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Abstract: The most frequent alterations in plasma amino acid concentrations in type 1 and type 2
diabetes are decreased L-serine and increased branched-chain amino acid (BCAA; valine, leucine, and
isoleucine) levels. The likely cause of L-serine deficiency is decreased synthesis of 3-phosphoglycerate,
the main endogenous precursor of L-serine, due to impaired glycolysis. The BCAA levels increase
due to decreased supply of pyruvate and oxaloacetate from glycolysis, enhanced supply of NADH
+ H+ from beta-oxidation, and subsequent decrease in the flux through the citric acid cycle in
muscles. These alterations decrease the supply of α-ketoglutarate for BCAA transamination and the
activity of branched-chain keto acid dehydrogenase, the rate-limiting enzyme in BCAA catabolism.
L-serine deficiency contributes to decreased synthesis of phospholipids and increased synthesis
of deoxysphinganines, which play a role in diabetic neuropathy, impaired homocysteine disposal,
and glycine deficiency. Enhanced BCAA levels contribute to increased levels of aromatic amino
acids (phenylalanine, tyrosine, and tryptophan), insulin resistance, and accumulation of various
metabolites, whose influence on diabetes progression is not clear. It is concluded that amino acid
concentrations should be monitored in patients with diabetes, and systematic investigation is needed
to examine the effects of L-serine and glycine supplementation on diabetes progression when these
amino acids are decreased.

Keywords: branched-chain amino acids; serine; glycine; insulin resistance

1. Introduction

Diabetes mellitus occurs in two basic forms—diabetes of the first type (T1DM, type 1
diabetes mellitus) and diabetes of the second type (T2DM, type 2 diabetes mellitus). The
cause of T1DM, which usually manifests itself in young individuals (juvenile diabetes), is
insufficient insulin production in the β-cells of the islets of Langerhans. In T2DM, the effects
of insulin are counteracted by factors that induce a state of insulin resistance. In the early
stage, the increased output of insulin from β-cells compensates the insulin insensitivity.
In later stages, a defect in insulin secretion develops, and therapy may require insulin
administration. T2DM is becoming increasingly common in obese children [1].

Both types of diabetes develop marked disturbances in amino acid metabolism and
amino acid concentrations in plasma and tissues. However, alterations are not consistent
for most amino acids. Most consistently increase the levels of branched-chain amino acids
(BCAA; valine, leucine, and isoleucine) and aromatic amino acids (AAA, phenylalanine,
tyrosine, and tryptophan) and decrease the levels of L-serine and glycine [2–4]. There are
inconsistent data on changes in alanine, glutamate, aspartate, and glutamine, although
these amino acids play a role in BCAA catabolism reactions [4–7].

Although it is supposed that disturbances in aminoacidemia play a role in the develop-
ment of diabetes and its complications, their pathogenesis is not completely clear. Important
roles have undoubtedly alterations in protein balance, food intake, amino acid transport
through cell membranes, and increased gluconeogenesis in the liver and kidneys. The aims
of the present article are (1) to demonstrate that decreased glycolysis and preferential fatty
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acid oxidation, and subsequent decrease in the flux trough citric acid cycle (CAC) are the
main causes of decreased L-serine and increased BCAA levels in diabetes and (2) examine
the contribution of disturbances in L-serine and BCAA metabolism in the pathogenesis of
altered concentrations of other amino acids and diabetes-associated complications.

