Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function
Abstract
:1. Introduction
1.1. Rewarding System
1.2. The Mechanism of Action of Cocaine
1.2.1. Chronic Cocaine Administration, Dysfunction of the Dopaminergic System
1.2.2. Consequences of Abstinence from Cocaine
1.3. The Role of the Brain Dopaminergic System in the Regulation of Liver Cytochrome P450
2. Cytochrome P450
3. Cocaine Metabolism and Hepatotoxicity
4. The Effects of Cytochrome P450 Inducers on Cocaine Metabolism and Hepatotoxicity
5. The Impact of Cocaine on the Liver Cytochrome P450 in Preclinical Research in Animal Models
5.1. Influence of Acute Cocaine Administration on Cytochrome P450 Enzymes
5.2. The Effects of Repeated or Chronic Cocaine Administration on Cytochrome P450 Enzymes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pomara, C.; Cassano, T.; D’Errico, S.; Bello, S.; Romano, A.D.; Riezzo, I.; Serviddio, G. Data Available on the Extent of Cocaine Use and Dependence: Biochemistry, Pharmacologic Effects and Global Burden of Disease of Cocaine Abusers. Curr. Med. Chem. 2012, 19, 5647–5657. Available online: http://www.eurekaselect.com/104768/article (accessed on 26 March 2020). [CrossRef]
- Karila, L.; Zarmdini, R.; Petit, A.; Lafaye, G.; Lowenstein, W.; Reynaud, M. Addiction à la cocaïne: Données actuelles pour le clinicien. Presse Médicale Biomarqueurs 2014, 43, 9–17. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2020: Trends and Developments; EMCDDA: Lisbon, Portugal, 2020. [Google Scholar]
- Kalivas, P.W.; LaLumiere, R.T.; Knackstedt, L.; Shen, H. Glutamate transmission in addiction. Neuropharmacology 2009, 56, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Kelley, A.E.; Schiltz, C.A. Accessories to addiction: G protein regulators play a key role in cocaine seeking and neuroplasticity. Neuron 2004, 42, 181–183. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.P. Anticraving medications for relapse prevention: A possible new class of psychoactive medications. Am. J. Psychiatry 2005, 162, 1423–1431. [Google Scholar] [CrossRef] [Green Version]
- Kostowski, W. Drug Addiction: Theories and Hypotheses. Psychiatria 2005, 2, 61–67. [Google Scholar]
- Segal, D.S.; Kuczenski, R. Repeated Cocaine Administration Induces Behavioral Sensitization and Corresponding Decreased Extracellular Dopamine Responses in Caudate and Accumbens. Brain Res. 1992, 577, 351–355. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of Addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [Green Version]
- Di Chiara, G. Nucleus Accumbens Shell and Core Dopamine: Differential Role in Behavior and Addiction. Behav. Brain Res. 2002, 137, 75–114. [Google Scholar] [CrossRef] [PubMed]
- Seamans, J.K.; Yang, C.R. The Principal Features and Mechanisms of Dopamine Modulation in the Prefrontal Cortex. Prog. Neurobiol. 2004, 74, 1–58. [Google Scholar] [CrossRef]
- Sullivan, R.M. Hemispheric Asymmetry in Stress Processing in Rat Prefrontal Cortex and the Role of Mesocortical Dopamine. Stress 2004, 7, 131–143. [Google Scholar] [CrossRef]
- Khan, Z.U.; Muly, E.C. Molecular Mechanisms of Working Memory. Behav. Brain Res. 2011, 219, 329–341. [Google Scholar] [CrossRef]
- Granon, S.; Passetti, F.; Thomas, K.L.; Dalley, J.W.; Everitt, B.J.; Robbins, T.W. Enhanced and Impaired Attentional Performance after Infusion of D1 Dopaminergic Receptor Agents into Rat Prefrontal Cortex. J. Neurosci. 2000, 20, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Robbins, T.W.; Everitt, B.J. Limbic-Striatal Memory Systems and Drug Addiction. Neurobiol. Learn. Mem. 2002, 78, 625–636. [Google Scholar] [CrossRef]
