Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications
Abstract
:1. Introduction
2. Engineered EVs in Cancers
3. Engineered EVs in Cardiovascular Diseases
Type of Diseases | Origin of EVs | Isolation and Characterization | Ref. |
---|---|---|---|
GBM | HEK293 T; human neural progenitor cells | Isolation and purification: ExoQuick method (EXQ), ultrafiltration (UF), differential ultracentrifugation; Characterization: Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blot with anti-CD63, CD81, Alix and TSG101 antibodies. | [13,14] |
Ovarian Cancer | HEK293 T; fibroblasts; M1 macrophages | Isolation and purification: Differential velocity centrifugation, ExoQuick-TC kit; Characterization: TEM, TEM with immunogold labeled with anti-CD63 antibody, SEM, NTA and Western blot with anti-CD63, HSP70 antibodies. | [33,36,38,39] |
Breast Cancer | Dendritic cells; MDA-MB-231; HEK293 T | Isolation and purification: Differential ultracentrifugation; Characterization: Flow cytometry; Immunoelectron microscopy and Western blot analysis; electron microscopy and dynamic light scattering | [41,42,43] |
Cervical Cancer | Bone marrow-derived MSC | Isolation and purification: Differential ultracentrifugation; Characterization: TEM, NTA and Western blot analysis | [48] |
Melanoma | Melanoma cell lines | Isolation and purification: Differential ultracentrifugation; Characterization: TEM, NTA and Western blot analysis | [56] |
Gastric Cancer | HEK293 T | Isolation and purification: Differential ultracentrifugation; Characterization: TEM, NTA and Western blot analysis | [57] |
Colon Cancer | HEK293 T | Isolation and purification: Differential ultracentrifugation; Characterization: TEM and dynamic laser scatter (DLS) and Western blot analysis | [61] |
Pancreatic Cancer | PANC-1; U937 | Isolation and purification: EV Concentrate from conditioned medium with Centricon® Plus-70 filters, then subjected to ultracentrifugation; Characterization: TEM, NTA and Western blot analysis | [65] |
Liver Cancer | HEK293 T | Isolation and purification: Differential centrifugation, exoEasy Kit; Characterization: TEM, dynamic light scattering (DLS) and Western blot analysis | [50,67] |
Osteosarcoma | Osteosarcoma cells | Isolation and purification: Total Exosome Isolation reagent (Invitrogen, USA); Characterization: TEM, NTA and Western blot analysis | [74] |
Alzheimer’s Disease | Dendritic cells | Isolation and purification: Differential centrifugation and exosome pulldown assay; Characterization: TEM, NTA and Western blot analysis | [12] |
Parkinson’s Disease | Dendritic cells | Isolation and purification: Serial centrifugation; Characterization: None | [83] |
Cocaine-induced Neuroinflammation | Dendritic cells | Isolation and purification: Differential centrifugation; Characterization: NTA and Western blot analysis | [84] |
Stroke; Cerebral Ischemia | Brain endothelial cells | Isolation and purification: Differential centrifugation; Characterization: dynamic light scattering (DLS), a calcein AM flow cytometry assay for membrane integrity of EVs, TEM and Western blot analysis | [85] |
4. Engineered EVs in Neurological Diseases
5. Engineered EVs in Other Human Diseases
6. Current Challenges for Developing Engineered EVs
7. Further Research and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
5-FU | 5-Fluorouracil |
α-LA | α-Lactalbumin |
AI | Artificial intelligence |
AKT | Protein kinase B |
ALI | Acute lung injury |
Apo-A1 | Apolipoprotein A1 |
