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Abstract: The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis
factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in
cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was
upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall
survival. To understand the potential molecular interactions and identify cues for further functional
investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in
silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA
is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain
tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated
with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of
ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis,
including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G
protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences
intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer
and can potentially function as a prognostic biomarker based on its putative functions during
tumorigenesis and tumor development.

Keywords: ERFE; pan-cancer; prognostic biomarker; tumor microenvironment; NOTCH; WNT;
PI3K-AKT; tumorigenesis; metastasis

1. Introduction

C1q tumor necrosis factor (TNF)-related proteins (CTRPs) belong to the adipokine
superfamily and comprise 15 members in addition to adiponectin (CTRP1-CTRP15) [1].
CTRPs are involved in the regulation of numerous physiological and pathological processes,
such as cell proliferation, inflammation, apoptosis, glycolipid metabolism, and protein
kinase pathways [2].

Due to these functions, CTRPs also play crucial roles in the development and pro-
gression of various cancer types [2]. In particular, CTRP1, CTRP3, CTRP4, CTRP6, and
CTRP8 are frequently reported to be involved in carcinogenesis. Multiple studies have
reported pro-tumor functions of these CTRPs in cancer, which are primarily attributed
to their stimulating effects on tumor cell survival, proliferation, invasion, and angiogen-
esis [2–7]. These tumor-supportive functions have been associated with the activation
of various signaling cascades known to play a role in cancer progression, including ex-
tracellular signal-regulated protein kinases 1 and 2 (ERK1/2), mitogen-activated protein
kinase/ERK1/2, and PI3-kinase (PI3K)/AKT pathways [2,8,9]. The activation of these
pathways results in an increased production of pro-inflammatory mediators, activation
of the cell cycle, and inhibition of apoptosis [2–9]. Because of the important roles of
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CTRPs in tumorigenesis, CTRPs could possibly be considered as diagnostic and prognostic
biomarkers or therapeutic targets. Due to the recently discovered prognostic and functional
role in iron homeostasis in myeloid neoplasia [10,11], in this study we focused on the
somatic expression profiles and putative cancer-related functions of CTRP15 (also named
as erythroferrone [ERFE] and myonectin).

ERFE is a multifaceted protein that has been shown to function as an adipokine,
myokine, hormone, and inflammatory regulator depending on the tissue context and
pathology [12–14]. Its unique function is a crucial involvement in the regulation of systemic
iron metabolism, which is severely disrupted in myeloid neoplasia and commonly altered
in other cancer types [10]. Moreover, similar to other CTRPs, ERFE takes part in lipid
metabolism, increasing fatty acid uptake in adipocytes and the expression of genes associ-
ated with fatty acid binding and transport, such as CD36, FABP4, and FATP1 [15]. There is
abundant evidence that adipocytes are a crucial part of the tumor microenvironment (TME),
and dysregulated lipid metabolism is one of the most prominent metabolic alterations in
tumors [16] since tumor cells utilize altered lipid metabolism to synthesize the molecules
responsible for cell proliferation, survival, invasion, and metastasis. Altogether, these data
suggest that ERFE might play a role in tumorigenesis and potentially affect prognosis
in patients with cancers. However, a comprehensive assessment of ERFE expression in
cancerous tissues and its association with cancer has not been performed yet. In this study,
we carried out a comprehensive in silico analysis for the ERFE gene based on publicly
available Omics data to further investigate the potential molecular mechanisms by which
ERFE contributes to tumorigenesis and prognosis in cancer. Through detailed analyses
of mRNA expression and its associations with prognosis, mutational burden, immune
infiltrates, and the enrichment of signaling pathways, the role of the ERFE gene in 33 types
of cancer was evaluated.

2. Results
2.1. ERFE Is Aberrantly Expressed in Cancer Tissues

We first studied the mRNA expression level of ERFE in various healthy human tissues
using the Human Protein Atlas dataset (HPA, https://www.proteinatlas.org/ (accessed on
13 July 2022)). We found that ERFE was most strongly expressed in thyroid tissue, followed
by skeletal muscle, testis, kidney, brain (e.g., cerebral cortex and cerebellum), bone marrow,
urinary bladder, and appendix (Figure 1A).

