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Abstract: Glucocorticoids are effective anti-inflammatory and immunosuppressive agents. Long-
term exposure is associated with multiple metabolic side effects. Spore-forming probiotic bacteria
have shown modulatory properties regarding glycolipid metabolism and inflammation. The aim
of this study was to evaluate, for the first time, the effects of Bacillus species spores (B. licheniformis,
B. indicus, B. subtilis, B. clausii, and B. coagulans) alone and in combination with metformin against
dexamethasone-induced systemic disturbances. A total of 30 rats were randomly divided into
5 groups: group 1 served as control (CONTROL), group 2 received dexamethasone (DEXA), group
3 received DEXA and MegaSporeBiotic (MSB), group 4 received DEXA and metformin (MET), and
group 5 received DEXA, MSB, and MET. On the last day of the experiment, blood samples and liver
tissue samples for histopathological examination were collected. We determined serum glucose, total
cholesterol, triglycerides, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10
(IL-10), catalase, total antioxidant capacity (TAC), and metformin concentration. DEXA administra-
tion caused hyperglycemia and hyperlipidemia, increased inflammation cytokines, and decreased
antioxidant markers. Treatment with MSB reduced total cholesterol, suggesting that the administra-
tion of Bacillus spores-based probiotics to DEXA-treated rats could ameliorate metabolic parameters.

Keywords: Bacillus spores; dexamethasone; inflammation; hyperglycemia; dyslipidemia; oxidative
stress

1. Introduction

In the context of the coronavirus disease 2019 (COVID-19) pandemic, glucocorticoid
(GC) therapy in the form of DEXA has emerged as an effective measure against severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), due to its powerful anti-inflammatory
and immunosuppressive effects. Described as ‘flight and fight’ hormones, the acute secre-
tion of GCs allows energy adaptation to situations of danger, stress, or metabolic imbalance.
However, long-term exposure to GCs is associated with multiple metabolic side effects,
affecting the basal metabolism of carbohydrates and lipids [1].

GCs produce dysregulation of glucose-induced insulin release and insulin resistance
by activating specific receptors that decrease the uptake of glucose in the peripheral tissues
and increase the hepatic production of glucose [2,3]. Under acute stress conditions, GCs
stimulate β-cell function and insulin secretion to supply the demand for glycemia. The
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long-standing activation of β-cells leads to insulin resistance and later to β-cell apoptosis,
decreased insulin biosynthesis, and subsequently reduced insulin secretion [2]. DEXA can
cause β-cell apoptosis via the activation of cellular oxidative stress and the generation of
reactive oxygen species (ROS) [4]. Moreover, DEXA has been associated with changes in
gut microbiota richness and diversity, suggesting additional mechanisms that are activated
in the dysregulation of glycolipid metabolism [5]. Steroid-induced diabetes is responsible
for 2% of the cases of diabetes mellitus in the general population [6]. Therapeutic measures
depend on the duration and type of glucocorticoid therapy and include non-insulin glucose-
lowering drugs and insulin-based agents [2].

Probiotics are live microorganisms that confer favorable properties for the host’s health
via amelioration of gut microbiota composition and protection of the gut environment [7].
Probiotic supplements have been associated with beneficial effects regarding glycemic
balance, lipid profile, inflammation indicators, and blood pressure values in patients with
diabetes mellitus type 2 [8]. The observed anti-diabetic effects are due to the modulation of
gut microbiota composition, regulation of immune reactions, and improvement of energy
metabolism [9]. Spores-based probiotics have additional benefits, such as higher resistance
to gastric acid and increased stability at room temperature [10]. MSB, a probiotic mixture of
five spore-forming Bacillus strains, has enriched the microbial diversity in an in vitro model
of a simulator of the human intestinal microbial ecosystem (SHIME®) and ameliorated the
production of short-chain fatty acids [11]. Moreover, the administration of MSB decreased
dietary endotoxemia, serum pro-inflammatory cytokines, and triglyceride levels in human
subjects [12].

Traditionally, MET, a biguanide-derived drug, is used in the treatment of diabetes
mellitus type 2 as a modulator of insulin sensitivity by decreasing hepatic gluconeoge-
nesis and lipogenesis. Hepatic glucose production is regulated based on a multi-organ
communication activated by MET that includes the gut, the blood, and the liver. In the
intestines, MET stimulates gut metabolism and glucose utilization, increases the secretion
of the incretins, and modifies the microbiota composition. In the blood, inflammation is
suppressed by MET treatment. In the liver, MET impact’s mitochondrial function and mod-
ulates molecular pathways involved in glucose and lipid metabolism [13]. MET showed
beneficial effects regarding glucose and lipid metabolism, liver markers, and inflammation
in patients on systemic glucocorticoid therapy for inflammatory diseases [14].

Taking this into consideration, this study aimed to evaluate the effect of Bacillus spore
probiotics, alone and in combination with MET, on metabolic, inflammatory, and oxidative
disturbances induced by DEXA administration in rats.