- Haber, S.N.; Knutson, B. The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology 2010, 35, 4–26. [Google Scholar] [CrossRef] [Green Version]
- Pettit, H.O.; Justice, J.B., Jr. Effect of Dose on Cocaine Self-Administration Behavior and Dopamine Levels in the Nucleus Accumbens. Brain Res. 1991, 539, 94–102. [Google Scholar] [CrossRef]
- Roberts, D.C.S.; Koob, G.F.; Klonoff, P.; Fibiger, H.C. Extinction and Recovery of Cocaine Self-Administration Following 6-Hydroxydopamine Lesions of the Nucleus Accumbens. Pharmacol. Biochem. Behav. 1980, 12, 781–787. [Google Scholar] [CrossRef]
- Wolf, M.E. The Bermuda Triangle of Cocaine-Induced Neuroadaptations. Trends Neurosci. 2010, 33, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.-Q.; Gardner, E.L.; Xi, Z.-X. Gamma-Vinyl GABA Increases Nonvesicular Release of GABA and Glutamate in the Nucleus Accumbens in Rats via Action on Anion Channels and GABA Transporters. Psychopharmacology 2010, 208, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Vertes, R.P. A PHA-L Analysis of Ascending Projections of the Dorsal Raphe Nucleus in the Rat. J. Comp. Neurol. 1991, 313, 643–668. [Google Scholar] [CrossRef]
- Di Chiara, G.; Imperato, A. Opposite Effects of Mu and Kappa Opiate Agonists on Dopamine Release in the Nucleus Accumbens and in the Dorsal Caudate of Freely Moving Rats. J. Pharmacol. Exp. Ther. 1988, 244, 1067–1080. [Google Scholar] [PubMed]
- Sorg, B.A.; Davidson, D.L.; Kalivas, P.W.; Prasad, B.M. Repeated Daily Cocaine Alters Subsequent Cocaine-Induced Increase of Extracellular Dopamine in the Medial Prefrontal Cortex. J. Pharmacol. Exp. Ther. 1997, 281, 54–61. [Google Scholar]
- Maisonneuve, I.M.; Ho, A.; Kreek, M.J. Chronic Administration of a Cocaine" Binge" Alters Basal Extracellular Levels in Male Rats: An in Vivo Microdialysis Study. J. Pharmacol. Exp. Ther. 1995, 272, 652–657. [Google Scholar] [PubMed]
- Ritz, M.C.; Lamb, R.J.; Kuhar, M.J. Cocaine Receptors on Dopamine Transporters Are Related to Self-Administration of Cocaine. Science 1987, 237, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Downs, A.W.; Eddy, N.B. The Effect of Repeated Doses of Cocaine on the Rat. J. Pharmacol. Exp. Ther. 1932, 46, 199–200. [Google Scholar]
- Post, R.M.; Rose, H. Increasing Effects of Repetitive Cocaine Administration in the Rat. Nature 1976, 260, 731–732. [Google Scholar] [CrossRef]
- Maisonneuve, I.M.; Kreek, M.J. Acute Tolerance to the Dopamine Response Induced by a Binge Pattern of Cocaine Administration in Male Rats: An in Vivo Microdialysis Study. J. Pharmacol. Exp. Ther. 1994, 268, 916–921. [Google Scholar]
- Unterwald, E.M.; Ho, A.; Rubenfeld, J.M.; Kreek, M.J. Time Course of the Development of Behavioral Sensitization and Dopamine Receptor Up-Regulation during Binge Cocaine Administration. J. Pharmacol. Exp. Ther. 1994, 270, 1387–1396. [Google Scholar]
- Tsukada, H.; Kreuter, J.; Maggos, C.E.; Unterwald, E.M.; Kakiuchi, T.; Nishiyama, S.; Futatsubashi, M.; Kreek, M.J. Effects of Binge Pattern Cocaine Administration on Dopamine D1 and D2 Receptors in the Rat Brain: AnIn Vivo Study Using Positron Emission Tomography. J. Neurosci. 1996, 16, 7670–7677. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, C.A.; Jones, S.R. Cocaine Potency at the Dopamine Transporter Tracks Discrete Motivational States during Cocaine Self-Administration. Neuropsychopharmacology 2017, 42, 1893–1904. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.L.; Ford, K.; Marinelli, M.; Wolf, M.E. Dopamine Receptor Expression and Distribution Dynamically Change in the Rat Nucleus Accumbens after Withdrawal from Cocaine Self-Administration. Neuroscience 2010, 169, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Samuvel, D.J.; Jayanthi, L.D.; Manohar, S.; Kaliyaperumal, K.; See, R.E.; Ramamoorthy, S. Dysregulation of Dopamine Transporter Trafficking and Function after Abstinence from Cocaine Self-Administration in Rats: Evidence for Differential Regulation in Caudate Putamen and Nucleus Accumbens. J. Pharmacol. Exp. Ther. 2008, 325, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Mateo, Y.; Lack, C.M.; Morgan, D.; Roberts, D.C.; Jones, S.R. Reduced Dopamine Terminal Function and Insensitivity to Cocaine Following Cocaine Binge Self-Administration and Deprivation. Neuropsychopharmacology 2005, 30, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Oades, R.D.; Halliday, G.M. Ventral Tegmental (A10) System: Neurobiology. 1. Anatomy and Connectivity. Brain Res. Rev. 1987, 12, 117–165. [Google Scholar] [CrossRef] [Green Version]
- Sawchenko, P.E. Evidence for Differential Regulation of Corticotropin-Releasing Factor and Vasopressin Immunoreactivities in Parvocellular Neurosecretory and Autonomic-Related Projections of the Paraventricular Nucleus. Brain Res. 1987, 437, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.; Le Moal, M.; Calas, A. Efferents and Afferents of the Ventral Tegmental-A10 Region Studied after Local Injection of [3H]Leucine and Horseradish Peroxidase. Brain Res. 1979, 178, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Hökfelt, T.; Fuxe, K.; Johansson, O.; Jeffcoate, S.; White, N. Distribution of Thyrotropin-Releasing Hormone (TRH) in the Central Nervous System as Revealed with Immunohistochemistry. Eur. J. Pharmacol. 1975, 34, 389–392. [Google Scholar] [CrossRef]
- Conrad, L.C.; Pfaff, D.W. Autoradiographic Tracing of Nucleus Accumbens Efferents in the Rat. Brain Res. 1976, 113, 589–596. [Google Scholar] [CrossRef]
- Williams, D.J.; Crossman, A.R.; Slater, P. The Efferent Projections of the Nucleus Accumbens in the Rat. Brain Res. 1977, 130, 217–227. [Google Scholar] [CrossRef]
- Wójcikowski, J.; Daniel, W.A. The Brain Dopaminergic System as an Important Center Regulating Liver Cytochrome P450 in the Rat. Expert Opin. Drug Metab. Toxicol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Wójcikowski, J.; Gołembiowska, K.; Daniel, W.A. Regulation of liver cytochrome P450 by activation of brain dopaminergic system: Physiological and pharmacological implications. Biochem. Pharmacol. 2008, 76, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Wójcikowski, J.; Gołembiowska, K.; Daniel, W.A. The Regulation of Liver Cytochrome P450 by the Brain Dopaminergic System. Curr. Drug Metab. 2007, 8, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Daniel, W.A.; Bromek, E.; Danek, P.J.; Haduch, A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem. Pharmacol. 2022, 199, 115006. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, H.; Zhou, G.; Zhang, X.; Dong, X.; Zhi, L.; Jin, L.; He, F. Molecular Population Genetics of Human CYP3A Locus: Signatures of Positive Selection and Implications for Evolutionary Environmental Medicine. Environ. Health Perspect. 2009, 117, 1541–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Omura, T. Recollection of the Early Years of the Research on Cytochrome P450. Proc. Jpn. Acad. Ser. B 2011, 87, 617–640. [Google Scholar] [CrossRef] [Green Version]
- Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes. i. evidence for its hemoprotein nature. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar] [CrossRef]
- Nelson, D.R. Progress in Tracing the Evolutionary Paths of Cytochrome P450. Biochim. Biophys. Acta 2011, 1814, 14–18. [Google Scholar] [CrossRef]
- Sim, S.C.; Ingelman-Sundberg, M. Update on Allele Nomenclature for Human Cytochromes P450 and the Human Cytochrome P450 Allele (CYP-Allele) Nomenclature Database. Methods Mol. Biol. 2013, 987, 251–259. [Google Scholar] [CrossRef]
- Waxman, D.J.; Attisano, C.; Guengerich, F.P.; Lapenson, D.P. Human Liver Microsomal Steroid Metabolism: Identification of the Major Microsomal Steroid Hormone 6β-Hydroxylase Cytochrome P-450 Enzyme. Arch. Biochem. Biophys. 1988, 263, 424–436. [Google Scholar] [CrossRef]
- Daniel, W.A. The Influence of Long-Term Treatment with Psychotropic Drugs on Cytochrome P450: The Involvement of Different Mechanisms. Expert. Opin. Drug Metab. Toxicol. 2005, 1, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.-M.; Idle, J.R.; Byrd, L.G.; Krausz, K.W.; Küpfer, A.; Gonzalez, F.J. Regeneration of Serotonin from 5-Methoxytryptamine by Polymorphic Human CYP2D6. Pharm. Genom. 2003, 13, 173–181. [Google Scholar]
- Haduch, A.; Daniel, W.A. The Engagement of Brain Cytochrome P450 in the Metabolism of Endogenous Neuroactive Substrates: A Possible Role in Mental Disorders. Drug Metab. Rev. 2018, 50, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, T.; Imaoka, S.; Funae, Y. Dopamine Formation from Tyramine by CYP2D6. Biochem. Biophys. Res. Commun. 1998, 249, 838–843. [Google Scholar] [CrossRef]
- Sasame, H.A.; Ames, M.M.; Nelson, S.D. Cytochrome P-450 and NADPH Cytochrome c Reductase in Rat Brain: Formation of Catechols and Reactive Catechol Metabolites. Biochem. Biophys. Res. Commun. 1977, 78, 919–926. [Google Scholar] [CrossRef]
- Nebert, D.W.; Wikvall, K.; Miller, W.L. Human Cytochromes P450 in Health and Disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120431. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R.; Koymans, L.; Kamataki, T.; Stegeman, J.J.; Feyereisen, R.; Waxman, D.J.; Waterman, M.R.; Gotoh, O.; Coon, M.J.; Estabrook, R.W.; et al. P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers and Nomenclature. Pharmacogenetics 1996, 6, 1–42. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Munro, A.W. Unusual Cytochrome P450 Enzymes and Reactions. J. Biol. Chem. 2013, 288, 17065–17073. [Google Scholar] [CrossRef] [Green Version]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Farré, M.; de la Torre, R.; Llorente, M.; Lamas, X.; Ugena, B.; Segura, J.; Camí, J. Alcohol and Cocaine Interactions in Humans. J. Pharmacol. Exp. Ther. 1993, 266, 1364–1373. [Google Scholar]
- Goldstein, R.A.; DesLauriers, C.; Burda, A.; Johnson-Arbor, K. Cocaine: History, Social Implications, and Toxicity: A Review. In Seminars in Diagnostic Pathology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 26, pp. 10–17. [Google Scholar]
- Harris, D.S.; Everhart, E.T.; Mendelson, J.; Jones, R.T. The Pharmacology of Cocaethylene in Humans Following Cocaine and Ethanol Administration. Drug Alcohol. Depend. 2003, 72, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Hearn, W.L.; Rose, S.; Wagner, J.; Ciarleglio, A.; Mash, D.C. Cocaethylene Is More Potent than Cocaine in Mediating Lethality. Pharmacol. Biochem. Behav. 1991, 39, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Laizure, S.C.; Mandrell, T.; Gades, N.M.; Parker, R.B. Cocaethylene Metabolism and Interaction with Cocaine and Ethanol: Role of Carboxylesterases. Drug Metab. Dispos. 2003, 31, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.L.; Nayak, P.K.; Bloch, R.; Mule, S.J. Estimation and Disposition of [3H] Benzoylecgonine and Pharmacological Activity of Some Cocaine Metabolites. J. Pharm. Pharmacol. 1975, 27, 784–786. [Google Scholar] [CrossRef]
