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Abstract: We compare several different methods to quantify the uncertainty of binding parameters
estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum
likelihood estimation, error propagation based on a first-order Taylor series expansion, and the
Bayesian credible interval. When the methods are applied to simulated experiments and to mea-
surements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty
in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for
both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for
confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to
observed confidence intervals.

Keywords: Isothermal Titration Calorimetry (ITC); Bayesian Credible Interval (BCI); Confidence
Interval (CI); Asymptotic Standard Error (ASE); Maximum Likelihood Estimation (MLE); Error
Propagation (EP)

1. Introduction

Isothermal titration calorimetry (ITC) is widely used to characterize binding processes
involving biomolecules, including proteins [1], small organic molecules [2], DNA/RNA [3,4],
and lipids [5]. ITC data are routinely analyzed to estimate thermodynamic parameters—
the Gibbs free energy ∆G and the enthalpy ∆H—for simple binding processes. Based
on the relation ∆G = ∆H − T∆S that includes the temperature T, the entropy ∆S may
also be obtained. These parameters have often been estimated using what we will refer
to as the standard procedure: a nonlinear least squares regression method implemented
in the Origin software package that is distributed with the MicroCal VP-ITC instrument
and its successors. The software yields a maximum likelihood estimate (MLE) of the
parameters and asymptotic standard error (ASE). Unfortunately, the ASE underestimates
the uncertainty by as much as an order of magnitude [6]!

The severe underestimation of uncertainty is mainly a consequence of ignoring the
error in the titrant concentration. In the standard procedure, the error in the titrand
concentration (in the sample cell) is handled by assigning the stoichiometry n as a free
parameter. On the other hand, the titrant concentration (in the syringe) is treated as a
constant. This assumption is made because ITC data can only be used to estimate the
ratio of the titrant:titrand concentrations as opposed to individual values [7]. However,
it is a poor assumption, because large errors (10–20%) in titrant concentration between
laboratories have been observed [6].

In 2015, Boyce et al. suggested that the uncertainty of the standard procedure could be
adjusted based on error propagation [8]. Specifically, based on the Taylor expansion, errors
in Ka, ∆H, and the site parameter n may be corrected by the relative error of the titrant
concentration. However, they did not show that the resulting uncertainty estimate leads to
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accurate confidence intervals. Confidence intervals are accurate when the X% confidence
interval includes the true value X% of the time, where X is a confidence level. In 2018,
Nguyen et al. described the analysis of ITC data with Bayesian regression. They found
that Bayesian credible intervals (BCIs)—regions that contain a specified percentage of the
Bayesian posterior—are more accurate confidence intervals than those based on the ASE [9].
There was no comparison to confidence intervals based on the ASE augmented with error
propagation. The purpose of this short manuscript is to address this oversight.

2. Results and Discussion
2.1. Bayesian Posteriors Are Converged

As in Nguyen et al. [9], the Markov chain Monte Carlo protocol leads to converged
BCIs. In a representative run for one of the 1000 simulated integrated heat curves (Figure S1),
fewer than 10% of samples are required before estimated percentiles of the posterior density
are stable (Figure S2). Comparable convergence behavior is observed when sampling the
Bayesian posterior for the ITC experiments (Figure S3).

2.2. Error Propagation Expands Confidence Intervals to Be Larger Than Bayesian Credible Intervals

For each of the 14 experiments, 95% CIs of ∆G and ∆H are shown in Figure 1. Because
the true value of parameters is unknown, the median estimate is shown as a proxy. Panels
(a) and (b) reproduce Figure 6 from Nguyen et al. [9]. The 95% CIs of ∆G encompass the
median value in nearly every experiment. For CIs based on the ASE, 95% CIs of ∆H are too
small. Panel (c) shows that error propagation increases CIs to encompass the median, but
the CIs appear to be larger than necessary.
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Figure 1. Uncertainty estimates of Mg(II):EDTA dataset. 95% credible intervals estimated from the
Bayesian posterior (a), confidence intervals calculated by ASE from nonlinear least squares (b), and
confidence intervals calculated by ASE with EP (c) for parameters specifying magnesium binding to
EDTA. The median MCMC samples are shown by the vertical green lines. The standard deviations of
the lower and upper bounds are denoted as red bars and estimated by bootstrapping.