2. Results
2.1. Biochemical Results

Serum glucose, total cholesterol, and triglyceride levels are represented in Figure 1.
The serum concentration of glucose (mean± SD) increased significantly after DEXA admin-

istration compared to the CONTROL group (248.60± 47.37 mg/dL vs. 133.50 ± 5.70 mg/dL,
p < 0.0001). In DEXA-treated rats, treatment with MSB or MET lowered the values of
serum glucose by 22% (191.80 ± 32.24 mg/dL) and 23% (191.50 ± 44.53 mg/dL); however,
without statistically significant differences (p = 0.054 and p = 0.052, respectively). However,
the coadministration of MSB and MET in DEXA-treated rats significantly reduced serum
levels of glucose (169.50 ± 21.03 mg/dL, p = 0.003) compared to the DEXA group.

DEXA administration induced a significant increase in the total cholesterol serum lev-
els (mean± SD, 156.10± 35.10 mg/dL) versus the CONTROL group (117.30 ± 8.84 mg/dL,
p = 0.008). The DEXA + MSB group showed a statistically significant difference in total
cholesterol levels (122.70 ± 5.17 mg/dL) compared to the DEXA group (p = 0.02). MET
administration or the combination of MET and MSB in DEXA-treated rats decreased
the concentration of total cholesterol (140.50 ± 13.45 mg/dL and 126.30 ± 11.71 mg/dL,
respectively) compared to the DEXA group, but without statistically significant results
(p = 0.578 and p = 0.061, respectively).
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Figure 1. Serum glucose, total cholesterol, and triglycerides concentration. a: p < 0.05 compared to 
the CONTROL group; b: p < 0.05 compared to the DEXA group; c: p < 0.05 compared to the DEXA + 
MET group. Abbreviations: DEXA, dexamethasone; MSB, MegaSporeBiotic; MET, metformin. The 
bars represent mean values with a standard deviation. 
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the coadministration of MSB and MET in DEXA-treated rats significantly reduced serum 
levels of glucose (169.50 ± 21.03 mg/dL, p = 0.003) compared to the DEXA group. 
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= 0.578 and p = 0.061, respectively). 
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In the DEXA + MSB and DEXA + MSB + MET groups, triglyceride levels decreased by 
16.4% (153 ± 8.85 mg/dL) and 19.23% (147.80 ± 16.28 mg/dL), respectively, compared to the 
DEXA group; however, the differences were not statistically significant (p = 0.174 and p = 
0.08, respectively). MET administration did not significantly alter the triglycerides serum 
concentration in DEXA-treated rats compared to the DEXA group (198.20 ± 39.41 mg/dL). 
In the DEXA + MSB + MET group, serum triglyceride levels were significantly reduced 
versus the DEXA + MET group (p = 0.005). 

2.2. TNF-α, IL-6 and IL-10 Levels 
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statistically significant (p = 0.11). However, MET treatment (DEXA + MET group) and the 
combination of MSB and MET (DEXA + MSB + MET group) significantly reduced the se-
rum concentration of TNF-α compared to the DEXA group (71.14 ± 10.44 pg/mL; p < 0.0001 
and 79.08 ± 10.92 pg/mL; p = 0.0002, respectively). 

Figure 1. Serum glucose, total cholesterol, and triglycerides concentration. a: p < 0.05 compared to the
CONTROL group; b: p < 0.05 compared to the DEXA group; c: p < 0.05 compared to the DEXA + MET
group. Abbreviations: DEXA, dexamethasone; MSB, MegaSporeBiotic; MET, metformin. The bars
represent mean values with a standard deviation.

Compared to the CONTROL group, serum triglycerides were significantly higher
in the DEXA-treated rats (mean ± SD, 141.90 ± 9.90 mg/dL versus 183 ± 23.14 mg/dL,
p = 0.03). In the DEXA + MSB and DEXA + MSB + MET groups, triglyceride levels
decreased by 16.4% (153 ± 8.85 mg/dL) and 19.23% (147.80 ± 16.28 mg/dL), respectively,
compared to the DEXA group; however, the differences were not statistically significant
(p = 0.174 and p = 0.08, respectively). MET administration did not significantly alter the
triglycerides serum concentration in DEXA-treated rats compared to the DEXA group
(198.20 ± 39.41 mg/dL). In the DEXA + MSB + MET group, serum triglyceride levels were
significantly reduced versus the DEXA + MET group (p = 0.005).