2. Basic Data on Glycolysis and the CAC

Glycolysis is the main pathway of the breakdown of glucose to pyruvate that occurs
in the cytosol and provides the substrates for energy production as well as for storage
of energy in the form of lipids (Figure 1). Insulin increases glucose disappearance from
the blood and glycolysis by enhanced translocation of glucose from extracellular fluid to
cytosol by activation of some glucose transporters (GLUT), primarily GLUT4, and of some
glycolytic enzymes, specifically hexokinase, phosphofructokinase, and pyruvate kinase.
The effects of insulin are determined by the type of tissue. For example, insulin increases
the translocation of GLUT4 and hexokinase activity in muscles and adipocytes but not in
the liver.
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Figure 1. Glycolysis and its relationship to serine synthesis, beta-oxidation, citric acid cycle, and
BCAA catabolism. 1, hexokinase; 2, phosphofructokinase; 3, pyruvate kinase; 4, pyruvate dehy-
drogenase; 5, pyruvate carboxylase; 6, citrate synthase; 7, beta-hydroxyacyl-CoA-dehydrogenase; 8,
isocitrate dehydrogenase; 9, α-ketoglutarate dehydrogenase; 10, malate dehydrogenase; 11, BCAA
aminotransferase; 12, AST; 13, ALT. BAC, branched-chain amino acid carrier (SLC25A44); BCAA,
branched-chain amino acids; BCKA, branched-chain keto acids; CAC, citric acid cycle; CS, carnitine
system; CTP citrate (tricarboxylate) transport protein; GLUT, glucose transporter; MCT, monocar-
boxylate transporter; MPC, mitochondrial pyruvate carrier; OA, oxaloacetate.

Pyruvate, the final product of glycolysis, can be in cytosol converted to alanine or
lactate or transported from the cytosol to the mitochondria by one of two types of mitochon-
drial pyruvate carrier proteins. In mitochondria, pyruvate can be converted by pyruvate
dehydrogenase (PDH) to acetyl coenzyme A (acetyl-CoA), the initial substrate for the CAC,
by pyruvate carboxylase to oxaloacetate, and by alanine aminotransferase (ALT) to alanine.

The PDH activity is regulated by the phosphorylation/dephosphorylation of the en-
zyme. Its kinase is activated (i.e., the enzyme is inactivated) by increases in acetyl-CoA to
CoA, ATP to ADP, and NADH to NAD+ ratios. Insulin activates PDH by reducing its phos-
phorylation and acetyl-CoA production from fatty acid oxidation. Pyruvate carboxylase is
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activated by acetyl-CoA, glucagon, and adrenaline and inhibited by insulin. Therefore, in
the liver, its activation would promote gluconeogenesis by making more oxaloacetate be
converted to phosphoenolpyruvate. In other tissues, primarily in the muscles, oxaloacetate
is utilized in the CAC. The condensation reaction of oxaloacetate with acetyl-CoA to citric
acid by citrate synthase is recognized as the rate-limiting step in the flux of the acetyl-CoA
through the cycle regardless of whether the source of acetyl-CoA is glucose, fatty acids, or
amino acids.

The CAC is the main source of reducing equivalents that enter the respiratory chain,
where ATP is produced. The intermediates of the CAC play a role in the metabolism
of several amino acids, such as glutamate, glutamine, aspartate, phenylalanine, tyrosine,
tryptophan, threonine, and BCAA.

Glycolysis and Fatty acid Oxidation in Diabetes

A common feature of both types of diabetes is impaired entry of glucose from ex-
tracellular space to the cell, decreased glycolysis, and mitochondrial dysfunction in most
tissues [8–13]. In addition to the limited utilization of glucose, the utilization of fatty acids is
of crucial importance [14]. The preferential fatty acid oxidation increases the mitochondrial
ratios of acetyl-CoA to CoA and NADH to NAD+. The results are decreased acetyl-CoA
synthesis from pyruvate and flux through the CAC, mainly due to the inhibition of NADH-
producing enzymes, specifically malate dehydrogenase, isocitrate dehydrogenase, and
α-ketoglutarate dehydrogenase and increased use of acetyl-CoA for the synthesis of ketone
bodies (Figure 1). Hence, during diabetes, the flux through the CAC decreases [11,15]. It
is very likely that these alterations have a fundamental role in impaired mitochondrial
respiration and energy balance observed in the muscles, hearts, and kidneys of subjects
with diabetes [4,16–20].

