inferences could
be taken without more analysis. (2) Quantitation of environmental respirable silica dust
or lung crystal burden in the subjects of the study was not performed, and therefore, we
do not know if the response is due to the alveolar silica load or to an individual response
or both.

4. Materials and Methods
4.1. Subjects of the Study

All patients included (n = 91) were male workers who were cutting, polishing and
finishing engineered stone countertops and were diagnosed with SS (n = 53) or with PMF
(n = 38). They are part of a cohort of patients followed by the Pneumology, Allergy and
Thoracic Surgery Department of Puerta del Mar University Hospital in Cádiz (Spain).
Patients had been diagnosed with silicosis based upon a history of exposure to silica and
chest radiography and/or high-resolution computed tomography (HRCT) and, in some
cases, by lung or mediastinal lymph node biopsy. Patients were asked to enroll in the
study when they attended a hospital consultation. Respiratory function tests, chest radio-
graphs and HRCT scan classification of these patients have been described previously [13].
The exclusion criteria for a patient from the study were active infection, kidney or liver
disease, autoimmune rheumatic disease, or use of immunosuppressive drugs; only oral
corticosteroids were accepted at a dose lower than 20 mg per day.

Blood extraction was also performed on 22 healthy control (HC) subjects with no
history of exposure to silica dust. All of them were hospital staff workers, and none of
them had respiratory symptoms or chronic or acute disease. The medical evaluation before
blood sampling was normal in all cases.

4.2. Ethics

This study was approved by the institutional Research Ethics Committee of the
province of Cadiz (registration n◦ 90.18, date 29/09/2018). All subjects gave written
informed consent following the Declaration of Helsinki. All data were pseudonymized
to preclude patient identification and were included in a database to which only the
researchers had access.

4.3. Plasma Cytokine Analysis

Ten milliliters of venous blood samples were collected into Vacutainer® EDTA tubes
(Becton Dickinson, Madrid, Spain). Plasma fractions were obtained after two centrifuga-
tions, one at 1500× g for 10 min and the second at 2500× g for 15 min for the depletion of
platelets, and stored at −80 ◦C until use. Cytokine analysis was performed using (i) Bio-
Plex Pro™ Human Cytokine 27-plex Assay (Bio-Rad Laboratories Inc., CA, USA) for the
analysis of the following cytokines: FGF-basic, Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-1β,
IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IP-10,
MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF, following the instructions
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of the manufacturer. (ii) Human Luminex Discovery Assay (ref. LXSAHM, R&D Systems)
for the analysis of IL-3, IL-16, IL-18, IL-23, IL-33 and CXCL1/GROα, and (iii) a Human
TGF-β1 Elisa Kit (ref. RAB0460, from Sigma-Aldrich, Madrid, Spain) as a single ELISA
kit for TGF-β1 detection, was used following strictly the instructions of the manufacturer.
All determination analyses were performed using Luminex technology FLEXMAP 3D®

equipment (Luminex Corporation, TX, USA), but for TGF-β1 colorimetric detection, a
BioTek PowerWave HT microplate reader (BioTek Instruments, VT, USA) was used. All
samples were measured in duplicate.

4.4. Statistics

SPSS software (IBM Statistics) was used for statistical analysis. Initially, the normality
distribution of every set of data was established using the Kolmogorov-Smirnov test.
Subsequently, one-way ANOVA for multiple (generally three: HC, SS, PMF) groups of
data was performed by the ANOVA F test (normal distribution) or by the Kruskal-Wallis
test (nonnormal distribution). For comparisons of two groups of data (HC vs. SS, HC vs.
PMF or SS vs. PMF), Student’s t-test (for normally distributed data) or the Mann-Whitney
U test (for nonnormally distributed data) was used. The chi-square test was used to test
relationships between categorical variables. The results are expressed as the mean and
standard deviation (SD). A significance level of p ≤ 0.05 was adopted for all tests. Excluded
data are from those that did not reach minimal detectable values to be included in curve
analysis and those considered extreme outliers (3.5 times above or below the mean value).

5. Conclusions

To our knowledge, this is the first study that specifically investigates blood cytokines in
patients with ES silicosis, in addition to using a broad panel of cytokines. A summary of the
results, including altered and unaltered cytokine levels, is shown in Table 2. In particular,
the increased levels of IL-1RA, IL-8, IL-10, IL-16, IL-18, TNF-α, MIP-1α, G-CSF and VEGF
in PMF patients compared to SS patients could serve as the basis for designing a panel of
cytokines, to which others can gradually be added, to serve as a robust biomarker of the
severity of ES silicosis. Moreover, recently, some authors have reviewed new information
about anti-cytokine therapies and antifibrotic drugs based, mainly, on in vitro studies or
animal experimental models [69]. Our study provides relevant information on cytokines
involved in the inflammatory process of ES silicosis patients and could be useful to select
anti-cytokine agents or antifibrotic drugs with a more suitable profile to slow or stop the
progression of the disease.
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