2.2. TNF-α, IL-6 and IL-10 Levels

Serum TNF-α, IL-6, and IL-10 concentrations are shown in Figure 2. The serum
levels of TNF-α (mean ± SD) in healthy CONTROL rats were 43.60 ± 8.26 pg/mL. In the
DEXA-treated rats, serum TNF-α concentration was significantly increased compared to
the healthy CONTROL group (138.60 ± 12.26 pg/mL, p < 0.0001). Treatment with MSB
reduced the serum levels of TNF-α by 21% (109.40 ± 39.28 pg/mL); however, the decrease
was not statistically significant (p = 0.11). However, MET treatment (DEXA + MET group)
and the combination of MSB and MET (DEXA + MSB + MET group) significantly reduced
the serum concentration of TNF-α compared to the DEXA group (71.14 ± 10.44 pg/mL;
p < 0.0001 and 79.08 ± 10.92 pg/mL; p = 0.0002, respectively).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

   

Figure 2. Serum TNF-α, IL-6, and IL-10 levels. a: p < 0.05 compared to the CONTROL group; b: p < 
0.05 compared to the DEXA group; c: p < 0.05 compared to the DEXA + MET group; d: p < 0.05 
compared to the DEXA + MSB group. Abbreviations: TNF-α, tumor necrosis factor alpha; IL, 
interleukin; DEXA, dexamethasone; MSB, MegaSporeBiotic; MET, metformin. The bars represent 
mean values with a standard deviation. 
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p = 0.02), respectively. 

2.3. TAC and Catalase 
Serum levels of TAC and catalase are shown in Figure 3. 

  

Figure 2. Serum TNF-α, IL-6, and IL-10 levels. a: p < 0.05 compared to the CONTROL group;
b: p < 0.05 compared to the DEXA group; c: p < 0.05 compared to the DEXA + MET group;
d: p < 0.05 compared to the DEXA + MSB group. Abbreviations: TNF-α, tumor necrosis factor alpha;
IL, interleukin; DEXA, dexamethasone; MSB, MegaSporeBiotic; MET, metformin. The bars represent
mean values with a standard deviation.
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The serum IL-6 concentration (mean ± SD) was significantly increased in the DEXA-
treated rats (112.90 ± 42.65 pg/mL; p = 0.0009) compared to the CONTROL group
(49.96 ± 4.95 pg/mL). In the DEXA + MSB group, MSB administration reduced serum
IL-6 levels by 14.8% (96.13 ± 14.85 pg/mL); however, the decrease was not statistically
significant (p = 0.735). DEXA + MET and DEXA + MSB + MET groups exhibited reduced
levels of IL-6 (89.01 ± 16.94 pg/mL and 94.22 ± 20.76 pg/mL, respectively), but without
statistically significant differences (p = 0.422 and p = 0.652, respectively).

The serum IL-10 levels (mean± SD) significantly increased in the DEXA-treated group
(77.98 ± 30.76 pg/mL, p = 0.021) compared to the CONTROL group (48.30 ± 5.10 pg/mL).
In the DEXA + MSB + MET group, serum IL-10 concentration was significantly higher
(113.70 ± 10.88 g/mL, p = 0.004) than in the DEXA group. The association between DEXA,
MSB, and MET also significantly increased IL-10 levels compared to the DEXA + MSB
group (79.43 ± 9.48 pg/mL, p = 0.006) and the DEXA + MET group (84.87 ± 5.20 pg/mL,
p = 0.02), respectively.

2.3. TAC and Catalase

Serum levels of TAC and catalase are shown in Figure 3.
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The catalase activity (mean ± SD) in CONTROL-healthy rats was 575.30 ± 43.16 U/mL.
In the DEXA-treated rats, catalase activity decreased by 15.87% (484.0 ± 45.89 U/mL) with-
out a statistically significant difference (p = 0.089). Administration of MSB, MET, or the com-
bination of both MSB and MET slightly reduced the catalase activity (469.80 ± 76.13 U/mL,
482.6 ± 54.33 U/mL, and 450.10 ± 70.30 U/mL, respectively).

In the DEXA group, TAC (mean ± SD) was significantly reduced (0.118 ± 0.033,
p = 0.004) compared to the CONTROL group (0.260 ± 0.059). As shown in Figure 4, a
higher TAC was observed in all treated groups compared to the DEXA group, without
statistically significant differences.

2.4. Metformin

The metformin serum concentration is shown in Figure 4. In the DEXA + MSB + MET
group, the administration of MSB did not alter the serum concentration of MET compared
to the DEXA + MET group (8.01 ± 3.12 µg/mL versus 7.72 ± 2.81 µg/mL).
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2.5. Histopathology

Histological analysis of liver tissue sections was focused on assessing the changes in the
hepatic lobular architecture, hepatocyte degeneration, lipid accumulation in hepatocytes,
inflammation, and blood vessel congestion, as well as restoration of the hepatocyte structure
and liver architecture.

The CONTROL group exhibited a normal architecture of the classic hepatic lobules,
with linear cords of hepatocytes separated by sinusoids, arranged around the central vein
(Figure 5(A1,A2)).