2.3. Even with Error Propagation, BCIs Provide More Accurate CIs Than the ASE

The accuracy of CIs was more carefully assessed by coverage plots, in which predicted
confidence intervals are plotted against the percentage of BCIs and CIs that contain the
true values of ∆G and ∆H. For accurate CIs, points should lie along the diagonal. If points
are below the diagonal, CIs are underestimated. If points are above the diagonal, CIs
are overestimated.

Coverage plots were generated for 1000 simulations with high error (Figure 2) and
low error (Figure S4) and for 14 experiments (Figure 3). In all of the coverage plots,
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Bayesian credible intervals are closest to the diagonal. As expected, the ASE consistently
underestimates confidence intervals. For ∆G, the ASE with error propagation overestimates
confidence intervals for nearly all confidence levels. For ∆H, the story is more subtle. In
the simulations at both high and low error, confidence intervals are underestimated for
confidence levels less than 70% but somewhat overestimated for higher confidence levels.
In the experiments, confidence intervals are overestimated for confidence intervals greater
than 30%.

0 20 40 60 80 100
predicted

0

20

40

60

80

100

ob
se

rv
ed

G

0 20 40 60 80 100
predicted

0

20

40

60

80

100

ob
se

rv
ed

H

Figure 2. Uncertainty validation of the simulation dataset at high error of 10%. The predicted rate
(%) of CIs containing the true values were plotted against the observed rate (%) for Bayesian credible
intervals (blue leftward triangles), nonlinear least squares confidence intervals (red circles), and
nonlinear least squares confidence intervals with error propagation (cyan downward triangles). Error
bars of Bayesian procedure, which were standard deviations based on 100 bootstrapping samples,
were too small to be visible.
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Figure 3. Uncertainty validation of Mg(II)-EDTA dataset. The predicted rate (%) of CIs containing the
true values were plotted against the observed rate (%) for Bayesian credible intervals (blue leftward
triangles), nonlinear least squares confidence intervals (red circles), and nonlinear least squares
confidence intervals with error propagation (cyan downward triangles). Error bars of Bayesian
procedure were standard deviations based on 100 bootstrapping samples.

3. Materials and Methods
3.1. Integrated Heat Data

Our data are integrated heat curves, D ∈ {q1, q2, . . . , qN}, where qn is the integrated
heat of injection n. We analyzed simulations as well as ITC experiments that were previously
described [9].

Simulations are useful because it is inexpensive to collect large amounts of data and
because thermodynamic parameters are known exactly. Simulations of simple 1:1 binding
were performed in a similar way as in Nguyen et al. [9]. A total of 1000 integrated heat
curves with 24 injections each were modeled based on the free energy of binding ∆G, the
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enthalpy of binding ∆H, the enthalpy of dilution and stirring per injection ∆H0, the concen-
tration of receptor (titrand) [R]0, the concentration of ligand (titrant) [L]s, and the standard
deviation of the measurement error σ. The thermodynamic parameters and enthalpy of
injection were fixed at ∆G = −10 kcal/mol, ∆H = −5 kcal/mol, and ∆H0 = 0.5 µcal; [R]0
and [L]s were sampled from lognormal distributions with mean values of 0.1 and 1.0 mM,
respectively. Based on the uncertainty of 10% observed by Myszka et al. [6], the variance
was set at either small (5% of the mean) or large (10% of the mean). Measurement error was
modeled as normally distributed with a zero mean and standard deviation of σ = 1 µcal.

We also analyzed 14 integrated heat curves from previously performed experiments
in which MgCl2 was titrated into a sample cell containing EDTA in a MicroCal VP-ITC
calorimeter [9].

