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Abstract: In this paper we study two lysine-based peptide dendrimers with Lys-His-Arg and Lys-
Arg-His repeating units and terminal lysine groups. Combination of His and Arg properties in a
dendrimer could be important for biomedical applications, especially for prevention of dendrimer
aggregation and for penetration of dendrimers through various cell membranes. We describe the
synthesis of these dendrimers and the confirmation of their structure using 1D and 2D Nuclear
Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy and relaxation are used to study the
structural and dynamic properties of these macromolecules and to compare them with properties of
previously studied dendrimers with Lys-2Arg and Lys-2His repeating units. Our results demonstrate
that both Lys-His-Arg and Lys-Arg-His dendrimers have pH sensitive conformation and dynamics.
However, properties of Lys-His-Arg at normal pH are more similar to those of the more hydrophobic
Lys-2His dendrimer, which has tendency towards aggregation, while the Lys-Arg-His dendrimer is
more hydrophilic. Thus, the conformation with the same amino acid composition of Lys-His-Arg is
more pH sensitive than Lys-Arg-His, while the presence of Arg groups undoubtedly increases its
hydrophilicity compared to Lys-2His. Hence, the Lys-His-Arg dendrimer could be a more suitable
(in comparison with Lys-2His and Lys-Arg-His) candidate as a pH sensitive nanocontainer for
drug delivery.

Keywords: peptide dendrimer; NMR spectroscopy; NMR relaxation; histidine; arginine; pairing effect

1. Introduction

Dendrimers are regular hyperbranched monodisperse macromolecules with a
well-defined spherical structure. These nanosized macromolecules are widely used
in biomedicine [1–6] as carriers in gene and drug delivery [7–14]. In the latter case, den-
drimers contribute to an increase in the solubility of drugs, a decrease in their toxicity
for normal cells, and a prolongation in their circulation time in blood flow [15–17]. The
development of drugs and gene delivery carriers based on lysine and peptide dendrimers
has been described in many studies [18–22]. The usage of these dendrimer carriers could
provide a synergistic effect due to the bioactive action of the dendrimers themselves, which
have antimicrobial [23–28] and antiangiogenic activity [29–32].

The search for new drugs and methods for their safe delivery, as well as the encourag-
ing results of cytological studies of dendrimers [22,31–37], inspire researchers to develop
new dendrimer macromolecules [38,39]. The possibility of step-by-step synthesis allows
control over their structure and composition, as well as permitting the introduction of func-
tional groups into the core, inner, or terminal segments. This functionalization is a reliable
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way to obtain dendrimers with tailored characteristics for various purposes [40–42]. Thus,
an overall positive charge of the dendrimer macromolecules is an important characteristic,
which is required for effective cellular uptake. The lysine-based dendrimers functionalized
with additional lysine and glycine amino acid residues suppressed the growth of cancer
cells [22]. Lysine dendrimers with double arginine insertions into spacers between neigh-
boring lysine branching points were effective as siRNA carriers [35]. The introduction of
histidine amino acid residues into the structure gives new properties [43] to the dendrimer.
One of them is the ability to be deuterated. The proton at the C2 atom of the histidine
imidazole ring is replaced by deuterium upon heating [44–46]. It showed the possibility of
controlled deuterium labeling of the Lys-2His dendrimers. In addition, the chemical struc-
ture of these dendrimers remains stable after deuteration [47]. Another important effect is
the change of the global conformation of histidine-containing dendrimer with the changing
of the pH level. We have found that the Lys-2His dendrimer undergoes a conformational
transition from a swollen conformation at low pH to a collapsed conformation at normal
pH [48]. This circumstance can play an important role for using the histidine-containing
dendrimer as a nanocontainer.

The above-mentioned results confirm that peptide dendrimers modified with various
amino acid residues have great potential for biomedical applications. In particular, a
change in the size of the Lys-2His dendrimer in the collapsed conformation can lead to
the aggregation of dendrimer macromolecules, which, of course, can adversely affect their
biomedical application. That is why this article is devoted to the synthesis and study of
new Lys-His-Arg and Lys-Arg-His dendrimers with an intermediate chemical structure
between the Lys-2His dendrimer (having a collapsed conformation at normal pH) and
the Lys-2Arg dendrimer (having a swollen conformation at normal pH). In contrast to the
lysine and lysine-based peptide dendrimers synthesized and studied by us earlier [47–58],
the considered dendrimers contain two different types of amino acid residues between the
branching points: histidine and arginine. The only difference between the two dendrimers
is the order in which the histidine and arginine residues are inserted into spacers between
lysine branching points. NMR spectroscopy and relaxation methods were used for their
investigations. In this work, it has been shown that this method is sensitive to the collapsed
conformation of the peptide dendrimer.