Although ERFE expression was limited to several healthy tissues, we found that
ERFE was widely expressed in cancer cell lines (Figure 1B). Furthermore, we compared
ERFE expression between primary bulk tumor tissues and corresponding normal tissues
by integrating datasets from the Genotype-Tissue Expression (GTEx) and the Cancer
Genome Atlas (TCGA) (Figure 1C). ERFE was consistently overexpressed in tumor tissue in
comparison to the normal tissue controls in 22 out of 33 tumor types. In n = 5 cancer entities,
ERFE was significantly downregulated in tumor tissues as compared to the matched healthy
tissues (Figure 1C).

In summary, we found that the ERFE gene is widely deregulated in tumor tissues as
compared to normal controls.

https://www.proteinatlas.org/
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Figure 1. Expression levels of the ERFE gene in human normal tissues and pan-cancer. (A) Con-

sensus ERFE healthy tissue expression based on datasets of HPA, GTEx, and FANTOM5 (function 

annotation of the mammalian genome). (B) The expression distribution of the ERFE gene was vis-

ualized in 31 cancer types containing 1018 tumor cell lines from the CCLE dataset. (C) The expres-

sion distribution of the ERFE gene was visualized between the investigated 33 cancer types from 

the TCGA project and normal tissues from the GTEx database. The expression difference between 

the tumor and healthy groups was compared using the Wilcoxon rank sum test. Asterisks (*) stand 

for significance levels. ns, p ≥ 0.05; * p < 0.05; *** p < 0.001. Abbreviations: PCPG, pheochromocy-

toma and paraganglioma; T, tumor; N, normal tissues; CCLE, Cancer Cell Line Encyclopedia da-

taset; FANTOM5, Functional ANnoTation Of the Mammalian genome project 5. 

Although ERFE expression was limited to several healthy tissues, we found that 

ERFE was widely expressed in cancer cell lines (Figure 1B). Furthermore, we compared 

Figure 1. Expression levels of the ERFE gene in human normal tissues and pan-cancer. (A) Consensus
ERFE healthy tissue expression based on datasets of HPA, GTEx, and FANTOM5 (function annotation
of the mammalian genome). (B) The expression distribution of the ERFE gene was visualized
in 31 cancer types containing 1018 tumor cell lines from the CCLE dataset. (C) The expression
distribution of the ERFE gene was visualized between the investigated 33 cancer types from the
TCGA project and normal tissues from the GTEx database. The expression difference between the
tumor and healthy groups was compared using the Wilcoxon rank sum test. Asterisks (*) stand for
significance levels. ns, p ≥ 0.05; * p < 0.05; *** p < 0.001. Abbreviations: PCPG, pheochromocytoma
and paraganglioma; T, tumor; N, normal tissues; CCLE, Cancer Cell Line Encyclopedia dataset;
FANTOM5, Functional ANnoTation Of the Mammalian genome project 5.
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2.2. ERFE Expression Is Independently Associated with Survival in Several Cancer Types

Next, we assessed whether deregulated expression of ERFE is of prognostic signif-
icance in pan-cancer. We grouped patients into ERFEhigh and ERFElow groups based on
the median expression in each tumor. In a univariable analysis, ERFE expression was
significantly associated with inferior overall survival (OS) and disease-specific survival
(DSS) in n = 10 tumor types as well as inferior progression-free interval (PFI) in n = 11 tumor
types (Figure 2A). Among the analyzed tumors, the strongest associations with OS were
observed in adrenocortical carcinoma, uveal melanoma, mesothelioma, and endometrioid
cancer (Figure 2B). We further validated the associations of ERFE expression with survival
in n = 11 tumor types using Cox regression models that adjusted survival data for clinical
tumor (TNM) stages and treatments (Figure 2C and Table S1). The multivariable analysis
confirmed that the high ERFE expression was independently associated with inferior OS
in n = 10 tumor types, inferior DSS in n = 8 tumor types, and inferior PFI in n = 7 tumor
types. Higher ERFE expression was related to all three types of survival (OS, DSS, and
PFI) in adrenocortical cancer, mesothelioma, pancreatic, colon, kidney clear cell, and skin
cutaneous melanoma cancers, and indicated poor outcome. Only in kidney renal papillary
cell carcinoma, ERFE overexpression correlated with superior OS (Figure 2C, Table S1).