3.2. Regression

Data were analyzed via Bayesian regression and maximum likelihood estimation. In
both procedures, integrated heat curves for simple 1:1 binding were modeled as previously
described [9]. They are functions of the aforementioned parameters,

θ ≡ (∆G, ∆H, ∆H0, [R]0, [L]s, σ). (1)

Observed injection heat qn was treated as normally distributed about the true heat q∗n(θ),

qn ∼ N (q∗n(θ), σ2). (2)

Thus, the likelihood function of an integrated heat curve D ∈ {q1, q2, . . . , qN} is

p(D|θ) = 1
(2π)N/2σN exp

[
− 1

2σ2

N

∑
n=1

(qn − q∗n(θ))
2

]
. (3)

3.2.1. Bayesian Regression

For the Bayesian regression, the prior of parameters was independent, such that
p(θ) = ∏i p(θi). As in Nguyen et al. [9], uniform priors were used for ∆G, ∆H, and ∆H0.
Lognormal priors were used for the concentrations of the ligand and the receptor,

ln[X ]0 ∼ LN ([X ]0, (δ[X ]0)
2), (4)

where [X ]0 ∈ {[R]0, [L]s} is the stated value of each quantity; δ was assumed to be either
5% or 10%. The uninformative Jeffreys prior was used for σ [10]:

p(σ) ∝
σ0

σ
, (5)

where σ0 = 1 cal. For this model, the posterior probability density is

p(θ|D) ∝ p(D|θ) p(θ), (6)

Sampling from the Bayesian posterior was performed using a Markov chain Monte Carlo
method, as in Nguyen et al. [9], but with a few small adjustments. Instead of using pymc3,
the regression was implemented in numpyro [11,12]. After 2000 warm-up moves, 10,000 (as
opposed to 5000 [9]) samples from four chains were stored. The X% BCI of each parameter
was calculated based on the smallest interval that contains X% of the posterior samples.
Additionally, the uncertainty δ was set at either 5% and 10%, as opposed to only 10%.

3.2.2. Maximum Likelihood Estimation

For the MLE, parameter estimates were obtained as

θ̂ = arg max
θ

log p(D|θ). (7)
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The covariance matrix of the asymptotic standard error (ASE) was estimated based on the
inverse Fisher information matrix,

cov(θ̂) ≈ − 1
N

[
∂logLN
∂θ∂θ>

∣∣∣θ=θ̂

]−1
. (8)

We used scipy.optimize.minimize function from the python package scipy [13] to implement
this MLE model, estimate the parameters, and automatically calculate the covariance matrix
for parameter uncertainty. The X% CI of each parameter was defined by an interval in
which the lower bound was the 1 − X/2 percentile, and the upper bound was the 1 + X/2
percentile of the normal distribution with a mean as the estimated value and standard
deviation as the ASE.

3.2.3. Maximum Likelihood Estimation with Error Propagation

We performed error propagation to augment the ASE of MLE parameters based on
the formula provided by Boyce et al. [8],

( sθ

θ

)2
=
( sθ,ASE

θ

)2
+

( s[L]s
[L]S

)2
(9)

In this equation, s are standard errors and θ ∈ {∆G, ∆H} are the parameters affected by the
uncertainty of ligand concentration [L]S; sθ,ASE is the ASE, s[L]s is the standard error in the
ligand concentration, and sθ is the error estimate of the parameter θ that incorporates ligand
concentration error. The uncertainty of the ligand concentration s[L]s can be estimated by
another experiment or based on previous estimates. Considering uncertainty in both protein
and ligand concentrations, we used either 5% or 10% for both s[R]0 /[R]0 and s[L]S /[L]S. CIs
of this procedure were estimated similarly to the MLE procedure.

4. Conclusions

In both ITC simulations and experiments, BCIs provide more accurate uncertainty
estimates for thermodynamic binding parameters than the ASE, without or with error
propagation. The ASE underestimates the uncertainties of all datasets. Error propaga-
tion overestimates the uncertainties in the experimental dataset, but in simulations it
underestimates the uncertainty of enthalpy for confidence intervals less than 70%.
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