2. Results

2.1. Analysis of 1H and 13C NMR Spectra

Structural analysis of the newly synthesized second-generation dendrimers Lys-Arg-
His and Lys-His-Arg was carried out using the methods of one-dimensional and two-
dimensional NMR spectroscopy. Figures 1 and 2 show the 1H and 13C NMR spectra of
the Lys-Arg-His dendrimer. Figures 3 and 4 show the 1H and 13C NMR spectra of the
Lys-His-Arg dendrimer. Using 1H NMR spectra, the integral values of the peaks were
calculated to estimate the contribution of protons of different groups to the signal.

2.2. Lys-Arg-His

On the proton NMR spectrum in Figure 1, we can see four regions where signals are
observed. The signals in the aromatic region 8.30–7.00 ppm obviously refer to protons
in the imidazole rings of the histidine residues. The signals in the region from 4.63 to
3.90 ppm belong to CH groups. The peaks in the range 3.30–2.90 ppm refer to the CH2
groups connected with nitrogen atoms or imidazole ring. The group of overlapping signals
at 1.90–1.10 ppm corresponds to the CH2 groups of the aliphatic part of the dendrimer.

The 13C NMR spectrum of the Lys-Arg-His dendrimer is presented in Figure 2. The
signals in the range of 178–170 ppm belong to carbons in carboxyl groups (symbols a, d, j, l,
n in Figure 2). The peak at 156.70 ppm refers to quaternary carbon in guanidine groups of
the arginine residues. The signals at 134.67, 130.30 and 117.24 ppm are attributed to carbons
in the imidazole rings (symbols w, u, v, respectively, in Figures 1 and 2). The signals in
the range of 54–52.85 ppm belong to the carbon atoms in the CH groups. The peaks at
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49.47 (symbols z, Figures 1 and 2) and 39.07 ppm (symbols i and s, Figures 1 and 2) refer
to the CH2 groups adjacent to nitrogen atoms. The signals from the carbon atoms of the
dendrimer’s aliphatic part are located in the region 30.65–16.80 ppm.
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Figure 1. 1H NMR spectrum of the Lys-Arg-His dendrimer at 298 K. The dendrimer contains three
types of methylene groups connected with nitrogen atoms (or imidazole rings in His residues), which
have been used in NMR relaxation study: inner groups (green open circle), side groups (blue circles)
and terminal groups (red circle). The peaks from small molecular weight impurities are marked by
asterix (*).
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The 2D 1H-13C HMBC and HSQC spectra of this dendrimer are presented in
Figures S1 and S2, respectively, in Supplementary Materials. Here, we present only the
main results. It was found that the peaks at 8.10 and 7.10 ppm belong to the protons at the
C2 carbon (symbol w, Figure 1) and at the C4 carbons (symbol v, Figure 1) of imidazole
rings, respectively. We have the corresponding 1H-13C HSQC cross-peaks for the carbon
atoms w (8.13, 134.92) and v (7.11, 117.23) (Figure S1 in Supplementary Materials). The
cross-peaks (8.12, 117.11), (8.12, 130.37), (7.11, 130.40), and (7.10, 134.83) in the 1H-13C
HMBC indicate a connection between the hydrogen and carbon atoms inside the imidazole
ring In addition, the chemical shifts of carbon atoms in imidazole rings 134.67 (symbol w),
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130.30 (symbol v) and 117.24 (symbol u) ppm are similar to the chemical shifts of these
atoms in L-histidine: 138.87, 134.42 and 119.54 ppm, respectively.

The 1H-13C HMBC cross-peaks (3.11, 117.18), (3.11, 130.28) (Figure S2 in Supplemen-
tary Materials) confirm an interaction between carbons in the imidazole ring, with a proton
at 3.11 ppm (symbol t, Figure 1). Then, according to the 1H-13C HSQC cross-peak (3.12,
27.52) the signal at 27.45 ppm refers to the CH2 groups connected to the imidazole rings
(symbol t, Figures 1 and 2) in histidine residues.