- Spealman, R.D.; Madras, B.K.; Bergman, J. Effects of Cocaine and Related Drugs in Nonhuman Primates. II. Stimulant Effects on Schedule-Controlled Behavior. J. Pharmacol. Exp. Ther. 1989, 251, 142–149. [Google Scholar]
- Jeffcoat, A.R.; Perez-Reyes, M.; Hill, J.M.; Sadler, B.M.; Cook, C.E. Cocaine Disposition in Humans after Intravenous Injection, Nasal Insufflation (Snorting), or Smoking. Drug Metab. Dispos. 1989, 17, 153–159. [Google Scholar]
- Jacob III, P.; Lewis, E.R.; Elias-Baker, B.A.; Jones, R.T. A Pyrolysis Product, Anhydroecgonine Methyl Ester (Methylecgonidine), Is in the Urine of Cocaine Smokers. J. Anal. Toxicol. 1990, 14, 353–357. [Google Scholar] [CrossRef]
- Kintz, P.; Sengler, C.; Cirimele, V.; Mangin, P. Evidence of Crack Use by Anhydroecgonine Methylester Identification. Hum. Exp. Toxicol. 1997, 16, 123–127. [Google Scholar] [CrossRef]
- Fandiño, A.S.; Toennes, S.W.; Kauert, G.F. Studies on Hydrolytic and Oxidative Metabolic Pathways of Anhydroecgonine Methyl Ester (Methylecgonidine) Using Microsomal Preparations from Rat Organs. Chem. Res. Toxicol. 2002, 15, 1543–1548. [Google Scholar] [CrossRef]
- Aslibekyan, S.; Levitan, E.B.; Mittleman, M.A. Prevalent Cocaine Use and Myocardial Infarction. Am. J. Cardiol. 2008, 102, 966–969. [Google Scholar] [CrossRef] [Green Version]
- Kloss, M.W.; Rosen, G.M.; Rauckman, E.J. N-Demethylation of Cocaine to Norcocaine. Evidence for Participation by Cytochrome P-450 and FAD-Containing Monooxygenase. Mol. Pharmacol. 1983, 23, 482–485. [Google Scholar] [PubMed]
- LeDuc, B.W.; Sinclair, P.R.; Shuster, L.; Sinclair, J.F.; Evans, J.E.; Greenblatt, D.J. Norcocaine and N-Hydroxynorcocaine Formation in Human Liver Microsomes: Role of Cytochrome P-450 3A4. Pharmacology 1993, 46, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ndikum-Moffor, F.M.; Schoeb, T.R.; Roberts, S.M. Liver Toxicity from Norcocaine Nitroxide, an N-Oxidative Metabolite of Cocaine. J. Pharmacol. Exp. Ther. 1998, 284, 413–419. [Google Scholar] [PubMed]
- Valente, M.J.; Carvalho, F.; Bastos, M.d.L.; de Pinho, P.G.; Carvalho, M. Contribution of Oxidative Metabolism to Cocaine-Induced Liver and Kidney Damage. Curr. Med. Chem. 2012, 19, 5601–5606. [Google Scholar] [CrossRef]
- Boelsterli, U.A.; Lanzotti, A.; Göldlin, C.; Oertle, M. Identification of Cytochrome P-450IIB1 as a Cocaine-Bioactivating Isoform in Rat Hepatic Microsomes and in Cultured Rat Hepatocytes. Drug Metab. Dispos. 1992, 20, 96–101. [Google Scholar]
- Pellinen, P.; Honkakoski, P.; Stenbäck, F.; Niemitz, M.; Alhava, E.; Pelkonen, O.; Lang, M.A.; Pasanen, M. Cocaine N-Demethylation and the Metabolism-Related Hepatotoxicity Can Be Prevented by Cytochrome P450 3A Inhibitors. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 1994, 270, 35–43. [Google Scholar] [CrossRef]
- Pellinen, P.; Stenbäck, F.; Raunio, H.; Pelkonen, O.; Pasanen, M. Modification of Hepatic Cytochrome P450 Profile by Cocaine-Induced Hepatotoxicity in DBA/2 Mouse. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 1994, 292, 57–65. [Google Scholar] [CrossRef]
- Poet, T.S.; McQueen, C.A.; Halpert, J.R. Participation of Cytochromes P4502B and P4503A in Cocaine Toxicity in Rat Hepatocytes. Drug Metab. Dispos. 1996, 24, 74–80. [Google Scholar]