DEXA-treated rats (Figure 5(B1,B2)) showed alterations in hepatocyte structure and
hepatic lobule architecture. Mild hepatocyte hypertrophy was detected, with enlarged,
ballooned cells having a pale-staining cytoplasm and enlarged nucleus, as well as intracyto-
plasmic lipid accumulation with small lipid droplets in the perinuclear area and large lipid
droplets that occupy less than half of the cell. Moreover, some degenerated eosinophilic
hepatocytes with pyknotic, hyperchromatic nuclei and loss of cellular borders may be
identified, along with vascular congestion in the central vein and dilated sinusoids. A
moderate inflammatory infiltrate can also be seen within the sinusoids and portal space,
with lymphocytes and a few polymorphonuclear neutrophils.

MSB and DEXA administration provide a partial reduction in lipid accumulation with
small perinuclear lipid droplets within the hepatocytes and moderate improvement in
hepatocyte structure. Mild central vein ectasia as well as stasis and occasional inflammatory
cells within the dilated sinusoids may be seen (Figure 5(C1,C2).

A more important histologic restoration of the hepatic architecture and hepatocyte
structure was achieved after MET and DEXA administration (Figure 5(D1,D2)), with an
important reduction of intra-hepatocyte lipid content. Congestion within the portal vessels
and sinusoids, along with mild central vein congestion, are observed.

Treatment with MET, MSB, and Dexa (Figure 5(E1,E2)) shows poor improvements in
hepatic lobule architecture and hepatocyte structure, with still disorganized cords of cells
and high intracellular lipid accumulation, with the cells displaying small and large lipid
droplets that occupy less than half of the cell. Central vein congestion with intraluminal
lymphocytes, as well as dilated sinusoids with moderate inflammatory infiltrate within the
lumen, are identified on the sections.
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Figure 5. Photomicrographs of liver sections stained by H&E. (A): CONTROL group; ((A1), 20× and
((A2), 40×). (B): DEXA-treated rat group; ((B1), 20×); and ((B2), 40×). Alterations of hepatocytes structure
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and hepatic lobule architecture; enlarged, ballooned cells, with intracytoplasmic small lipid droplets
in the perinuclear area(
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3. Discussion

This present study focuses on the role of Bacillus spores-based probiotics, alone and in
combination with MET, in DEXA-induced metabolic disorders in rats. Compared to the
CONTROL group, DEXA generated hyperglycemia, hyperlipidemia, a pro-inflammatory
and pro-oxidant systemic status, and morphological alterations similar to non-alcoholic
fatty liver disease (NAFLD) [15].

GCs are frequently used drugs due to their anti-inflammatory and immunosuppressive
properties, yet their side effects may limit their clinical benefit. DEXA, a powerful agent
that has been proved to be effective in severe forms of SARS-CoV-2, is a long-acting
glucocorticoid agent [1]. It increases the risk of hyperglycemia and diabetes mellitus and
is often used for the development of insulin resistance in animal models. In the present
study, DEXA administration, even for a relatively short period, induced hyperglycemia and
hyperlipidemia, results similar to previous studies [16–18]. The development of steroids-
induced diabetes is based on the binding of GCs to their specific receptors that activate the
hepatic production of glucose, inhibit the peripheric use of glucose, stimulate lipolysis in
adipose tissue by activating hormone-sensitive lipase, and impair the pancreatic secretion
of insulin, leading to insulin resistance [2]. Moreover, GCs increase serum cholesterol and
triglycerides by inhibiting the lipoprotein lipase, triggering de novo fatty acid synthesis,
and increasing the secretion of very-low-density lipoprotein (VLDL) cholesterol [19,20].

In the current study, MSB decreased serum total cholesterol in DEXA-treated rats.
This is the first study that presents the effects of Bacillus spores-based probiotics on DEXA-
induced metabolic disturbances. DEXA exposure has shown alterations in the gut micro-
biota composition, together with accentuated fat deposition, circadian rhythm disorders,
and abnormal metabolic parameters [5]. Gut dysbiosis and increased permeability of the
gut barrier have been involved in the development of metabolic syndrome and associated
systemic complications [21]. Thus, GCs-induced changes in the microbiota environment
could contribute to the observed metabolic disturbances, suggesting a potential therapeutic
role for the MSB. In both animal models of experimentally-induced diabetes and patients
with diabetes mellitus type 2, probiotics demonstrated beneficial anti-diabetic properties
regarding the improvement of gut barrier function with decreased permeability and con-
secutive endotoxemia, stimulation of incretin secretion, increase of insulin sensitivity and
amelioration of glucose and lipid profile, immunomodulatory function, maintaining the
balance between pro-inflammatory and anti-inflammatory cytokines, and oxidative stress
regulation [9]. Probiotics containing Bacillus subtilis have been shown to regulate insulin
and HbA1c levels and ameliorate glucose tolerance and lipid profiles in an animal model
of streptozotocin-induced diabetes [22]. In high-fat diet animals, probiotics containing
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Bacillus licheniformis or Bacillus coagulans significantly improved serum cholesterol and
triglycerides [23,24]. The observed results of Bacillus spores-based probiotics on DEXA-
induced metabolic disturbances are similar to the effects of Bacillus-based probiotics on
metabolic disorders induced by different mechanisms, such as the high-fat diet, regarding
glycolipid profile, inflammation biomarkers, and histological alterations of the hepatic
tissue, suggesting that probiotics could activate some common mechanisms of action that
influence metabolic pathways [25].