Cross peaks (3.15, 40.55) on 1H-13C HSQC and (3.14, 24.99), (3.14, 28.33) and (3.14,
156.65) on the 1H-13C HMBC spectra confirm that the carbons with the chemical shifts
at 40.55 (symbol z, Figure 2), 24.99 (symbol y, Figure 2), 28.33 (symbol x, Figure 2), and
156.65 ppm (symbol u’, Figure 2) belong to arginine residues.

Further, based on the identified peaks we assigned the rest of the signals (see
Supplementary Materials). In addition, we clarified that the protons of the CH2 groups
marked by symbols i, t, z contribute to signal at 3.13 ppm (Figure 1). The signal at 2.97 ppm
is attributed to protons of the CH2 groups (symbol s, Figure 1) adjacent to N-atoms in
terminal lysine segments.

2.3. Lys-His-Arg

The Lys-His-Arg dendrimer differs from the previous one in the order of insertion
of histidine and arginine moieties, so we can see from Figures 3 and 4 that the proton
and carbon spectra are very similar to those for the Lys-Arg-His dendrimer. However,
some differences should be noted. On the 1H spectrum (Figure 3), three peaks can be
clearly observed in the region of 3.27–2.85 ppm. According to the 1H-13C HSQC spectrum
(Figures 5 and S3) and the calculated integral values, the protons CH2-(N) groups of
the inner Lys (symbol i, Figure 3) and side Arg segments (symbol z, Figure 3) make the
main contribution to the peak at 3.11 ppm. The contribution from the protons of the CH2
groups connected to imidazole rings in the side histidine segments predominates (symbol
t, Figure 3) at 3.01 ppm. The peak at 2.96 ppm is attributed to the protons of the CH2-(N)
groups of the terminal lysine segments (symbol s, Figure 4). In the case of Lys-Arg-His,
only two peaks are observed in this region: a peak of the CH2-(N) groups of the terminal
lysine segments (symbol s, Figure 1) at 2.97 ppm, and a common peak for other considered
CH2 groups (symbols i, z and t, Figure 1) at 3.13 ppm.
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Detailed analyses of the 1H-13C HMBC and HSQC spectra are shown in Figures S3 and S4,
respectively, in Supplementary Materials.

In the Lys-His-Arg dendrimer, the signals from the protons of the imidazole ring (sym-
bols w and v in Figure 3) shifted towards upfield compared to the Lys-Arg-His dendrimer.
The difference is about 0.1 ppm. At the same time, the 13C spectrum (Figure 4) shows a
slight increase in the chemical shifts of the carbon atoms of the imidazole ring w and u, as
well as the carbon atoms t of the CH2 groups of the histidine segments. It is quite possible
that the imidazole rings are geometrically close to each other and a pairing effect occurs
(Figure 6) [59,60].
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Before further analysis, we must become acquainted with the terminology, which we
use in this study. As mentioned above, the peaks in the range of 3.13–2.90 ppm correspond
to the signals of the CH2 groups connected to nitrogen atoms: “inner” groups in the inner
lysine (symbol i) segments, “side” groups in the side arginine (symbol z), and histidine
(symbol t, bonded to imidazole ring) segments and “terminal” groups in the terminal lysine
(symbol s) segments. Note that we use these groups to study orientational mobility in
peptide dendrimers, which will be discussed below.

In order to confirm the assumption about the presence of paring between the imidazole
rings of neighboring histidine residues in the Lys-His-Arg dendrimer, let us consider for
comparison the 1H spectra of the studied dendrimers and the Lys-2Arg and Lys-2His
dendrimers in the range of 3.13–2.90 ppm in Figure 7. As can be seen, the shape and position
of the peaks for the dendrimers Lys-Arg-His and Lys-2Arg are similar and two main peaks
are observed at 3.15–3.05 ppm (inner and side groups) and 2.95–2.90 (terminal groups).
In the case of the Lys-His-Arg dendrimer, splitting of the peak for inner and side groups
occurs, which leads to the appearance of an additional peak at about 3.0 ppm. A similar
situation is observed for the Lys-2His dendrimer. We believe that such a change in the
spectra of dendrimers is also associated with the presence/absence of the pairing effect
between the imidazole rings. This assumption can be confirmed using the spectrum of the
Lys-2His dendrimer at low pH 1.1 (Lys-2Hisp) in which the imidazole rings are charged.
At the same time, according to the results of atomistic MD simulation of the Lys-2His and
Lys-2Hisp dendrimers, a pairing effect between imidazole rings is observed at a distance of
0.4 nm for Lys-2His, and is absent for Lys-2Hisp [61]. Figure 7 shows that in the spectrum
of Lys-2Hisp there is practically no additional peak at 3.0 ppm.
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Figure 7. Comparison of 1H NMR spectra of different peptide dendrimers in the region of signals
from inner CH2-(N) (green), side and inner (blue) and terminal (red) groups at a temperature of
298 K.