Overall, high ERFE expression was related to inferior prognosis in most analyzed
cancer entities.

2.3. Mutational Frequencies and Tumor Mutational Burden (TMB) Are Associated with ERFE
Expression Levels

Due to the strong association of the ERFE expression with prognosis in multiple types
of cancer, we next sought to provide explanations for this observation via analysis of
available mutational data. Using the website tool of Comprehensive Analysis on Multi-
Omics of Immunotherapy in pan-cancer (CAMOIP) [17], we found that the frequencies of
mutations in several tumor suppressor genes (e.g., TP53 and PTEN) and oncogenes (e.g.,
CTNNB1) were unequally distributed in the ERFEhigh versus ERFElow groups. Of note, there
was a strong association of ERFE overexpression with a higher frequency of TP53 mutations
in breast, endometrioid, bladder, and liver cancers, and lower-grade glioma (Figure 3).

Due to the difference in the frequency of mutations in the ERFEhigh and ERFElow groups
and the unequal distribution of TP53 mutations, an important driver of genomic instability,
we compared the TMB between the two groups. Interestingly, the TMB was significantly
higher in the ERFEhigh groups in n = 8 tumor types (Figure 4A). Among them, ERFE
overexpression indicated poor prognosis in adrenocortical, pancreatic, and colon cancers
(Figure 2C). Remarkably, in adrenocortical cancer, a shorter OS, DSS, and PFI due to the
TMBhigh status was offset in the ERFElow patients, whereas the ERFEhighTMBhigh status was
a very strong indicator of poor OS, DSS, and PFI in this tumor (Figures S1 and 4B). Overall,
our data shows an association between ERFE expression and TMB as well as a potential
functional interplay between these two factors, which may be relevant for patient survival.

2.4. ERFEhigh Status Is Associated with Activated Cell Cycle

Since TP53 mutations and higher TMB are associated with genomic instability, which
contribute to carcinogenesis and tumor cell proliferation [18,19], we assessed cell cycle
states in ERFEhigh cancer samples. Therefore, we carried out a single-gene differential
analysis (SGDA) followed by a gene set enrichment analysis (GSEA) based on the identified
differentially expressed genes (DEGs) between the ERFEhigh and ERFElow groups in the
tumors shown in Figures 3 and 4A. Interestingly, the activated pathways involved in
cell cycle and DNA replication as well as the processes involved in P53 stabilization and
chromosomal maintenance were enriched in these tumors (Figure 5).
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Figure 2. Prognostic significance of ERFE expression in pan-cancer. (A) Forest plot of survival (OS,
DSS, and PFI) associations with ERFE expression levels in univariable analyses. Log-rank test was
conducted in pan-cancer and results with p < 0.05 were summarized. (B) Examples of survival
analysis are shown. Kaplan–Meier analysis was performed. (C) Forest plot of OS, DSS, and PFI
associations with ERFE expression levels in multivariable analyses. Cox regression analysis was
conducted using TNM and treatments as confounders. Results with p < 0.05 were summarized.
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Figure 3. Correlation of ERFE expression status with genetic alterations. An oncoplot is presented
for the top 20 frequently mutated genes significantly correlated with ERFE expression levels in pan-
cancer. Fisher’s exact test was conducted and results with adjusted p < 0.05 are displayed. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001.

2.5. The Genes with Tumor-Supportive Functions Are Strongly Co-Expressed with ERFE

We next assessed which genes crucially involved in carcinogenesis are significantly
co-expressed with ERFE. We first identified genes that were strongly and positively co-
regulated with ERFE at the mRNA expression level (Spearman r > 0.5, p < 0.0001) in at least
six tumor types. This analysis identified nine genes with known involvement in cancer
pathogenesis (Figure 6). Among them, the HES6 gene is a component of activated NOTCH
signaling [20,21], whereas KIF23 and NCAPH support cell cycle progression via facilitating
cytokinesis during mitosis and separation of chromosomes, respectively [22–25], and KIF23
also promotes WNT signaling [26].