MET is a widely used drug for the treatment of diabetes mellitus type 2 and its com-
plications. The main mechanism of action relies on the inhibition of the hepatic production
of glucose and the improvement of insulin sensitivity; however, supplementary actions on
metabolism, gut, and inflammation have been described [13]. In the DEXA+ MET group,
MET administration reduced the serum concentration of glucose and total cholesterol;
however, without observed effects on the serum triglycerides; the differences were not
statistically significant. The effect of lowering total cholesterol and glycemia is similar to
that noticed in previous studies of both patients receiving systemic glucocorticoid therapy
and DEXA-treated rats [14,26]. The effect of MET on the non-significant alteration of triglyc-
erides serum levels in the DEXA + MET group is in accordance with a systematic review
that evaluated the effect of MET versus other antidiabetic drugs regarding lipid metabolism
in patients with type 2 diabetes, showing that the decrease of the triglycerides induced
by MET depends on the glucose-lowering effect, the doses of MET, and the duration of
the treatment [27]. The non-significant change in the serum concentration of triglycerides
noticed in this study could be explained by the short duration and low dose of MET. The
amelioration of glycolipid metabolic parameters in the DEXA + MSB + MET group could
be explained by the similar favorable effects of both MSB and MET [12,27].

DEXA, a known anti-inflammatory and immunosuppressive agent, increased the
serum concentration of TNF-α and IL-6 in this study. GCs have been reported to increase
pro-inflammatory gene expression (TNF-α, IL-6), depending on the time and dose of the
exposure [28]. TNF-α, a pro-inflammatory cytokine, is also being secreted from adipocytes
in insulin-resistant conditions [29]. TNF-α has been recognized as a mediator of insulin
resistance due to the observed actions of decreasing the activity of the tyrosine kinase of
the insulin receptor by promoting the serine phosphorylation of insulin receptor substrate
1 (IRS-I) [30] and reducing the expression of glucose transporter 4 (GLUT 4) in the adi-
pose tissue [31]. IL-6 manifested dual properties, according to the tissue and metabolic
environment. In the liver and adipose tissue, IL-6 induces insulin resistance due to insulin
receptor inhibition and enhances inflammation [32]. The observed results in this study re-
garding the serum TNF-α and IL-6 levels could be explained by the metabolic disturbances
induced by DEXA that led to an insulin resistance state; this was observed in similar animal
studies [33,34]. Furthermore, GCs-induced gut dysbiosis promotes the development of a
pro-inflammatory state in the host that is associated with the development of metabolic
disorders such as diabetes mellitus type 2 [5,35]. In the DEXA+ MSB rats, MSB lowered the
serum concentration of TNF-α and IL-6, although the differences were not statistically sig-
nificant, suggesting an anti-inflammatory effect. The short duration of treatment with MSB
could explain the lack of statistically significant results. Bacillus spores-based probiotics dis-
played the ability to decrease systemic inflammation in human subjects [12] and in animal
models of experimentally induced ulcerative colitis and acetaminophen-induced acute liver
injury [36,37]. DEXA+ MET association reduced the inflammation profile of TNF-α and
IL-6, results explained by the anti-inflammatory role of MET in diabetes mellitus [13,38].
In both animal models and human subjects with DEXA-induced metabolic disturbances,
MET successfully alleviated inflammation [14,33].

IL-10 is mainly known as an inflammatory regulator that limits the production of
pro-inflammatory molecules such as TNF-α, IFN-γ, IL-1, IL-2, and IL-6 and controls the
activation of T cells via a direct effect on monocytes and macrophages [39]. DEXA-treated
rats exhibited increased serum levels of IL-10. Previous studies have reported conflicting re-
sults regarding DEXA action over IL-10 secretion [40]. DEXA induced a biphasic alteration
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in lipopolysaccharides (LPS)-induced IL-10 secretion in blood cell culture, represented
by up-regulation at lower doses and down-regulation at higher doses. In addition, IL-10
was shown to increase the concentration of glucocorticoid receptors and enhance DEXA
activity [41]. Considering the serum pro-inflammatory state characterized by increased
TNF-α and IL-6 induced by DEXA, increased IL-10 secretion could be explained by the
direct effect of DEXA as an anti-inflammatory reaction [42]. MSB administration slightly
increased the IL-10 levels compared to the DEXA-treated rats. This observed trend was also
noticed in other animal models of high-fat diet or streptozotocin-induced diabetes, where
probiotic Lactobacillus plantarum increased the expression of IL-10 while decreasing the ex-
pression of TNF-α and IL-6, providing immunomodulatory characteristics of probiotics [43].
In the DEXA + MET group, IL-10 serum levels were higher than in the DEXA group. In
NAFLD models, MET treatment has been shown to manifest protective effects against the
development of NAFLD in association with the improvement of inflammation markers
such as IL-10, gut microbiota composition, and gut barrier integrity [44,45].