Thus, we conclude that in the case of the Lys-Arg-His dendrimer, the pairing effect is
absent, while in the case of the Lys-His-Arg dendrimer, the pairing effect is observed. It is
possible that this is the effect of the formation of a collapsed conformation of the Lys-2His
dendrimer, as well as the Lys-His-Arg dendrimer (which is presented below using NMR
relaxation data).

2.4. Local Orientational Mobility

To study the local orientational mobility of the Lys-His-Arg and Lys-Arg-His den-
drimers, we used the signals from the inner, side, and terminal groups (Figures 1, 3 and 7).
According to the spectral analysis, we observed a resolved signal from the protons of the
terminal groups and average signals from the inner and side groups, since they overlap.
Among the dendrimers under consideration, Lys-2Arg is an exception, since there is a
separate peak for inner groups [48,51,62]. This was taken into account when considering
the temperature dependences of the spin-lattice relaxation rate 1/T1H obtained (Figure 8).
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Lys-His-Arg, Lys-2Arg and Lys-2His dendrimers.

In the framework of the dipole–dipole relaxation mechanism of 1H nuclei (protons),
the 1/T1H function can be written as [63–67]:

1/T1H = A0(J(ωH , τi) + 4J(2ωH , τi)) (1)

where ωH is the cyclic resonance frequency (2πf 0) for 1H nuclei; A0 is a constant that does
not depend on temperature and frequency; and J is the spectral density which corresponds
to Fourier transform from P2 orientational autocorrelation functions averaged over groups
contributing to a corresponding peak. In the general case, the spectral density function for
1H nuclei has the form:

J(nωH , τi) = ∑
i

Ciτi

1 + (τinωH)
2 (2)

where τi and Ci are ith correlation times and their contribution to J, respectively, and n = 1,
2. The correlation time is determined by Arrhenius dependence

τ = τ0 exp
(

Ea

kbT

)
(3)

where Ea is the activation energy for the chosen group, and T and kb are temperature and
Boltzmann constant, respectively. The theory of orientational mobility in dendrimer [68–77]
predicts that the main contribution to NMR relaxation is provided by two processes with
different correlation times: (i) rotation dendrimer as a whole and branch (or subbranch)
reorientation.

The local orientational mobility of groups in the dendrimer is determined by the
position of the 1/T1H maximum. Moreover, the more to the left of the maximum (i.e., shifted
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towards high temperatures), the slower the group mobility. In dendrimer macromolecules,
the inner groups are the slowest (Figure 8a). The most mobile are the terminal groups, for
which an exponential growth is observed in the 1/T1H dependence, and the maximum is
not reached due to the limited experimental temperature range (the freezing of the solvent)
(Figure 8c). The mobility of side groups depends on the structure of the side segment and
the position of the observed group in it. For example, in the case of the Lys-2Lys dendrimer,
the mobility of the side groups is the same as the mobility of the terminal groups [51].
However, in Lys-2His, the mobility of the side groups coincides with the mobility of the
inner groups [48].

As shown in [48], the position of the maximum of the 1/T1H temperature dependence
for inner groups shifts to the left (towards high temperatures) due to the transition from
the swollen conformation to the collapsed one. Thus, if the structures of the dendrimers
are similar, then the criterion for contraction of the dendrimer can be the shift of the
maximum of the 1/T1H dependence, to which the inner groups contribute, towards high
temperatures. Figure 8a,b show the 1/T1H dependences for the inner groups of Lys-2Arg
(swollen conformation) and Lys-2His (collapsed conformation), which were obtained earlier
and used as references.