- Powers, J.F.; Shuster, L. Subacute Cocaine Treatment Changes Expression of Mouse Liver Cytochrome P450 Isoforms. Pharmacology 1999, 58, 87–100. [Google Scholar] [CrossRef]
- Evans, M.A.; Harbison, R.D. Cocaine-Induced Hepatotoxicity in Mice. Toxicol. Appl. Pharmacol. 1978, 45, 739–754. [Google Scholar] [CrossRef]
- Gubbins, G.P.; Schiffman, R.M.; Alapati, R.S.; Batra, S.K. Cocaine-Induced Hepatonephrotoxicity: A Case Report. Henry Hosp. Med. J. 1990, 38, 55–56. [Google Scholar]
- Kanel, G.C.; Cassidy, W.; Shuster, L.; Reynolds, T.B. Cocaine-Induced Liver Cell Injury: Comparison of Morphological Features in Man and in Experimental Models. Hepatology 1990, 11, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Perino, L.E.; Warren, G.H.; Levine, J.S. Cocaine-Induced Hepatotoxicity in Humans. Gastroenterology 1987, 93, 176–180. [Google Scholar] [CrossRef]
- Wanless, I.R.; Dore, S.; Gopinath, N.; Tan, J.; Cameron, R.; Heathcote, E.J.; Blendis, L.M.; Levy, G. Histopathology of Cocaine Hepatotoxicity: Report of Four Patients. Gastroenterology 1990, 98, 497–501. [Google Scholar] [CrossRef]
- Dolkar, T.; Hamad, A.M.; Han, M.M.; Thu, M.B.; Gayam, V.R. Cocaine and Opioid-Induced Aute Liver Injury: A Rare Case Report. Cureus 2022, 14, e23630. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Takimoto, M.; Ota, H.; Yoshida, T. Participation of CYP2A in Cocaine-Induced Hepatotoxicity in Female Mice. Pharmacol. Toxicol. 2000, 87, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Bornheim, L.M. Effect of Cytochrome P450 Inducers on Cocaine-Mediated Hepatotoxicity. Toxicol. Appl. Pharmacol. 1998, 150, 158–165. [Google Scholar] [CrossRef]
- Poet, T.S.; Brendel, K.; Halpert, J.R. Inactivation of Cytochromes P450 2B Protects against Cocaine-Mediated Toxicity in Rat Liver Slices. Toxicol. Appl. Pharmacol. 1994, 126, 26–32. [Google Scholar] [CrossRef]
- Li, A.P.; Kaminski, D.L.; Rasmussen, A. Substrates of Human Hepatic Cytochrome P450 3A4. Toxicology 1995, 104, 1–8. [Google Scholar] [CrossRef]
- Connors, S.; Rankin, D.R.; Gandolfi, A.J.; Krumdieck, C.L.; Koep, L.J.; Brendel, K. Cocaine Hepatotoxicity in Cultured Liver Slices: A Species Comparison. Toxicology 1990, 61, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Díez-Fernández, C.; Zaragoza, A.; Alvarez, A.M.; Cascales, M. Cocaine Cytotoxicity in Hepatocyte Cultures from Phenobarbital-Induced Rats: Involvement of Reactive Oxygen Species and Expression of Antioxidant Defense Systems. Biochem. Pharmacol. 1999, 58, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Boess, F.; Ndikum-Moffor, F.M.; Boelsterli, U.A.; Roberts, S.M. Effects of Cocaine and Its Oxidative Metabolites on Mitochondrial Respiration and Generation of Reactive Oxygen Species. Biochem. Pharmacol. 2000, 60, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.S.; Petersen, D.R. Hepatic Biochemical Changes as a Result of Acute Cocaine Administration in the Mouse. Hepatology 1991, 14, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Devi, B.G.; Chan, A.W. Impairment of Mitochondrial Respiration and Electron Transport Chain Enzymes during Cocaine-Induced Hepatic Injury. Life Sci. 1997, 60, 849–855. [Google Scholar] [CrossRef] [PubMed]
- León-Velarde, F.; Huicho, L.; Monge, C. Effects of Cocaine on Oxygen Consumption and Mitochondrial Respiration in Normoxic and Hypoxic Mice. Life Sci. 1992, 50, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Cascales, M.; Alvarez, A.; Gascó, P.; Fernández-Simón, L.; Sanz, N.; Boscá, L. Cocaine-Induced Liver Injury in Mice Elicits Specific Changes in DNA Ploidy and Induces Programmed Death of Hepatocytes. Hepatology 1994, 20, 992–1001. [Google Scholar] [CrossRef]