Free radicals can induce varying degrees of cellular damage related to the function of
the intracellular defense system. Catalase is an enzyme with antioxidant activity, capable
of maintaining redox homeostasis in the cell and influencing lipid peroxidation and the
formation of hydroxyl radicals [46,47]. In our study, the level of plasma catalase decreased
slightly in the DEXA group. This result is similar to that obtained by other researchers and
is in accordance with the observed results for TAC, suggesting that the damage induced by
DEXA is due to excess ROS and the consecutive depletion of the antioxidant system [48–50].
Moreover, in this study, we observed that catalase level was not significantly influenced by
either MET, MSB, or their combination, even though there are studies of MET increasing
catalase activity in a dose-dependent manner [51]. The noted results can be explained
using a single dose of MET and the limited duration of the experiment. Regarding the
Bacillus probiotic, similar results were obtained in a study using Bacillus subtilis, where this
probiotic had no significant impact on catalase [52].

Moreover, DEXA reduced TAC compared to the CONTROL group, with results similar
to previous studies [53]. ROS and oxidative stress are involved in the pathophysiology of
DEXA-induced insulin resistance [54]. At the pancreatic level, hyperglycemia and gluco-
toxicity of β cells produce lipid peroxidation and diminish the antioxidant glutathione [17].
ROS induces dysfunction in β cells due to their decreased antioxidant capacity. Oxidative
stress activation leads to apoptosis, impaired mitochondrial functionality, and alteration
of the K ATP channels [55]. MSB increased the TAC in the DEXA-treated group, although
the difference was not statistically significant. MSB showed antioxidant features observed
in animal models of ulcerative colitis or acetaminophen-induced acute liver injury [36,37].
Bacillus cereus and Bacillus coagulans produce extracellular polysaccharides (EPS) that re-
move the ROS within the intestine, displaying antioxidant properties and protecting against
oxidative stress-induced DNA damage [56,57]. Another antioxidant mechanism exhib-
ited by Bacillus species is the synthesis of riboflavin and carotenoids, known antioxidant
molecules [58]. MET administration increased TAC in DEXA+ MET rats versus DEXA-only
treated rats. In animal models of DEXA-induced insulin resistance, MET demonstrated the
properties of oxidative stress regulators, increasing the antioxidant marker glutathione [59].
The antioxidant mechanisms activated by MET are the upregulation of the activity of
antioxidant enzymes, the trapping of hydroxyl radicals, and the inhibition of NADPH
oxidase, the main enzyme that supplies intracellular ROS [60].

At the histological level, DEXA-treated rats displayed disruption of hepatocyte ar-
chitecture, intracellular lipid accumulation, cellular injury, and inflammatory infiltrate,
indicating NAFLD. These histological characteristics are similar to those observed in other
studies of DEXA-treated rats [18,61]. GCs-induced NAFLD is produced via different molec-
ular mechanisms versus other animal models of NAFLD that are diet-induced or leptin
receptor-deficient mice [62]. The activation of glucocorticoid receptors in the liver and adi-
pose tissue promotes the lipid buildup within the hepatocytes via the induction of different
enzymes responsible for lipogenesis and lipid mobilization, whereas hyperinsulinemia
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and insulin resistance uphold these mechanisms [15]. The histological examination of
the liver tissue after MSB administration in DEXA-treated rats displayed reduced lipid
deposition and a mild tendency to improve hepatic structure. MSB has shown protective
properties regarding hepatocyte necrosis and hepatic inflammation in an animal model of
acetaminophen-induced acute liver injury [37]. Moreover, a probiotic mixture consisting of
five Bacillus spp. alleviated hepatic steatosis induced by a high-fat diet, attenuated chronic
inflammation in the liver, ameliorated insulin sensitivity, and improved the function of
the gut barrier [25]. MET administration improved the histological characteristics of the
DEXA-induced NAFLD, with results similar to those observed in previous research. In
nondiabetic patients with NAFLD, MET administration for 12 months ameliorated liver
fibrosis, necrosis, inflammation, and lipid deposition, normalized the serum liver profile,
and enhanced insulin sensitivity [63]. In the DEXA + MSB + MET group, a similar histologi-
cal aspect to the DEXA group was associated with increased IL-10 serum concentration [64].
We first hypothesized that a pharmacokinetic interaction regarding MSB administration
could mediate the observed result; however, the serum concentration of MET was not
different between these two groups. MSB and MET associations improved serum metabolic
and antioxidant parameters due to the combination of mechanisms; however, they could
impact the inflammation equilibrium in a more complex way. The reduced expression of
TNF-α and IL-6 and the raised level of IL-10 could indicate a dysregulated inflammatory
balance related to the histological disturbances. IL-10 expression becomes activated very
early in the course of acute hepatic injury; however, it manifests a time-dependent effect on
the control of inflammation in liver damage. In experimentally induced acute liver injury
produced by carbon tetrachloride (CCl4), IL-10 secretion was activated 6 h after the initial
injury and increased through the progression of hepatic histological damage without being
correlated with histological amelioration. Although IL-10 regulates the pro-inflammatory
cytokines, it does not affect the histological pattern of inflammation observed initially
after hepatic injury. In animal models of hepatic fibrosis caused by long exposure to CCl4,
IL-10 demonstrated anti-fibrotic effects, suggesting that IL-10 action is time-dependent
and may involve a direct antifibrotic mechanism [65]. Moreover, in patients with chronic
C hepatitis, circulating IL-10 levels were associated with sustained necroinflammation
activity, suggesting a relationship between IL-10 and liver histology severity [66].