Indeed, the GSEA analysis showed that the corresponding pathways were enriched
in ERFEhigh tumor samples (Figure 7). In addition, ERFE was co-expressed with the genes
involved in extracellular matrix (ECM) deposition and remodeling, including PXDN,
COL4A1, and LOXL2 that are known to promote cancer invasion and metastasis [27–30].
Of note, the highest number of these genes (n = 6) was positively co-regulated with ERFE
in adrenocortical cancer and mesothelioma, cancers where high ERFE expression showed
the strongest association with inferior survival (Figure 2C).
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Figure 4. Correlation of ERFE expression status with TMB. (A) Comparison of TMB between
ERFEhigh and ERFElow patients in pan-cancer. Wilcoxon rank sum test was performed. ** p < 0.01;
**** p < 0.0001. (B) Patients with different levels of ERFE expression and TMB were stratified into
groups of ERFElowTMBlow, ERFElowTMBhigh, ERFEhighTMBlow, and ERFEhighTMBhigh in adrenocorti-
cal cancer. The survival subgroup analysis was analyzed by Log-rank test with multiple comparisons
for calculating adjusted p-values.
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tion as well as inhibited pathways involved in stabilization of P53 and chromosomal maintenance.

2.6. ERFEhigh Status Correlates with the Changes in the Tumor Microenvironment and Activation
of Tumor-Supportive Signaling Pathways

We further comprehensively characterized the functional pathways enriched in ERFEhigh

tumors using GSEA in pan-cancer. To increase the validity of the findings, each ERFEhigh-
associated pathway had to be enriched in at least nine tumor types. GSEA and single-
sample GSEA (ssGSEA) analyses identified the enrichment of multiple pathways associ-
ated with ECM formation, organization, and processing as well as cell-to-ECM interaction
(Figure 8A–C). These results were in line with our data on the positive co-regulation
of ERFE with the genes (LOXL2, PXDN and COL4A1) involved in ECM deposition and
processing (Figure 6A). Interestingly, in 7 out of 13 tumor types shown in Figure 8A, the
enrichment of ECM pathways in the ERFEhigh group was linked to an increased abundance
of stromal infiltrate (stromal score), which could be responsible for the increased deposition
of ECM (Figure 8D). In addition, GSEA revealed that the ERFEhigh status was associated
with the enrichment of the G protein coupled receptor (GPCR) and PI3K-AKT pathways
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that are frequently overactivated in cancers and support tumor cell survival, proliferation,
and invasion [31–33].
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Figure 6. Expression correlation between ERFE and other functional genes. Spearman’s rank cor-
relation test was carried out for each tumor type. (A) Genes with Spearman r threshold >0.5 and
p < 0.0001 were listed when covering at least six tumor types. (B) Examples of genes with Spearman
r threshold >0.6 and p < 0.0001 were shown in thyroid cancer, uveal melanoma, and thymoma.
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Figure 8. Upregulated pathways involved in higher ERFE expression. (A) Upregulated pathways
upon ERFEhigh status were enriched by GSEA based on REACTOME, NABA, KEGG, WP, and PID
databases and summarized with NES ≥ 1 and p < 0.05. (B) Representative GSEA result is shown for
upregulated pathway involved in ECM remodeling. (C) Correlation between ERFE expression and
pathway scores of “Collagen formation” and “Degradation of ECM” in thymoma is shown. Pathway
score was calculated by ssGSEA. Spearman’s rank correlation test was carried out. (D) Stroma
infiltration abundance was compared between ERFEhigh and ERFElow patients in pan-cancer. Stroma
score was calculated by the ESTIMATE algorithm. The statistical difference of the two groups was
compared by Wilcoxon rank sum test. Asterisks (*) stand for significance levels. * p < 0.05; ** p < 0.01;
*** p < 0.001. (E) Upregulated pathways upon ERFEhigh status were enriched by IPA and summarized
with Z-score ≥ 1 and p < 0.05. Abbreviation: NES, normalized enrichment score.
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We additionally utilized the Ingenuity Pathway Analysis (IPA) for an independent
pathway enrichment analysis (Figure 8E). The IPA confirmed the enrichment of pathways
involved in TME and ECM, which are reported to be essential non-cellular components of
TME [34], GPCR, and PI3K activation (as indicated by breast cancer regulation by Stathmin
1 pathway in IPA [35]) in ERFEhigh cancers (Figures 8E and S2–S5). The ECM remodeling
and the activation of these signaling pathways are crucial for distant metastases [28].
Indeed, our analysis revealed that ERFE overexpression was pronouncedly associated with
the presence of metastases in prostate cancer and melanoma (Figure S6).