ARDS | Acute respiratory distress syndrome |
ARPP19 | cAMP-regulated phosphoprotein 19 |
BACE1 | Beta-secretase 1 |
Bcl-2 | B-cell lymphoma 2 |
Bid | BH3 Interacting Domain Death Agonist |
CD8 | Cluster of differentiation 8 |
CDC6 | Cell division control protein 6 |
circDIDO1 | Circular death-induced obliterator 1 |
c-Met | C-mesenchymal–epithelial transition factor |
c-Myc | Cellular myelocytomatosis |
Dox | Doxorubicin |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
ELANE | ICD-induced human neutrophil elastase |
EV | Extracellular vesicle |
GABRA3 | Gamma-aminobutyric acid receptor subunit alpha-3 |
GBM | Glioblastoma |
GE11 | YHWYGYTPQNVI |
GFP | Green fluorescent protein |
GH | Growth hormone |
HD | Huntington’s disease |
HEK293 | Human embryonic kidney 293 |
HELA | Hiltonol-ELANE-α-LA |
HepG2 | Human liver cancer cell line |
Her2 | Human epidermal growth factor receptor 2 |
HSP27 | Heat shock protein 27 |
ICD | Immunogenic cell death |
IGH-1 | Immunoglobin heavy locus |
LAMP2 | Lysosomal-associated membrane protein-2 |
lncRNA | Long-noncoding RNA |
Mcl-1 | Myeloid leukemia 1 |
MEG3 | Maternally expressed gene 3 |
MFGE8 | Milk-fat globule-EGF factor 8 protein |
MHC | Major histocompatibility complex |
miRNA | microRNA |
mRNA | Messenger RNA |
MSC | Mesenchymal stem cells |
mTor | Mechanistic target of rapamycin |
ncRNA | Noncoding RNA |
PANC-1 | Human pancreatic cancer cell line |
PD | Parkinson’s disease |
PD-L1 | Programmed death ligand 1 |
PEG | Polyethylene glycol |
PI3K | Phosphoinositide 3-kinases |
PTEN | Phosphatase and tensin homolog |
RVG | Rabies viral glycoprotein |
SCOS2 | Synthesis of Cytochrome C Oxidase 2 |
siRNA | Small interfering RNA |
SR-B1 | Scavenger receptor class B type 1 |
THLG | Target-Her2-LAMP2-GFP |
TNBC | Triple-negative breast cancer |
U937 | Pro-monocytic model cell line |
UC | Ultracentrifugation |
References
- Li, S.; Xu, J.; Qian, J.; Gao, X. Engineering extracellular vesicles for cancer therapy: Recent advances and challenges in clinical translation. Biomater. Sci. 2020, 8, 6978–6991. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Murphy, D.E.; de Jong, O.G.; Brouwer, M.; Wood, M.J.; Lavieu, G.; Schiffelers, R.M.; Vader, P. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Komuro, H.; Aminova, S.; Lauro, K.; Harada, M. Advances of engineered extracellular vesicles-based therapeutics strategy. Sci. Technol. Adv. Mater. 2022, 23, 655–681. [Google Scholar] [CrossRef] [PubMed]
- Al-Dossary, A.A.; Tawfik, E.A.; Isichei, A.C.; Sun, X.; Li, J.; Alshehri, A.A.; Alomari, M.; Almughem, F.A.; Aldossary, A.M.; Sabit, H.; et al. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers 2021, 13, 3075. [Google Scholar] [CrossRef]
- Pitt, J.M.; André, F.; Amigorena, S.; Soria, J.-C.; Eggermont, A.; Kroemer, G.; Zitvogel, L. Dendritic cell–derived exosomes for cancer therapy. J. Clin. Investig. 2016, 126, 1224–1232. [Google Scholar] [CrossRef]
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018, 20, 332–343. [Google Scholar] [CrossRef]
- Takahashi, Y.; Takakura, Y. Extracellular vesicle-based therapeutics: Extracellular vesicles as therapeutic targets and agents. Pharmacol. Ther. 2023, 242, 108352. [Google Scholar] [CrossRef] [PubMed]