3. L-Serine and Diabetes
3.1. Basic Data on L-Serine Metabolism

It has been estimated that ~73% of L-serine appearance rate in fasting humans is the
result of serine synthesis from 3-phosphoglycerate (3-PG), the intermediate in the glycolysis
pathway, and from glycine [21]. The first step of L-serine synthesis from 3-PG is the
oxidation of 3-PG to 3-phosphohydroxypyruvate, which is converted by 3-phosphoserine
aminotransferase to 3-phosphoserine. The final step is the irreversible hydrolysis of 3-
phosphoserine to L-serine by phosphoserine phosphatase (Figure 2). It is generally accepted
that the biosynthetic flux of L-serine from 3-PG is controlled by the last step through
feedback inhibition [22,23]. From glycine, L-serine can be synthesized by the enzyme
serine hydroxymethyltransferase, which catalyzes the reversible conversions of glycine
and 5,10-methylenetetrahydrofolate (N5N10-CH2-THF) to L-serine and tetrahydrofolate
(THF). L-serine synthesis from 3-PG and glycine is high in many tissues, including the
kidneys, brain (especially astrocytes), liver, and spleen [24,25]. L-serine synthesis in the
liver is activated under conditions of increased glycolysis and decreased gluconeogenesis,
such as consumption of a carbohydrate-rich diet [21,26,27].

L-serine is a substrate for the synthesis of proteins, phospholipids, particularly phos-
phatidylserine, and sphingolipids, such as ceramides, phosphosphingolipids, and glycosph-
ingolipids, which are in large amounts in the white matter of the brain and in the myelin
sheaths of nerves. L-serine acts as an agonist of the glycine receptor and, therefore, is
classified as an inhibitory neurotransmitter [28,29]. L-serine, in reaction with homocysteine
catalyzed by cystathionine β-synthase, initiates the transsulfuration pathway. This makes
L-serine important for homocysteine disposal and synthesis of several sulfur-containing
substances, such as cysteine, cystine, taurine, and glutathione. The connection of L-serine
with folate and methionine cycles enables its role in the synthesis of nucleotides and many
methylation reactions. Neurological abnormalities observed in primary disorders of its syn-
thesis indicate that the amounts of L-serine provided by food may not always be sufficient
and that L-serine should be classified as a conditionally essential amino acid [30].
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Figure 2. Main pathways of L-serine metabolism and their alterations during diabetes mellitus. The
pluses and minuses indicate the predicted changes in diabetes. 1, 3-phosphoglycerate dehydrogenase;
2, phosphoserine aminotransferase; 3, phosphoserine phosphatase; 4, serine hydroxymethyltrans-
ferase; 5, serine palmitoyltransferase; 6, phosphatidylserine synthase; 7, cystathionine β-synthase; 8,
methionine synthase; 9, methylene tetrahydrofolate reductase; 10, racemase 11, serine dehydratase;
12, serine-glyoxylate transaminase. Chol, choline; Eth, ethanolamine; GSH, glutathione; OA, oxaloac-
etate; Mal, malate; Pyr, pyruvate; PEP, phosphoenolpyruvate; PhChol, phosphatidylcholine; PhEth,
phosphatidylethanolamine; SAH, S-adenosylhomocysteine; SAMe, S-adenosylmethionine; 3-OH-Pyr,
3-hydroxypyruvate.

3.2. Why L-Serine Levels Decrease in Diabetes

L-serine concentrations in plasma and tissues decrease in both T1DM [4,5,31,32] and
T2DM [5,6,33–37]. The decrease in L-serine levels is probably due to two reasons. Firstly,
due to decreased glycolysis and subsequent decrease in the supply of 3-P-glycerate, the
L-serine synthesis decreases in most tissues. Secondly, L-serine may be deaminated by
serine dehydratase to pyruvate or converted by serine-glyoxylate aminotransferase into
hydroxypyruvate and, ultimately, glucose (Figure 2). Therefore, increased gluconeogenesis,
which is one of the main metabolic features of diabetes, increases L-serine catabolism in the
liver and the kidneys.

3.3. Consequences of L-Serine Deficiency in Diabetes

Due to the exceptional importance of L-serine in a broad range of metabolic re-
actions and cellular functions, the consequences of L-serine deficiency are numerous.
Clinically important are disturbances in synthesis of sphingolipids, glycine deficiency,
and hyperhomocysteinemia.