In addition to the enrichment in the TME pathway, the IPA also showed an association
of the interleukin-17 (IL-17) signaling pathway with the ERFEhigh status (Figure 8E). A
more detailed pathway enrichment analysis using the IPA suggested that the differen-
tiation/recruitment of the T helper 2 (Th2) and Th17 cells, the production of multiple
chemokines, and the pro-inflammatory mediators could be affected by the ERFEhigh status
(Figure S7). Therefore, we performed the analysis of Th2 and Th17 infiltration using ssGSEA
algorithms. Indeed, the results showed significant positive associations between Th2 cell
infiltration and ERFEhigh status in multiple cancers, which were especially pronounced in
mesothelioma and adrenocortical cancer (Figure S8).

Single cell RNA sequencing datasets available at “scTIME Portal” [36] showed that
the ERFE gene was not expressed in a broad range of immune cells (e.g., T cells, B cells,
NK cells, macrophages, monocytes, neutrophils, etc.) in pan-cancer (data not shown).
Therefore, we further comprehensively assessed the association of multiple immune cell
infiltration with ERFE expression in tumor cells. An unsupervised consensus clustering
identified three distinct clusters with clusters 1 and 2 displaying a negative correlation
between immune cell infiltration and ERFE expression, especially for cluster 1 (Figure S9).
Of note, inside cluster 1, a high ERFE expression was associated with reduced infiltra-
tion by CD8+ cytotoxic T cells and antigen presenting cells (dendritic cells). Moreover,
ERFE expression was negatively associated with the expression of immune checkpoints,
including PDCD1 (encoding PD-1 protein), CD274 (encoding PD-L1 protein), and CTLA-
4 in testicular cancer and thymoma tumors assigned to cluster 1 (Figure S10A). Since
immunosuppression in the TME was frequently reported to be induced by B7/CTLA-4
and PD-1/PD-L1 interactions [37–39], we firstly used the TIDE algorithm to predict the
response to immune checkpoint blockade (ICB) therapy, including CTLA-4 and PD-1, in
testicular cancer and thymoma [40]. Interestingly, an impaired response to ICB therapy was
predicted in patients with ERFEhigh status (p < 0.001, Figure S10B). We further attempted
to correlate ERFE expression with ICB response in real world clinical settings. The ICB
treatment data and associated mRNA expression datasets were available for melanoma
patients from several published reports (Tables S2). However, in these small sample size
datasets, ERFE expression was not associated with a response to ICB and survival (Table S2
for response rate; Figure S10C for OS and PFI summary) [37–39].

In summary, pathway enrichment analyses revealed a tight association of ERFE overex-
pression with GPCR-activated pathways, activated PI3K-AKT signaling pathway, as well as
changes in TME, including ECM remodeling, inflammation, and immune cell recruitment,
the processes that are crucially involved in the progression of multiple cancers.

3. Discussion

Although cancer-related functions of some CTRPs have been clarified [2], the role of
ERFE during tumorigenesis remains unknown. Therefore, our study utilized the TCGA
dataset to comprehensively analyze the functions of ERFE (CTRP15) gene expression
in cancer.

We found that ERFE was overexpressed in 22 types of malignancies, suggesting the role
of ERFE in tumorigenesis. Furthermore, ERFE mRNA overexpression in bulk tumor tissues
was an independent factor in predicting inferior survival in 11 tumor types, especially in
adrenocortical carcinoma, mesothelioma, and uveal melanoma. Due to the aberrant ERFE
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expression and strong prognostic significance in malignancies, we next interrogated the
role of ERFE in pathogenesis, disease progression, and metastasis.