- Kean, T.J.; Duesler, L.; Young, R.G.; Dadabayev, A.; Olenyik, A.; Penn, M.; Wagner, J.; Fink, D.J.; Caplan, A.I.; Dennis, J.E. Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J. Drug Target. 2012, 20, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wu, H.; Li, M.; Chen, X.; Xu, X.; Ni, W.; Lu, C.; Ni, R.; Bao, B.; Xiao, M. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy 2019, 21, 509–524. [Google Scholar] [CrossRef]
- Li, G.; Chen, T.; Dahlman, J.; Eniola-Adefeso, L.; Ghiran, I.C.; Kurre, P.; Lam, W.A.; Lang, J.K.; Marbán, E.; Martín, P.; et al. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J. Extracell. Vesicles 2023, 12, e12305. [Google Scholar] [CrossRef]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; You, J.Y.; Paek, K.; Park, J.; Kang, S.J.; Han, E.H.; Choi, N.; Chung, S.; Rhee, W.J.; Kim, J.A. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Theranostics 2021, 11, 9687–9704. [Google Scholar] [CrossRef]
- Tian, T.; Liang, R.; Erel-Akbaba, G.; Saad, L.; Obeid, P.J.; Gao, J.; Chiocca, E.A.; Weissleder, R.; Tannous, B.A. Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles. ACS Nano 2022, 16, 1940–1953. [Google Scholar] [CrossRef] [PubMed]
- Wiklander, O.P.B.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 2015, 4, 26316. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Feldman, K.S.; Garcia-Borrero, G.; Feinstein, T.N.; Pogodzinski, N.; Xu, X.; Yurko, R.; Czachowski, M.; Wu, Y.L.; Mason, N.S.; et al. Cardiac Targeting Peptide, a Novel Cardiac Vector: Studies in Bio-Distribution, Imaging Application, and Mechanism of Transduction. Biomolecules 2018, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Cao, L.; He, C.; Ye, Q.; Liang, R.; You, W.; Zhang, H.; Wu, J.; Ye, J.; Tannous, B.A.; et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021, 11, 6507–6521. [Google Scholar] [CrossRef]
- Takayama, Y.; Kusamori, K.; Nishikawa, M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019, 24, 172. [Google Scholar] [CrossRef]
- Antes, T.J.; Middleton, R.C.; Luther, K.M.; Ijichi, T.; Peck, K.A.; Liu, W.J.; Valle, J.; Echavez, A.K.; Marbán, E. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J. Nanobiotechnol. 2018, 16, 61. [Google Scholar] [CrossRef]
- Witwer, K.W.; Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 2021, 6, 103–106. [Google Scholar] [CrossRef]
- Wolfram, J.; Ferrari, M. Clinical Cancer Nanomedicine. Nano Today 2019, 25, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mahairaki, V.; Bai, H.; Ding, Z.; Li, J.; Witwer, K.W.; Cheng, L. Highly Purified Human Extracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells. Stem Cells 2019, 37, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ngo, L.; Tsao, S.C.-H.; Liu, D.; Wang, Y. Engineered Cancer-Derived Small Extracellular Vesicle-Liposome Hybrid Delivery System for Targeted Treatment of Breast Cancer. ACS Appl. Mater. Interfaces 2023, 15, 16420–16433. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Duan, Z.; Yuan, Y.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl. Mater. Interfaces 2017, 9, 5864–5873. [Google Scholar] [CrossRef] [PubMed]
- Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16, 510–520. [Google Scholar] [CrossRef]
- Colombo, M.; Bianchi, A. Click Chemistry for the Synthesis of RGD-Containing Integrin Ligands. Molecules 2010, 15, 178–197. [Google Scholar] [CrossRef]
- Tykocki, T.; Eltayeb, M. Ten-year survival in glioblastoma. A systematic review. J. Clin. Neurosci. 2018, 54, 7–13. [Google Scholar] [CrossRef]
- Hamzei Taj, S.; Kho, W.; Aswendt, M.; Collmann, F.M.; Green, C.; Adamczak, J.; Tennstaedt, A.; Hoehn, M. Dynamic Modulation of Microglia/Macrophage Polarization by miR-124 after Focal Cerebral Ischemia. J. Neuroimmune Pharmacol. 2016, 11, 733–748. [Google Scholar] [CrossRef]