3.3.1. Disturbances in Synthesis of Sphingolipids and Diabetic Neuropathy

A proven consequence of L-serine deficiency is impaired synthesis of sphingolipids,
particularly ceramides and phospholipids [38–41]. Moreover, due to the possibility of
substitution of L-serine by L-alanine during the first step of synthesis of sphingolipids by
serine palmitoyl transferase, neurotoxic deoxysphinganines, which lack the C1 hydroxyl
group of L-serine and therefore cannot be used for the synthesis of complex sphingolipids,
are formed [34,42]. These substances accumulate in tissues and exert detrimental effects
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on neurite formation [39]. Hence, it is very likely that L-serine deficiency participates
in the pathogenesis of diabetic neuropathy that may affect both limbs (peripheral type)
and internal organs (autonomic type). Since deoxysphinganines are toxic to β-cells of the
pancreas, their increased level may contribute to the pathogenesis of diabetes itself [41].
There are several studies reporting that L-serine supplementation reduces concentrations of
deoxysphingolipids and manifestations of symptoms of diabetic neuropathy [5,40,43,44].

3.3.2. Glycine Deficiency

Adaptive response to L-serine deficiency due to its impaired synthesis from 3-PG
and increased catabolism in gluconeogenesis is its increased synthesis from glycine by
L-serine hydroxymethyltransferase. The reaction requires N5N10-CH2-THF, that is formed
during the degradation of glycine by a glycine cleavage system. Therefore, two molecules
of glycine may be consumed during the synthesis of one molecule of L-serine:

Gly + NAD+ + THF→ NH3 + CO2 + NADH + H+ + N5N10-CH2-THF (cleavage system)

Gly + N5N10-CH2-THF→ L-Ser + THF (serine hydroxymethyltransferase)

Sum: 2 Gly + NAD+ → L-Ser + NADH + H+ + NH3 + CO2

Glycine levels decrease along with the decrease in L-serine levels in both types of
diabetes [2,4,45–47]. However, it is not clear whether glycine deficiency in patients with
diabetes affects some important physiological functions of glycine, such as neurotrans-
mission, conjugation of bile acids, and synthesis of collagen, creatine, glutathione, heme,
and purines. It is likely that an adaptive increase in L-serine synthesis from glycine plays
a role in hyperhomocysteinemia and impaired synthesis of sulfur-containing substances
(next item).

3.3.3. Hyperhomocysteinemia and Impaired Synthesis of Sulfur-Containing Substances

L-serine deficiency can lead to an increase in homocysteine levels in two ways. The
first is decreased supply of N5-CH3-THF for homocysteine methylation to methionine
due to the adaptive increase in L-serine synthesis from glycine [48]. The second is an
impaired synthesis of cystathionine from L-serine and homocysteine by cystathionine
β-synthase and a subsequent decrease in the drain of homocysteine from the methionine
cycle to the transsulfuration pathway (Figure 2). The possibility is supported by the
presence of hyperhomocysteinemia in humans and rodents with cystathionine β-synthase
deficiency [49].

Hyperhomocysteinemia is routinely observed in patients with diabetes and seems to
be involved in an increased risk of cardiovascular, cerebrovascular, and thromboembolic
diseases [50,51]. Decreased cytathionine synthesis due to L-serine deficiency may also
be involved in impaired synthesis and alteration in several sulfur-containing substances,
such as cysteine, cystine, taurine, and glutathione, reported in the serum of patients with
diabetes [52]. Low levels of cysteine associated with increased homocysteine levels in
diabetes have been reported by Rehman et al. [53].

Unfortunately, there are no studies on the effect of L-serine supplementation on levels
of sulfur-containing substances in patients with diabetes. It has only been shown that
L-serine administration decreases plasma homocysteine levels in hyperhomocysteinemia
induced by high methionine diet [54–56].