Our data showed that ERFE overexpression was correlated with a higher frequency
of TP53 mutations in five types of tumors such as breast cancer. The pathway enrichment
analyses additionally demonstrated that in these five cancers, ERFE overexpression was
associated with upregulated signaling pathways involved in the cell cycle, mitotic process,
and DNA replication, which are tightly associated with genomic instability [18,19]. The
identified connection between ERFE expression and TP53 mutations, known inducers of
genomic instability, is of potential clinical significance and deserves further functional anal-
ysis [41]. In line with this finding, the genomic instability-related pathway was enriched in
the ERFEhigh group in tumors with a higher TMB such as adrenocortical carcinoma. Previ-
ous studies reported that genomic instability could increase the frequency of mutations
and thereby contribute to a higher TMB [42]. Overall, our data suggest that the ERFE
overexpression might be associated with genomic instability, which is linked to tumori-
genesis and disease progression. This might explain the particularly dismal prognosis in
ERFEhigh + TMBhigh adrenocortical cancer patients shown in Figure 4B.

In addition, we observed that in certain tumors, such as adrenocortical carcinoma and
mesothelioma, ERFE was positively co-expressed with the NCAPH and KIF23 genes, which
facilitate the separation of chromosomes and cytokinesis during mitosis, thereby promoting
tumor cell proliferation [22–25]. This suggested a potential role of ERFE overexpression in
tumor progression, which was supported by the presence of activated pathways involved
in cell cycle progression and DNA replication in our study.

Except for the role of ERFE in genomics and chromosomes, our study also identified
co-expression of ERFE and IL-11, a known activator of PI3K-AKT and mTOR signaling
pathways [43,44]. In addition, NCAPH expression was also reported to accelerate the tumor
progression via PI3K-AKT signaling [45,46]. The activation of a core cancer regulating
PI3K-AKT pathway was further validated by GSEA analysis in nine types of tumors in
this study.

Our study additionally identified that ERFE overexpression might be related to acti-
vated NOTCH-related signaling pathway, which is proven to be significantly involved in
the tumorigenesis and tumor invasion in certain cancers including thyroid cancer [47] and
uveal melanoma [48]. Our study showed a strong positive correlation between ERFE and
HES6 expression in thyroid cancer, uveal melanoma, and testicular germ cell tumors. GSEA
results indicated that the ERFEhigh status was associated with activated NOTCH-related
signaling in thyroid cancer and testicular germ cell tumors, and HES6 overexpression
was shown to contribute to overactivated NOTCH signaling [20]. In addition, one study
based on single cell sequencing reported that HES6 has critical tumorigenic properties
downstream the NOTCH signaling pathway and favors motile phenotype of primary uveal
melanoma cells [21]. Interestingly, in our study HES6 was strongly co-expressed with ERFE
in uveal melanoma, which was associated with distant metastasis. Overall, one could
envision that in thyroid cancer, testicular germ cell tumors and uveal melanoma ERFE
upregulation contribute to NOTCH signaling and its effects on tumor progression, which
needs to be determined in functional studies.

We finally observed a strong association between the ERFEhigh status and enrichment
in the TME pathway, demonstrating that ERFE is associated with ECM formation and
remodeling. A previous study also reported that ERFE regulated the differentiation of
osteoblasts and osteoclasts in mouse BM cells [49]. Indeed, our study identified a strong
correlation between ERFE expression and other genes essential for ECM organization,
including PXDN [27], COL4A1 [29], and LOXL2 [30]. It is widely reviewed that collagen-
related signaling activation contributes to tumorigenesis and promotes metastasis [28],
indicating a potential role of the ERFEhigh status in metastasis. Moreover, the FJX1 gene
was also co-expressed with ERFE and overexpression of this gene was reported to promote
abnormal endothelial capillary tube formation in the TME [50]. Overall, ERFE may play a
role in TME via ECM remodeling and angiogenesis.
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Except for the proposed functions of ERFE in tumorigenesis and metastasis, we
further assessed the potential role of ERFE in immune cell infiltration. The Th2 cells were
widely enriched in the ERFEhigh cases in pan-cancer. However, an increased infiltration
of ERFE-high tumors with Tregs was not observed [51]. Previous studies revealed that
Th2 cells initiated antitumor responses by type 2 immunity and directly influenced tumor
growth and progression [52]. On the other hand, there is also evidence indicating that Th2
immunity promotes carcinogenesis, cancer progression, and metastasis [52]. Currently, the
functional consequences of the association of ERFE expression with Th2 cell infiltrate are
unclear and require additional experimental studies. Importantly, our analysis revealed
that in several tumor types, a high ERFE expression is associated with a general reduction
in immune cell infiltrate, indicating a possible immunosuppression. Moreover, this effect
was predicted to manifest in a reduced sensitivity to ICB therapy. Overall, our data suggest
that multiple changes in the tumor microenvironment as well as intrinsic changes in tumor
cells might underlie the ERFE-associated effects on tumor progression and patient survival.