Let us now proceed to analyze the relaxation data for the Lys-Arg-His and Lys-His-Arg
dendrimers. As can be seen from Figure 8a, the 1/T1H dependence for the side and inner
groups of the Lys-Arg-His dendrimer practically coincides with the 1/T1H curve for the
inner groups of the Lys-2Arg dendrimer. This means that the mobility of the inner groups
of Lys-Arg-His indicates the swollen conformation of the dendrimer. However, it should
be noted that in the Lys-Arg-His dendrimer, the side arginine groups that contribute to
this dependence have a higher mobility than the inner groups and side groups in histidine
residues. For illustration, in Figure 8a, the 1/T1H curve for the side and inner groups of
the Lys-2Arg dendrimer is shown (solid red squares), the maximum for which is observed
much more to the right than for the other groups. It can be expected that, in the case of Lys-
Arg-His, the side arginine groups will also have a similar mobility, since its contribution is
40%. If it were possible to separate the signal only from the inner groups of the Lys-Arg-His
dendrimer, then, obviously, the position of the 1/T1H maximum would be to the left of
the same maximum for the inner groups in Lys-2Arg. Thus, it can be concluded that the
mobility of the inner groups in Lys-Arg-His is slower than in the Lys-2Arg dendrimer.

In the case of the Lys-His-Arg dendrimer, the 1/T1H maximum is shifted by 10 K to
the region of high temperatures compared to the similar curve for Lys-Arg-His. Therefore,
taking into account the contribution of the side arginine groups, we can expect that the
shift of the maximum will be even more significant and close to the 1/T1H dependence for
the Lys-2His dendrimer (in the collapsed conformation). Such a slowdown in the mobility
of the inner groups indicates that the conformation of the Lys-His-Arg dendrimer is close
to the collapsed one.

Analogous conclusions can be drawn from the 1/T1H temperature dependence for
the terminal groups (Figure 8c). The mobility of the terminal groups of the Lys-Arg-His
dendrimer is similar to that of the Lys-2Arg dendrimer. At the same time, the 1/T1H
dependencies for the terminal groups of Lys-Arg-His and Lys-2His have a similar behavior.

Thus, according to the NMR relaxation data, it can be argued that, despite the same
chemical composition, the Lys-Arg-His and Lys-His-Arg dendrimers have different con-
formational structures. The global conformation of the Lys-Arg-His dendrimer is close to
collapsed, and the conformation of the Lys-His-Arg dendrimer is more swollen.

3. Conclusions

In our recent work [48], it was found that a peptide dendrimer with double histidine
insertions changes its global conformation, from swollen at low pH (Lys-2Hisp) to collapsed
at normal pH (Lys-2His). However, the biomedical usage of the Lys-2His dendrimer in a
collapsed conformation can be problematic due to its tendency to aggregate.
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This work is a continuation of our previous study in [48]. Here, we present the synthe-
sis of new peptide dendrimers with the same amino acid composition, but different amino
acid sequences (Arg-His or His-Arg), in insertions between lysine branching points. These
dendrimers were experimentally investigated using NMR spectroscopy and NMR relax-
ation methods. The main idea for this research was to obtain a dendrimer macromolecule
that retains the properties of size change due to the recharging of imidazole rings, but
prevents the problem of aggregation of dendrimers with each other due to the insertion of
charged guanidine groups in arginine residues.

Despite the same amino acid composition, the Lys-Arg-His and Lys-His-Arg den-
drimers have different structural properties. In the case of the Lys-Arg-His dendrimer,
the pairing effect of imidazole rings of the histidine residues does not appear in the NMR
spectra, and the NMR relaxation behavior indicates a swollen conformation of the macro-
molecule, similar to that of the Lys-2Arg dendrimer. The opposite situation is observed for
the Lys-His-Arg dendrimer: the shape and position of the peaks of the side histidine groups
are similar to the corresponding peaks of the Lys-2His dendrimer, in which the paring
effect is observed. Moreover, according to the NMR relaxation data, the conformation of
the Lys-His-Arg dendrimer becomes close to the collapsed, as in the case of the Lys-2His
dendrimer.

Thus, we can make a conclusion that the Lys-His-Arg dendrimer is the most suitable
candidate for use as a pH sensitive nanocontainer in biomedical applications.