- Devi, B.G.; Chan, A.W. Cocaine-induced peroxidative stress in rat liver: Antioxidant enzymes and mitochondria. J. Pharmacol. Exp. Ther. 1996, 279, 359–366. [Google Scholar]
- Pellinen, P.; Stenbäck, F.; Kojo, A.; Honkakoski, P.; Gelboin, H.V.; Pasanen, M. Regenerative Changes in Hepatic Morphology and Enhanced Expression of CYP2B10 and CYP3A during Daily Administration of Cocaine. Hepatology 1996, 23, 515–523. [Google Scholar] [CrossRef]
- Konstandi, M.; Lang, M.A. Effect of Cocaine on Hepatic Drug Metabolism. Eur. J. Intern. Med. 1996, 7, 221–226. [Google Scholar]
- Pellinen, P.; Stenbäck, F.; Rautio, A.; Pelkonen, O.; Lang, M.; Pasanen, M. Response of Mouse Liver Coumarin 7-Hydroxylase Activity to Hepatotoxins: Dependence on Strain and Agent and Comparison to Other Monooxygenases. Naunyn Schmiedebergs Arch. Pharmacol. 1993, 348, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Vitcheva, V.; Mitcheva, M. Changes in Liver and Brain Cytochrome P450 after Multiple Cocaine Administration, Alone and in Combination with Nifedipine. Arh. Hig. Rada Toksikol. 2007, 58, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzębska, J.; Pukło, R.; Frankowska, M.; Filip, M.; Daniel, W.A. P.615 Effect of Cocaine Self-Administration on Hepatic Cytochrome P450 Activity in the Rat Model of Drug Addiction. Eur. Neuropsychopharmacol. 2020, 40, S350–S351. [Google Scholar] [CrossRef]
CYP | Tuberoinfundibular Pathway | Mesolimbic Pathway | ||||||
---|---|---|---|---|---|---|---|---|
Dopamine (D1/D2 Receptor) | Apomorphine (D1/D2 Receptor) | Amphetamine (D1/D2 Receptor) | Quinpirole (D2 Receptor) | |||||
Activity | Protein Level | Activity | Protein Level | Activity | Protein Level | Activity | Protein Level | |
CYP1A | ||||||||
CYP2A | NT | NT | NT | NT | ||||
CYP2B | NT | NT | NT | |||||
CYP2C11 | NT | NT | NT | |||||
CYP3A |
Species | Injection/Duration of Treatment | Dose (mg/kg) | Time of Last Injection | Effect | Publication |
---|---|---|---|---|---|
DBA/2/KUO (D2) male | ip. a single dose | 60 | 24 h | CYP2A4/5—increase in activity, protein level and mRNA | [102] |
DBA/2/KUO (D2) male | ip. a single dose | 60 | 24 h | CYP2A4/5—increase in activity and protein level | [103] |
C57BL/6N/KUO (B6) male | ip. a single dose | 60 | 24 h | CYP2A4/5—no change in activity and protein level | [103] |
DBA/2/KUO (D2) male | ip. a single dose | 7.5,15, 30, 60, 80 | 24 h | CYP2A4/5—mRNA level lowered at dose 7.5 and 15 mg/kg, but increased significantly from dose 30 to 80 mg/kg CYP2A4/5—maximum induction at dose 60 mg/kg CYP2B10—protein and mRNA unchanged | [80] |
Wistar rat male | ip. a single dose for 5 days | 15 | 24 h | quantitative decrease in total CYP (spectrophotometry) | [104] |
B6AF1/J male | ip. a single dose for 3 days | 30 | 18 h | no liver damage CYP2A4/5—maximum activity and protein level after 3 days CYP3A, 2E, 2D9—no change in activity and protein level CYP2B10—no change in activity and maximum protein level after 3 days | [82] |
B6AF1/J female | ip. a single dose for 3 days | 30 | 18 h | no liver damage CYP2A4/5—maximum activity and protein level after 3 days CYP3A, 2E, 2D9—no change in activity and protein level CYP2B10—maximum activity and protein level after 3 days | [82] |
Balb/cBy male | ip. a single dose for 3 days | 30 | 18 h | no liver damage CYP2A4/5—maximum activity and protein level after 3 days CYP3A, 2E, 2D9—no change in activity and protein level CYP2B10—activity, protein level and mRNA unchanged | [82] |