It should be noted that our study does not exclude the possibility that ERFE is not
a key factor in the progression of many cancers, but rather a molecule that is passively
co-regulated with factors strongly involved in cancer progression. To firmly define the role
of ERFE in the processes of cancer cell proliferation, migration and metastatic behavior,
cellular systems with a direct overexpression or silencing of ERFE have to be established
and analyzed in functional assays. Nevertheless, the current lack of functional data does
not diminish the value of ERFE as a potential prognostic biomarker in many types of cancer.

In summary, we reported aberrant expression and prognostic significance of ERFE at
the pan-cancer level. We also assessed potential functions of ERFE gene expression during
tumorigenesis, malignant progression, and metastasis.

4. Materials and Methods
4.1. Gene Expression Analysis of ERFE

As a landmark project in cancer genomics, TCGA molecularly characterized over
20,000 primary cancer and matched normal tissues covering 33 types of cancer [53]. The
GTEx project collected a large number of RNA sequencing samples and multiple traits
from 54 types of human tissues [54]. In our study, both public TCGA and GTEx RNA
sequencing data were downloaded using the UCSC Xena platform (https://xenabrowser.
net/datapages/ (accessed on 14 June 2022)) [55]. The cell line mRNA expression matrix
of tumors was obtained from the Cancer Cell Line Encyclopedia (CCLE) dataset (https:
//portals.broadinstitute.org/ccle (accessed on 20 July 2022)) [56]. All mRNA expression
data were processed uniformly by Toil to get transcripts per million (TPM) [57].

The quantification and comparison were based on Log2(TPM + 1). To analyze the
correlation of ERFE expression with other protein-coding mRNAs, STAT package (v.3.6.3)
was utilized in R software (v. 4.0.3, Vienna, Austria). Moreover, we constructed the
ERFE mRNA expression landscape in human healthy bulk tissues using the HPA database
(v.21.1, https://www.proteinatlas.org/ (accessed on 13 July 2022)). The clinical and gene
expression datasets for Table S2 were downloaded from the TIDE database [40].

4.2. Survival Analysis

Survival status was downloaded from the TCGA dataset [58]. For survival analysis
associated with ERFE expression and TMB, patients were grouped by median expression in
each tumor cohort. Kaplan-Meier (KM) survival analysis was performed by the Log-rank
test using R packages of survminer (v.0.4.9, ) and survival (v.3.2.10) or Graphpad Prism
(v.8, San Diego, CA, USA), and represented as hazard ratio (HR). HR > 1 indicates an
increased risk in the group with mutations. Subgroup analysis of survival was analyzed
by the Log-rank test showing adjusted p-values of multiple comparisons. OS, DSS, and
PFI were analyzed as defined previously [58]. Multivariable analyses combining clinical T
stages and therapies were performed using the Cox regression analysis.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://www.proteinatlas.org/
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4.3. Genetic Alteration Analysis Based on ERFE Expression in Pan-Cancer

Pan-cancer genetic alterations were analyzed using the CAMOIP web server (v.1.1,
https://www.camoip.net (accessed on 14 June 2022)) [17], which allows for performing a
mutational landscape analysis based on gene expression levels. In this web server, “ERFE”
was entered into the “Gene Expression” part of the “Mutational Landscape” module for
each cancer type in TCGA. Both of the “Driver Mutation” and “Adjust p-Value” were chosen
to calculate the significance of mutational distribution difference between the ERFEhigh

and ERFElow patients. An adjusted p-value was calculated by the Benjamini and Hochberg
(BH) method using the Fisher’s exact test. To compare the TMB between the ERFEhigh and
ERFElow groups, we used the “Tumor Mutation Burden” part of the “Immunogenicity”
module for each TCGA tumor dataset. “ERFE” was entered into the “Gene Expression”
module to group patients.