- Miura, Y.; Takenaka, T.; Toh, K.; Wu, S.; Nishihara, H.; Kano, M.R.; Ino, Y.; Nomoto, T.; Matsumoto, Y.; Koyama, H.; et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 2013, 7, 8583–8592. [Google Scholar] [CrossRef]
- Yi, M.; Niu, M.; Xu, L.; Luo, S.; Wu, K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 2021, 14, 10. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, X.; Yong, T.; Bie, N.; Zhan, G.; Li, X.; Liang, Q.; Li, J.; Yu, J.; Huang, G.; et al. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 2021, 12, 440. [Google Scholar] [CrossRef]
- Rooth, C. Ovarian cancer: Risk factors, treatment and management. Br. J. Nurs. 2013, 22, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Li, Y.; Li, M.; Zhu, T.; Shen, Z.; Wang, H.; Lv, W.; Wang, X.; Cheng, X.; et al. Potential of peptide-engineered exosomes with overexpressed miR-92b-3p in anti-angiogenic therapy of ovarian cancer. Clin. Transl. Med. 2021, 11, e425. [Google Scholar] [CrossRef]
- Long, M.; Zhan, M.; Xu, S.; Yang, R.; Chen, W.; Zhang, S.; Shi, Y.; He, Q.; Mohan, M.; Liu, Q.; et al. miR-92b-3p acts as a tumor suppressor by targeting Gabra3 in pancreatic cancer. Mol. Cancer 2017, 16, 167. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, C.; Shen, J.; Huang, L.; Lin, W.; Tang, H.; Liang, W.; Shao, W.; Zhang, H.; He, J. GABRA3 promotes lymphatic metastasis in lung adenocarcinoma by mediating upregulation of matrix metalloproteinases. Oncotarget 2016, 7, 32341–32350. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Sawada, K.; Miyamoto, M.; Shimizu, A.; Yamamoto, M.; Kinose, Y.; Nakamura, K.; Kawano, M.; Kodama, M.; Hashimoto, K.; et al. Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem. Biophys. Res. Commun. 2020, 527, 153–161. [Google Scholar] [CrossRef]
- Huang, J.; Dong, B.; Zhang, J.; Kong, W.; Chen, Y.; Xue, W.; Liu, D.; Huang, Y. miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in renal cancer carcinoma. Tumor Biol. 2014, 35, 5833–5843. [Google Scholar] [CrossRef]
- Fornari, F.; Milazzo, M.; Chieco, P.; Negrini, M.; Calin, G.A.; Grazi, G.L.; Pollutri, D.; Croce, C.M.; Bolondi, L.; Gramantieri, L. MiR-199a-3p Regulates mTOR and c-Met to Influence the Doxorubicin Sensitivity of Human Hepatocarcinoma Cells. Cancer Res. 2010, 70, 5184–5193. [Google Scholar] [CrossRef]
- Li, Q.; Song, Q.; Zhao, Z.; Lin, Y.; Cheng, Y.; Karin, N.; Luan, Y. Genetically Engineered Artificial Exosome-Constructed Hydrogel for Ovarian Cancer Therapy. ACS Nano 2023, 17, 10376–10392. [Google Scholar] [CrossRef]
- Howlader, N.; Cronin, K.A.; Kurian, A.W.; Andridge, R. Differences in Breast Cancer Survival by Molecular Subtypes in the United States. Cancer Epidemiol. Biomark. Prev. 2018, 27, 619–626. [Google Scholar] [CrossRef]
- Huang, L.; Rong, Y.; Tang, X.; Yi, K.; Qi, P.; Hou, J.; Liu, W.; He, Y.; Gao, X.; Yuan, C.; et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer 2022, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.-I.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T.; et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 2013, 21, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Maleki, N.; Mirhakimi, S.; Babashah, S.; Sayadi, A.; Parnian, G.; Hadizadeh, M. Use of cellular exosomes as a new carrier in breast cancer gene therapy. Klin. Onkol. 2021, 34, 300–305. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Zhao, H.; Wang, J.; To, S.S.T. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy. Arch. Biochem. Biophys. 2015, 580, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Fatma, H.; Maurya, S.K.; Siddique, H.R. Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin. Cancer Biol. 2022, 83, 166–176. [Google Scholar] [CrossRef]
- Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390. [Google Scholar] [CrossRef]
- Nuranna, L.; Fahrudin, A. Survival Rate of Cervical Cancer in National Referral Hospital in 2012–2014. Acta Med. Indones 2019, 51, 145–150. [Google Scholar]
- Ding, F.; Liu, J.; Zhang, X. microRNA-375 released from extracellular vesicles of bone marrow mesenchymal stem cells exerts anti-oncogenic effects against cervical cancer. Stem Cell Res. Ther. 2020, 11, 455. [Google Scholar] [CrossRef]
- Ni, H.; Qin, H.; Sun, C.; Liu, Y.; Ruan, G.; Guo, Q.; Xi, T.; Xing, Y.; Zheng, L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res. Ther. 2021, 12, 325. [Google Scholar] [CrossRef]
- Du, J.; Wan, Z.; Wang, C.; Lu, F.; Wei, M.; Wang, D.; Hao, Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics 2021, 11, 8185–8196. [Google Scholar] [CrossRef]
- Kutchy, N.A.; Ma, R.; Liu, Y.; Buch, S.; Hu, G. Extracellular Vesicle-Mediated Delivery of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles to Mice Brain. Front. Pharmacol. 2022, 13, 819516. [Google Scholar] [CrossRef]
- Boczar, D.; Restrepo, D.J.; Sisti, A.; Huayllani, M.T.; Saleem, H.Y.; Lu, X.; Cinotto, G.; Manrique, O.J.; Spaulding, A.C.; Forte, A.J. Analysis of Melanoma in African American Patients in the United States. Anticancer Res. 2019, 39, 6333–6337. [Google Scholar] [CrossRef]
- Lang, P.G., Jr. Malignant melanoma. Med. Clin. N. Am. 1998, 82, 1325–1358. [Google Scholar] [CrossRef]
- Gu, Y.; Du, Y.; Jiang, L.; Tang, X.; Li, A.; Zhao, Y.; Lang, Y.; Liu, X.; Liu, J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J. Nanobiotechnol. 2022, 20, 384. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xu, J.-L.; Chen, W.-Q.; Xu, W.-X.; Song, Y.-X.; Tang, W.-J.; Xu, D.; Jiang, M.-P.; Tang, J. Roles and mechanisms of miR-195–5p in human solid cancers. Biomed. Pharmacother. 2022, 150, 112885. [Google Scholar] [CrossRef]
- Santos, N.L.; Bustos, S.O.; Reis, P.P.; Chammas, R.; Andrade, L.N.S. Extracellular Vesicle-Packaged miR-195-5p Sensitizes Melanoma to Targeted Therapy with Kinase Inhibitors. Cells 2023, 12, 1317. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, Y.; Xu, W.; Zhang, X.; Jiang, J. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J. Transl. Med. 2022, 20, 326. [Google Scholar] [CrossRef]
- Rico-Bautista, E.; Flores-Morales, A.; Fernández-Pérez, L. Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev. 2006, 17, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Letellier, E.; Haan, S. SOCS2 physiological and pathological functions. Front. Biosci. 2016, 8, 189–204. [Google Scholar] [CrossRef]
- Ukegjini, K.; Zadnikar, M.; Warschkow, R.; Müller, S.; Schmied, B.M.; Marti, L. Baseline mortality-adjusted survival in colon cancer patients. Langenbeck’s Arch. Surg. 2016, 401, 633–641. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnol. 2020, 18, 10. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Zhang, Y.-Y.; Zhu, B.-L.; Feng, F.-Z.; Yan, H.; Zhang, H.-Y.; Zhou, B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4149–4155. [Google Scholar] [CrossRef]