4. Materials and Methods
4.1. Agents and Chemicals

We used MSB probiotic capsules (Microbiome Labs, Saint Augustine, FL, USA), Met-
formin (MET) (Siofor, 1000 mg/tablet, Berlin- Chemie Ag, Berlin, Germany), and Dexam-
ethasone Sodium Phosphate (DEXA) (Dexamethasone Phosphate Krka 4 mg/mL, Krka
d.d. Novo Mesto, Novo Mesto, Slovenia), which are standard chemical compounds. All
products were purchased from a public pharmacy. MSB, a probiotic blend of 4 × 109 CFU
from five gram-positive, spore-forming Bacillus species (B. licheniformis, B. indicus, B. subtilis,
B. clausii, and B. coagulans), and MET were administered orally as a suspension in 1 mL of
1% carboxymethylcellulose (CMC, vehicle). DEXA was administered by an intraperitoneal
(i.p.) injection.

4.2. Animals

Charles River Wistar albino male rats (n = 30) weighing between 220 and 270 g were
obtained from the Center for Experimental Medicine and Practical Skills of Iuliu Hatieganu
University of Medicine and Pharmacy. The animals were fed rat chow ad libitum and had
free access to tap water. The rats were maintained under standard conditions of temperature
(22 ± 2 ◦C), light (12 h light/dark cycles), and humidity. The rats were acclimated to these
conditions for two days before starting the experiment.

The working animal protocol was revised and approved by the Ethics Committee of
Iuliu Hatieganu University of Medicine and Pharmacy (no. AVZ262/15.09.2022) and by
the National Sanitary Veterinary and Food Safety Authority (no. 336/14.10.2022). Specific
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regulations and amendments used in this study were from the “Guiding Principles in the
Use of Animals in Toxicology” adopted by the Society of Toxicology (Reston, VA, USA) and
all national laws regarding the protection of animals used for scientific research.

4.3. Experimental Design

A total of 30 Wistar rats were divided into 5 groups, with 6 rats per group. Group 1
(CONTROL) served as the negative control and received the vehicle 1% CMC (7 days) and
saline injection i.p. (7 days); group 2 (DEXA) received DEXA 1 mg/kg bw/day i.p. and
the vehicle 1% CMC for 7 days and served as the positive control; group 3 (DEXA + MSB) re-
ceived MSB (1 × 109 colony forming units (CFU)/day/animal, 7 days); group 4 (DEXA + MET)
received MET (100 mg/kg bw/day, 7 days); group 5 (DEXA + MSB + MET) received MSB
(1 × 109 CFU/day/animal, 7 days) and MET (100 mg/kg bw/day, 7 days); additionally,
groups 3, 4, and 5 also received DEXA 1 mg/kg bw/day i.p. for 7 days. All treatments
except for DEXA were administered orally through a feeding tube for 7 days. The rec-
ommended dose for humans is two capsules/day (2 × 4 × 109 CFU/day); although the
doses administered in humans and animals are different due to the accelerated metabolism
in rodents, these doses showed beneficial effects regarding metabolic activity and mod-
ulation of the gut microbial community. Moreover, the same dose of MSB was used in
similar experimental animal studies [11,12,36,67]. On day 8, blood samples and liver tissue
samples were collected for further analysis. Blood was collected from the retro-orbital
sinus plexus (periorbital) under anesthesia. The blood was allowed to coagulate, then the
serum was separated by centrifugation at 4000 rpm for 15 min; the serum was stored at
−20 ◦C for further biochemical analysis. Animals were sacrificed for a xylazine/ketamine
overdose. The liver tissue was removed and preserved in 10% formaldehyde, dehydrated
in graduated ethanol, and embedded in paraffin wax. The experimental design is shown in
Figure 6.
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4.4. Evaluation of Inflammatory and Biochemical Markers

TNF-α, IL-6, and IL-10 (serum levels of the proinflammatory cytokines) were quanti-
fied by enzyme-linked immunosorbent assay (ELISA) using commercially available ELISA
kits (Rat TNF-α Standard TMB ELISA Development Kit, Rat IL-6 Standard ABTS ELISA
Development Kit; PeproTech Inc., Rocky Hill, NJ, USA; Rat IL-10 Elabscience, China). The
results were expressed as pg/mL. Biochemical parameters (serum glucose, total cholesterol,
and triglycerides) were measured by an automatic biochemical analyzer according to the
manufacturer’s protocols; the results were expressed in mg/dL.