4. Materials and Methods
4.1. Synthesis of Lys-His-Arg and Lys-Arg-His

Boc-amino acids were purchased from Bachem Holding (Torrance, CA, USA) and Iris
Biotech GMBH (Marktredwitz, Germany); p-мethylbenzhydrylamine resin (MBHA-resin)
was supplied by Bachem Holding (Torrance, CA, USA); trifluoromethanesulfonic acid
(TFMSA), diisopropylcarbodiimide (DIC), 1-hydroxybenzotriazole (HOBt), thioanisole,
ethanedithiol, and other reagents were purchased from Sigma-Aldrich (Munich, Germany).
Triethylamine, dichloromethane (DCM) and dimethylformamide (DMF) were purchased
from Vecton Ltd. (St. Petersburg, Russia). Trifluoroacetic acid (TFA) was purchased from
Panreac (Barcelona, Spain) and distilled before application. All solvents were purified and
distilled using standard procedures.

Lysine-based dendrimers with dipeptide insertions His-Arg and Arg-His between
the branching points were obtained by a step-by-step BOC solid-phase peptide synthesis
method (SPPS) [51]. The synthesis was carried out manually using 0.1 g MBHA-resin
(amino group content was 0.72 mmol/g). The synthesis of the dendrimer molecules
includes: (1) the introduction of L-alanine to initiate the synthesis; (2) branching using the
trifunctional amino acid Boc-Lys(Boc); and (3) the formation of inner layers by insertion of
histidine (His) and arginine (Arg) amino acid residues.

However, several points should be noted regarding the procedure for the synthesis
of these dendrimers in order to obtain high quality products. Since the number of amino
acids increased exponentially with each addition of Boc-Lys(Boc), the reaction was care-
fully controlled by test to avoid errors in the synthesis. During the formation of the first
generation layers of macromolecules, we blocked unreacted peptide chains with an acetic
anhydride/dichloromethane (1:1 v/v) solution for 30 min before washing the MBHA-resin
with dimethylformamide (DMF), methanol, and dichloromethane (DCM) (twice each).
When binding was difficult, especially on the terminal layers, N-methylpyrrolidone (NMP)
was added to DMF. Probably some difficulties were caused by the presence of massive
protective side groups: a p-benzyloxymethyl group (Bom) on histidine and a mesitylene-2-
sulfonyl group (Mts) on arginine.

In the case of the Lys-His-Arg dendrimer, the average time of one acylation was
increased to 10–12 h instead of 4–6 h, especially with increasing generations. In addition,
the introduction of histidine residues in the first layer led to certain difficulties in the
synthesis, compared with the Lys-Arg-His dendrimer, in which the arginine layer was the
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starting one. The first layer of histidine not only increased the binding time and the excess
of reagents up to 6 equivalents, but also caused problems with the subsequent insertion
of arginine residues. Furthermore, for complete conversion during the formation of the
second generation layer of the Lys-His-Arg dendrimer, in addition to increasing the time
and quantity of reagents, it was necessary to add 4-N,N-dimethylaminopyridine (DMAP)
(0.1 eq.) as a catalyst.

In the case of the Lys-Arg-His dendrimer, practically no reacylation of the branching
lysine layer was required, except for the terminal one; the other stages took twice as much
time and twice as many reagents. Despite this, the amino groups in each generation
remained available for complete conversion.

4.2. NMR Experiments

For the NMR study, the samples of the Lys-Arg-His and Lys-His-Arg dendrimers
were dissolved in 0.158 M NaCl D2O at a concentration of about 1.54 g/dl and 1.59 g/dl,
respectively.

NMR measurements were performed on a Bruker Avance III 500 MHz spectrometer
(Karlsruhe, Germany) equipped with a standard 5 mm BBFO direct observation probe and a
Great 1/60A gradient system with a MIC S2 Diff/30 diffusive probe with a 1H convolution
compensation coil (EVT). One- and two-dimensional NMR spectra for peak assignments
were recorded at 298 K. All spectra were obtained using standard pulse sequences. The
1H spin-lattice relaxation times, T1H, were acquired with an “inversion-recovery” pulse
sequence, modified by the destructive gradient pulses at the beginning of the sequence
(“spoiler-recovery” sequence) [78]. NMR relaxation experiments were carried out at the
temperature range 283–343 K.
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