Wistar rats male | ip. a single dose for 3 days | 30 | 18 h | no liver damage CYP3A, 2E, 2D9—no change in activity and protein level CYP2A4/5—protein level and mRNA unchanged CYP2B10—protein level and mRNA unchanged | [82] |
DBA/2/KUO (D2) male | ip, 4, 12, 24, 72 and 120 h exposure | 60 | 24 h | CYP2A4/5 maximum induction after 24 h CYP2B10 maximum activity after 5 days CYP2E1, CYP1A1/2 protein and mRNA level decrease in subsequent points of time | [80] |
DBA/2/KUO (D2) male | ip. a single dose for 14 day | 60 | 24 h | CYP2A4/5 protein level and activity increased on day 1, decreased on days 3, 5 and 7, increased again on days 10 and 14 CYP2B10 maximum increase in protein level on 7 and activity on day 5 CYP2C protein level increased on day 1, decreased on days 3, 5 and 7, increased again on days 10 to 14 CYP2C activity decreased in the first 3 days, increase from 4 to 14 days CYP1A protein level increased on day 1, decreased on days 3, 5 and 7, increased again on days 10 to 14 CYP1A activity decreased on days 3, 5 and 7, returned to control value on days 10–14 CYP3A protein level rose from day 7 to 14, activity decreased on days 3–7, again increased on days 7–14 | [101] |
Male CF-1 mice | pretreatment with P450 inducers for 4 days, cocaine ip. a single dose | 60 | 20 h | Increased CYP3A and CYP2B activity by phenobarbital and enhanced susceptibility to cocaine hepatotoxicity Increased CYP3A and CYP2B activity by dexamethasone, but no change in cocaine hepatotoxicity | [90] |
Male DBA/2/KUO (D2) | pretreatment with P450 inducers for 3 days, cocaine ip. a single dose | 25 or 60 | 16 h | Increased CYP3A and CYP2B activity by phenobarbital and enhanced cocaine hepatotoxicity Increased CYP3A and CYP2B activity by pregnenolone-16-carbonitrile, but no change in cocaine hepatotoxicity | [80] |
Female ICR mice | pretreatment with P450 inducers or inhibitors for 3 days, cocaine ip. a single dose | 35–45 | 24 or 48 h | Increased CYP1A and CYP2B activity by β-naphthoflavone, without enhancing cocaine hepatotoxicity No change in CYP3A activity by β-ionone, but potentiation of cocaine hepatotoxicity CYP2A inhibition by 8-methoxypsoralen reduced cocaine hepatotoxicity in phenobarbital-treated mice | [89] |
Species | Cytochrome P450 | Cocaine Day 1 | Cocaine Day 2 | Cocaine Day 3 |
---|---|---|---|---|
CYP2A | ||||
B6AF1/J male | ||||
B6AF1/J female | ||||
Balb/cBy male | ||||
Wistar rats male | N.D. | N.D. | ||
CYP2B | ||||
B6AF1/J male | ||||
B6AF1/J female | ||||
Balb/cBy male | ||||
Wistar rats male | N.D. | N.D. |
Days of Treatment | CYP (Total) | CYP3A | CYP2B | CYP2A | CYP2C | CYP1A |
---|---|---|---|---|---|---|
1 | ||||||
3 | ||||||
5 | ||||||
7 | ||||||
10 | ||||||
14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzębska, J.; Daniel, W.A. Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function. Int. J. Mol. Sci. 2023, 24, 1632. https://doi.org/10.3390/ijms24021632
Jastrzębska J, Daniel WA. Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function. International Journal of Molecular Sciences. 2023; 24(2):1632. https://doi.org/10.3390/ijms24021632
Chicago/Turabian StyleJastrzębska, Joanna, and Władysława Anna Daniel. 2023. "Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function" International Journal of Molecular Sciences 24, no. 2: 1632. https://doi.org/10.3390/ijms24021632
APA StyleJastrzębska, J., & Daniel, W. A. (2023). Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function. International Journal of Molecular Sciences, 24(2), 1632. https://doi.org/10.3390/ijms24021632