4. The BCAA and Diabetes
4.1. Basic Data on BCAA Metabolism

The BCAA are nutritionally essential amino acids that, together with their metabolites,
the branched-chain keto acids (BCKA) and β-hydroxy-β-methylbutyric acid (HMB), are
involved in the regulation of key protein-anabolic pathways and serve as an energy fuel
during exercise and severe illness. Unlike most other amino acids, BCAA catabolism does
not begin in the liver, but in extrahepatic tissues, especially in muscles. The cause is the
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negligible hepatic activity of BCAA aminotransferase, the first enzyme in a cascade of
BCAA catabolism reactions (Figure 3), whereas its activity is high in muscles.
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3, AST; 4, ALT; 5, glutamine synthetase; 6, KIC dioxygenase. BCAA, branched-chain amino acids;
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β-hydroxy-β-methylbutyric acid; OA, oxaloacetate.

The BCAA aminotransferase enables the reversible transfer of amino group between
BCAA and α-KG to form BCKA and glutamate (BCAA + α-KG↔ BCKA + Glu). Gluta-
mate produced in muscles by BCAA aminotransferase is used by mitochondrial alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) as a source of nitrogen for
the synthesis of alanine (Glu + pyruvate→ α-KG + Ala) and aspartate (Glu + oxaloacetate
→ α-KG + Asp), respectively. Since the BCAA aminotransferase reaction responds rapidly
to changes in concentrations of its reactants, the removal of glutamate and the regeneration
of α-KG by ALT and AST are essential for a continuous flux of the BCAA through the
BCAA aminotransferase.

Alanine is transported from the mitochondria to the cytosol by an unknown carrier
and is together with alanine synthesized in the cytosol released from muscles and used
preferentially for glucose synthesis in the liver. Aspartate transported from the mitochon-
dria to the cytosol by aspartate-glutamate carrier (AGC) is utilized in several reactions,
such as the purine-nucleotide cycle and protein synthesis. Aspartate transamination back
to oxaloacetate and its translocation back into the mitochondria via the malate-aspartate
shuttle (specifically malate-ketoglutarate carrier) can be important for the continuous flux
of the BCAA through the BCAA aminotransferase,

The second enzyme of BCAA catabolism is branched-chain α-keto acid dehydrogenase
(BCKA dehydrogenase), which catalyzes irreversible decarboxylation of the BCKA to
corresponding branched-chain acyl-CoA esters (BCA-CoA). At rest, the activity of BCKA in
the muscles of a healthy individual is low. Therefore, most of the BCKA formed by BCAA
aminotransferase is released from muscles and oxidized in tissues with high activity of
BCKA dehydrogenase, such as the liver, heart, and kidneys, or aminated to the original
BCAA. Increased concentrations of ATP, NADH, and acyl-CoA derivatives and decreased
concentration of α-ketoisocaproate (KIC), the transamination product of leucine catabolism,
inhibit the enzyme [57,58].
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Beyond the BCKA dehydrogenase reaction, the metabolism of the BCAA diverges
into separate pathways. The final products are acetoacetate, acetyl-CoA, and succinyl-CoA
(Figure 3). It is estimated that 5–10% of KIC released to the blood is metabolized in the liver
and kidneys by cytosolic enzyme KIC dioxygenase to produce HMB with favorable effects
on protein balance and mitochondrial biogenesis in muscles [59].

4.2. Why the BCAA Increase in Diabetes

The possible causes of elevated BCAA levels in diabetes have been reviewed re-
cently [60,61]. Supposed is impaired BCAA transamination and decarboxylation in muscles
due to the changes associated with decreased glycolysis and preferential fatty acid oxidation
(Figure 4). These are mainly:

• Decreased flux through the CAC, resulting in impaired α-KG supply to BCAA
aminotransferase.

• Impaired conversion of glutamate to α-KG by AST and ALT in mitochondria due
to decreased supply of oxaloacetate and pyruvate from glycolysis. The result is the
drain of α-KG from the CAC (cataplerosis) and glutamate cumulation in mitochondria.
A marked decrease in the rate of aspartate production from glutamate and oxaloac-
etate and a decrease in the Vmax of glutamate translocase was observed in heart
mitochondria from the alloxan-diabetic rats compared to fed controls [62].

• Inhibition of BCKA dehydrogenase by increased levels of NADH and acyl-CoAs
formed during β-oxidation.

• Increased BCAA release from the liver due to the activation of protein catabolism. The
BCAA is released from the liver more than other amino acids because the activity of
BCAA aminotransferase is very low in the liver.