- Akhtarkhavari, T.; Bahrami, A.R.; Matin, M.M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur. J. Pharmacol. 2022, 932, 175233. [Google Scholar] [CrossRef]
- Khalaf, N.; El-Serag, H.B.; Abrams, H.R.; Thrift, A.P. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin. Gastroenterol. Hepatol. 2021, 19, 876–884. [Google Scholar] [CrossRef]
- Al Faruque, H.; Choi, E.-S.; Kim, J.-H.; Kim, E. Enhanced effect of autologous EVs delivering paclitaxel in pancreatic cancer. J. Control. Release 2022, 347, 330–346. [Google Scholar] [CrossRef]
- Katanoda, K.; Matsuda, T. Five-year relative survival rate of liver cancer in the USA, Europe and Japan. Jpn. J. Clin. Oncol. 2014, 44, 302–303. [Google Scholar] [CrossRef]
- Liang, G.; Kan, S.; Zhu, Y.; Feng, S.; Feng, W.; Gao, S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomed. 2018, 13, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Wu, W.; Zou, X.; Liu, F.; Wei, T.; Zhu, J. MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am. J. Cancer Res. 2018, 8, 1030–1039. [Google Scholar] [PubMed]
- Li, H.; Xu, W.; Wang, T.; Yu, C.; Rao, X.; Hong, X.; Wang, X. miR-26a inhibits the proliferation and migration of prostate cancer by targeting CDC6. Minerva Med. 2021, 112, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Hached, K.; Goguet, P.; Charrasse, S.; Vigneron, S.; Sacristan, M.P.; Lorca, T.; Castro, A. ENSA and ARPP19 differentially control cell cycle progression and development. J. Cell Biol. 2019, 218, 541–558. [Google Scholar] [CrossRef]
- Borsuk, E.; Jachowicz, J.; Kloc, M.; Tassan, J.-P.; Kubiak, J.Z. Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis. Results Probl. Cell Differ. 2017, 59, 201–211. [Google Scholar] [CrossRef]
- Simpson, E.; Brown, H.L. Understanding osteosarcomas. Jaapa 2018, 31, 15–19. [Google Scholar] [CrossRef]
- Moradi, M.; Fallahi, H.; Rahimi, Z. Interaction of long noncoding RNA MEG3 with miRNAs: A reciprocal regulation. J. Cell. Biochem. 2019, 120, 3339–3352. [Google Scholar] [CrossRef]
- Huang, X.; Wu, W.; Jing, D.; Yang, L.; Guo, H.; Wang, L.; Zhang, W.; Pu, F.; Shao, Z. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J. Control. Release 2022, 343, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Mao, H.; Wang, J.; Yang, W. MiR-185-5p suppresses acute myeloid leukemia by inhibiting GPX1. Microvasc. Res. 2022, 140, 104296. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Calle, A.; Kawamura, Y.; Yamamoto, Y.; Takeshita, F.; Ochiya, T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018, 109, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yao, M.; Gao, Y.; Yue, Y.; Li, Y.; Zhang, T.; Nie, G.; Zhao, X.; Liang, X. Functional Immune Cell-Derived Exosomes Engineered for the Trilogy of Radiotherapy Sensitization. Adv. Sci. 2022, 9, e2106031. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Li, Y.; Hou, S.; Zhang, W.; Meng, Z.; Wang, S.; Jia, Q.; Tan, J.; Wang, R.; et al. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnol. 2022, 20, 247. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.G.N.; Hoang, Q.T.; Hong, E.J.; Kang, S.J.; Kang, J.H.; Ravichandran, V.; Kang, H.C.; Ko, Y.T.; Rhee, W.J.; Shim, M.S. Mitochondria-targeting sonosensitizer-loaded extracellular vesicles for chemo-sonodynamic therapy. J. Control. Release 2023, 354, 651–663. [Google Scholar] [CrossRef]