4.4. ERFE-Related Gene Enrichment Analysis

SGDA was first performed using the DESeq2 package. We used the median Log2
(TPM + 1) value of ERFE expression to divide patients into ERFEhigh and ERFElow groups
and obtained the relevant DEGs after SGDA. For the GSEA of each tumor, we first fil-
tered the DEGs using adjusted p-value < 0.05. Next, the GSEA was performed using the
clusterProfiler package (v.3.14.3) [59,60] for the dataset “c2.cp.v7.2.symbols.gmt” obtained
from the Molecular Signature Database Collections (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp (accessed on 20 June 2022)) as a reference gene set. The potential ERFE-
associated functions were inferred as statistically significantly enriched based on a false
discovery rate < 0.25 and an adjusted p-value < 0.05. Normalized enrichment score (NES)
was calculated for each enriched signaling pathway. NES > 0 indicated an enrichment
of upregulated pathways associated with the ERFEhigh status. NES < 0 indicated an en-
richment of downregulated pathways. DEGs were also analyzed by the IPA software
(Ingenuity Systems, Redwood City, CA, USA). We filtered the DEGs based on cut-offs of ±2
and <0.05 for fold change and adjusted p-values, respectively, followed by core analyses.
Initially, each tumor cohort was analyzed using default parameters for predicting canonical
pathways associated with the ERFEhigh status. Pathways with Z-score ≥ 1 were considered
activated upon the ERFEhigh level while pathways with Z-score ≤ −1 were considered
inhibited. To obtain significant ERFE-associated canonical pathways, the list of pathways
was further trimmed at p-value < 0.05. After obtaining significant ERFE-related pathways
from the GSEA and IPA, and removing the pathways involving non-tumor diseases, we
summarized the upregulated pathways covering at least nine types of tumors.

The ssGSEA is a rank-based algorithm that calculates a score illustrating the level
of absolute enrichment of a particular gene set in each sample. We collected the gene
sets contained in relevant pathways [61] and introduced them into the ssGSEA for cal-
culating the enrichment score of each sample in each pathway. As an execution tool, R
Bioconductor package “Gene Set Variation Analysis” (GSVA, v.3.15) was used with the
parameter = “ssgsea”. The output for each signature was a near-Gaussian list of deci-
mals that was used in the visualization/statistical analysis without further processing.
The ssGSEA was performed to calculate pathway scores of “Collagen formation” and
“Degradation of ECM”.

4.5. Immunoscore Assessment

The immune infiltration abundance of each immune cell type was initially calculated
by ssGSEA in the investigated 33 tumor types. The Spearman’s rank correlation test
was carried out to identify the abundance of immune cells based on ERFE expression.
Unsupervised clustering of spearman r-values was performed using the Euclidean distance
metric with complete linkage. We also used the ESTIMATE package (v. 1.0.13) to calculate
the infiltration abundance of stroma cells (stroma score). A potential ICB response was
predicted with the TIDE algorithm [40]. The TIDE score was compared between the ERFElow

and ERFEhigh statuses using the Mann Whitney U test (Wilcoxon rank sum test). A higher

https://www.camoip.net
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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TIDE score indicated potential poor response to ICB therapy. A predicted response rate of
ICB treatment from the TIDE analysis was compared between ERFElow and ERFEhigh using
the Chi-square test (patient cohort n > 40).

4.6. Statistical Analysis

Except for the statistical methods specifically mentioned, all statistical analyses and
algorithms were implemented by R software (v. 4.0.3, Vienna, Austria). The ggplot2
package was used to plot or visualize the data. If not stated otherwise, two-group data
were performed by the Wilcoxon rank sum test. The Spearman’s rank correlation method
was conducted to identify significant abundance relationships. The response rate of ICB
treatment was compared between ERFElow and ERFEhigh using the Fisher’s exact test
(patient cohort n ≤ 40). P-values less than 0.05 were considered statistically significant.
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