• Increased transamination of BCKA to BCAA. It has been suggested that glutamine
released from muscles can, under conditions of decreased activity of BCKA dehydro-
genase, activate the synthesis of BCAA from BCKA or limit the transamination of
BCAA to BCKA in visceral tissues [63,64].

The hypothesis of the role of impaired glycolysis in muscles in the pathogenesis of
increased BCAA levels is supported by the blunted decline in plasma BCAA levels during
the oral glucose tolerance test in subjects with insulin resistance or diabetes [65,66].
The fundamental importance of skeletal muscle is proven by high BCAA levels in
muscles [4,67–72].

4.3. The Consequences of Increased BCAA Levels
4.3.1. Insulin Resistance

There is a strong association of BCAA levels with insulin resistance, and the rise of
BCAA in obesity is considered a prognostically significant factor in the development of
T2DM [45,73,74]. The notion that elevations in BCAA levels contribute causally to insulin
resistance is supported by the observation of impaired glucose disposal after BCAA infusion
into circulation [75]. Several studies point to the role of the mTOR signaling pathway. It
has been proposed that high levels of the BCAA increase via mTOR phosphorylation of
insulin receptor substrate 1 (IRS-1), leading to the block of insulin signaling [76].

It should be emphasized that it is not quite sure that the effects of increased BCAA
levels on mTOR signaling are detrimental in subjects with diabetes. The BCAA, partic-
ularly leucine, has potent anabolic effects and increases insulin release from pancreatic
β-cells [77,78]. Therefore, under conditions of impaired insulin signaling, increased BCAA
levels may promote anabolic reactions and prevent some negative consequences of in-
sulin resistance or deficiency. Recent studies have shown that dietary supplementation
with leucine attenuates insulin resistance, favors weight loss, and improves mitochondrial
function [79–81]. Therefore, leucine supplementation is becoming a focus of attention in
T2DM therapy.
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Figure 4. Muscle BCAA metabolism in diabetes. The pluses and minuses indicate the main changes
associated with decreased glycolysis and preferential fatty acid oxidation resulting in impaired BCAA
catabolism. 1, pyruvate dehydrogenase; 2, pyruvate carboxylase; 3, BCAA aminotransferase; 4, BCKA
dehydrogenase; 5, AST mitochondrial; 6, AST cytosolic; 7, cytosolic malate dehydrogenase; 8, mito-
chondrial malate dehydrogenase 9, ALT mitochondrial; 10, ALT cytosolic; 11, lactate dehydrogenase;
12, glutamine synthetase. AGC, aspartate-glutamate carrier; ASCT1, alanine, serine, cysteine, and
threonine carrier 1 (SLC1A4); BCAA, branched-chain amino acids; BAC, branched-chain amino acid
carrier (SLC25A44); BCA-CoA, branched-chain acyl-CoA; BCKA, branched-chain keto acids; CAC,
citric acid cycle; CS carnitine system; ECF, extracellular fluid; LAT1 (large neutral amino acid trans-
porter 1); Mal, malate; MCT, monocarboxylate transporter; MKC, malate-ketoglutarate carrier; OA,
oxaloacetate; MPC, mitochondrial pyruvate carrier; X-

ag, a transporter for aspartate and glutamate
(SLC1 family).

4.3.2. Accumulation of the BCAA Metabolites

It has been suggested that high BCAA levels interfere with fatty acid oxidation lead-
ing to the accumulation of acylcarnitines and acyl-CoAs with various lengths of carbon
skeleton [82]. An increase in C3 and C5 acylcarnitines in animals fed by a high-fat diet
supplemented with BCAA suggests that some of these acylcarnitines are the direct products
of BCAA catabolism [45]. In recent years, attention has been given to the increased level of
3-hydroxyisobutyric acid, one of the valine metabolites [75,82–84]. The consequences of
increased concentrations of the metabolites related to dysregulation of BCAA metabolism
are not clear.