4.5. Assessment of Oxidative Stress

TAC was assessed using a validated method previously described by Erel [68]. This
technique measures the antioxidants’ capacity to decolorize the 2,2′-azinobis-3-ethylbenzo
thiazoline-6-sulfonate (ABTS+), which is a blue-green species, proportional to their concen-
tration and antioxidant properties. ABTS+ is produced by the incubation of 2,2V-azinobis
(3-ethylbenzothiazoline-6-sulfonate) (ABTS) with hydrogen peroxide in an acidic medium
(acetate buffer: 30 mmol/L, pH 3.6). In this environment, concentrated ABTS+ molecules
have higher stability over time. In conditions with a high pH acetate buffer (0.4 mol/L,
pH 5.8), by adding a more concentrated acetate buffer solution, the deep-green color of
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concentrated ABTS+ molecules are slowly bleaching. This reaction of bleaching is enhanced
in the presence of antioxidants proportional to their concentration and can be measured by
using a spectrophotometer at 660 nm; the TAC of the sample is inversely related to the rate
of bleaching. For the calibration curve, we used Trolox, a water-soluble analog of vitamin
E; results were expressed as mmol Trolox equivalent/L.

For the measurement of catalase activity, a UV-spectrophotometric method was used,
as previously described by Aebi [69]. The UV spectrophotometric method (Specord 250 Plus,
Analytik Jena) monitors the modifications of 240 nm absorbance in a solution with a high
concentration of hydrogen peroxide (10 µmole/mL) dissolved in 50 mM phosphate buffer
at pH = 7.

4.6. Metformin Concentration
4.6.1. Chromatography Apparatus and Conditions

A high-performance liquid chromatographic system (Agilent 1100 Series, Agilent
Technologies, Santa Clara, CA, USA) composed of a binary pump, autosampler, column
thermostat, and UV detector was used for MET determination. The chromatographic
conditions were optimized by different means (different mobile phase combinations, using
different columns) to obtain the best sensitivity for the analyte. Optimum separation
conditions were obtained with a Gemini NX C18 150 × 4.6 mm, 5 µm column, with a
mobile phase consisting of 10 mM phosphate buffer and methanol (60:40 (v/v)) in gradient
mode, with column oven temperature maintained at 30 ◦C and elution monitored by UV
detector at 233 nm.

4.6.2. Sample Preparation

Protein precipitation was the preferred choice of separation because of the minimal
steps involved in the extraction of the drug from the matrix. Approximately 0.1 mL of
plasma and 0.3 mL of methanol were subjected to vortexing for about 1 min, followed by
centrifugation for 5 min at 10,000 rpm. A total of 10 µL of supernatant was injected into the
HPLC system.

The calibration curve proved to be linear between 10 and 80 µg/mL.

4.7. Histological Assessment

The excised liver tissue samples were fixed in a 10% buffered formalin solution for 24 h,
dehydrated in ascending concentrations of alcohol solution, and embedded into paraffin
wax. Afterward, the 4-5 µm liver sections were deparaffinized, rehydrated using a graded
ethanol solution (100%, 90%, and 80%), and stained with routine hematoxylin-eosin (H&E)
stain. The histological evaluation was performed with a Leica DM750 microscope, and the
image caption was provided by a Leica ICC 50 HD camera connected to the microscope.

4.8. Statistical Analyses

All data were presented as mean ± standard deviation (SD). Firstly, the distribution
of data were tested using the Shapiro-Wilk test and QQ plot representation. Once the
normal distribution was assessed, the overall comparison between different groups was
tested by using one-way analysis of variance (ANOVA), followed by comparisons between
the pairs of groups by using post-hoc Tukey correction. To compare quantitative data
from two independent groups with a normal distribution, the unpaired t-test was used. A
p-value less than 0.05 was considered statistically significant. All statistical analyses were
performed using GraphPad Prism, version 10 (GraphPad Software, Boston, MA, USA).

5. Conclusions

In conclusion, this study showed that MSB, a Bacillus spores-based probiotic, could
impact the metabolic, inflammatory, histological, and oxidative stress disturbances induced
by DEXA, with effects comparable to those of MET, a standard treatment for diabetes
mellitus type 2. The obtained results reflect a crosstalk between metabolism and gut
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microbiota. The administration of these agents at the start of the DEXA exposure suggests
that these supplements can partially prevent the structural and functional disorders that
characterize steroid-induced diabetes. However, supplementary studies with a longer
duration of treatment are necessary to support the use of probiotics as a preventive therapy
for DEXA-treated patients.
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