4.3.3. The Increase in AAA Levels

The BCAA belongs together with aromatic amino acids (AAA; phenylalanine, tyrosine,
and tryptophan) to a group of large neutral amino acids, which compete with each other
for transport through plasma membranes by the same transporter referred to as the LAT1
(CLC7A5). Therefore, the rise of AAA is apparently caused by their reduced transport to
the tissues due to the rise of the BCAA.

It has been suggested the elevation in the BCAA levels reduces the brain uptake
of AAA, which are precursors of some neurotransmitters, notably dopamine and 5-
hydroxytryptamine (serotonin), which may affect mood, cognition functions, hormone
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secretion (prolactin, cortisol), and the onset of fatigue [85]. Significant associations of the
sum of the BCAA and AAA levels with insulin resistance and future diabetes have been
reported [45,73,74,86].

4.3.4. Alterations in Glutamate, Aspartate, Alanine, and Glutamine Levels

In the previous part of this article, it was shown that the BCAA metabolism is closely
linked to the metabolism of glutamate, aspartate, alanine, and glutamine. However, the
reports on changes in the levels of these amino acids are not consistent, and both increased
and decreased plasma concentrations have been reported in subjects with diabetes [2,4–7].
Several speculations make it possible to explain these inconsistent findings. The decrease
in glutamate synthesis due to the block in the flux of the BCAA through BCAA amino-
transferase may cause a decrease in the concentrations of aspartate, alanine, and glutamine.
The likely mechanism leading to increased levels of alanine in other subjects with diabetes
may be the impaired entry of pyruvate to the CAC and its subsequent shift from pyruvate
dehydrogenase to alanine aminotransferase and lactate dehydrogenase reactions. The sug-
gestion is consistent with elevated lactate levels in patients with diabetes [47]. The cause of
decreased alanine levels in other patients might be due to its increased consumption for
gluconeogenesis in the liver.

5. Summary and Conclusions

The issue of diabetes is very complex, and in addition to genetic factors and obesity,
other influences such as stress, alterations in the immune system, drugs, nutritional habits,
physical activity, and changes in gut microbiota are also involved in the etiopathogenesis
of diabetes and may affect amino acid metabolism. The focus of this article is specifically
the changes in amino acid metabolism due to impaired glycolysis.

In the article is demonstrated that decreased L-serine and increased BCAA levels in
subjects with diabetes are directly related to impaired glycolysis, preferential use of fatty
acids as an energy substrate, and decreased flux through the CAC and that these alterations
are implicated in the development of several complications. L-serine deficiency contributes
to the altered synthesis of sphingolipids, which plays a role in the pathogenesis of diabetic
neuropathy, hyperhomocysteinemia due to impaired homocysteine disposal via the me-
thionine cycle and transsulfuration pathway, and glycine deficiency due to the adaptive
increase in glycine utilization for L-serine synthesis. Enhanced BCAA levels contribute to
increased levels of aromatic amino acids (phenylalanine, tyrosine, and tryptophan), insulin
resistance, and accumulation of various metabolites whose influence on the progression of
diabetes has not been clarified. Due to the positive effects of BCAA on protein balance, it is
not clear whether their increased levels in diabetes should be recognized as beneficial or
harmful. It is concluded that:

(i) Plasma amino acid concentrations should be monitored in patients with diabetes,
and systematic investigation is needed to examine the effects of L-serine and glycine
supplementation on diabetes progression in the case of a decrease in the level of these
amino acids in the blood.

(ii) The ratio between BCAA and L-serine levels could be a better prognostic indicator of
insulin deficiency or resistance than BCAA alone.

(iii) A better understanding of the consequences of perturbations in BCAA metabolism
is essential for making decisions regarding dietary recommendations in patients
with diabetes.
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30. Holeček, M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 2022, 14, 1987.
[CrossRef]

31. Scharff, R.; Wool, I.G. Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats. Biochem. J. 1966,
99, 173–178. [CrossRef]

32. Bervoets, L.; Massa, G.; Guedens, W.; Louis, E.; Noben, J.P.; Adriaensens, P. Metabolic profiling of type 1 diabetes mellitus in
children and adolescents: A case-control study. Diabetol. Metab. Syndr. 2017, 9, 48. [CrossRef]
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