- Kanki, S.; Jaalouk, D.E.; Lee, S.; Yu, A.Y.C.; Gannon, J.; Lee, R.T. Identification of targeting peptides for ischemic myocardium by in vivo phage display. J. Mol. Cell. Cardiol. 2011, 50, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Mentkowski, K.I.; Lang, J.K. Exosomes Engineered to Express a Cardiomyocyte Binding Peptide Demonstrate Improved Cardiac Retention in Vivo. Sci. Rep. 2019, 9, 10041. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-P.; Tian, T.; Wang, J.-Y.; He, J.-N.; Chen, T.; Pan, M.; Xu, L.; Zhang, H.-X.; Qiu, X.-T.; Li, C.-C.; et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 2018, 8, 6163–6177. [Google Scholar] [CrossRef] [PubMed]
- Izco, M.; Schleef, M.; Schmeer, M.; Carlos, E.; Verona, G.; Alvarez-Erviti, L. Targeted Extracellular Vesicle Gene Therapy for Modulating Alpha-Synuclein Expression in Gut and Spinal Cord. Pharmaceutics 2023, 15, 1230. [Google Scholar] [CrossRef] [PubMed]
- Chivero, E.T.; Liao, K.; Niu, F.; Tripathi, A.; Tian, C.; Buch, S.; Hu, G. Engineered Extracellular Vesicles Loaded with miR-124 Attenuate Cocaine-Mediated Activation of Microglia. Front. Cell Dev. Biol. 2020, 8, 573. [Google Scholar] [CrossRef]
- Dave, K.M.; Stolz, D.B.; Venna, V.R.; Quaicoe, V.A.; Maniskas, M.E.; Reynolds, M.J.; Babidhan, R.; Dobbins, D.X.; Farinelli, M.N.; Sullivan, A.; et al. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures. J. Control. Release 2023, 354, 368–393. [Google Scholar] [CrossRef]
- Vandergriff, A.; Huang, K.; Shen, D.; Hu, S.; Hensley, M.T.; Caranasos, T.G.; Qian, L.; Cheng, K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 2018, 8, 1869–1878. [Google Scholar] [CrossRef]
- Chen, P.; Wang, L.; Fan, X.; Ning, X.; Yu, B.; Ou, C.; Chen, M. Targeted delivery of extracellular vesicles in heart injury. Theranostics 2021, 11, 2263–2277. [Google Scholar] [CrossRef]
- Ning, Y.; Huang, P.; Chen, G.; Xiong, Y.; Gong, Z.; Wu, C.; Xu, J.; Jiang, W.; Li, X.; Tang, R.; et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway. BMC Med. 2023, 21, 96. [Google Scholar] [CrossRef]
- Cai, J.; Tang, D.; Hao, X.; Liu, E.; Li, W.; Shi, J. Mesenchymal stem cell-derived exosome alleviates sepsis- associated acute liver injury by suppressing MALAT1 through microRNA-26a-5p: An innovative immunopharmacological intervention and therapeutic approach for sepsis. Front. Immunol. 2023, 14, 1157793. [Google Scholar] [CrossRef]
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7, F1000 Faculty Rev-1161. [Google Scholar] [CrossRef]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry 2021, 89, 745–756. [Google Scholar] [CrossRef]
- Elbaz, A.; Carcaillon, L.; Kab, S.; Moisan, F. Epidemiology of Parkinson’s disease. Rev. Neurol. 2016, 172, 14–26. [Google Scholar] [CrossRef]
- Sveinsson, Ó.; Kjartansson, Ó.; Valdimarsson, E.M. Cerebral ischemia/infarction—Diagnosis and treatment. Laeknabladid 2014, 100, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Gillon, R. Ethics of fetal brain cell transplants. BMJ 1988, 296, 1212–1213. [Google Scholar] [CrossRef]
- Upadhya, R.; Zingg, W.; Shetty, S.; Shetty, A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020, 323, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Lu, T.; Zhu, T.; Feng, C.; Gao, N.; Liu, F.; Yu, J.; Chen, K.; Zhong, J.; et al. Engineered Extracellular Vesicle-Delivered CRISPR/CasRx as a Novel RNA Editing Tool. Adv. Sci. 2023, 10, e2206517. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Shi, M.-M.; Monsel, A.; Dai, C.-X.; Dong, X.; Shen, H.; Li, S.-K.; Chang, J.; Xu, C.-L.; Li, P.; et al. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: A pilot study. Stem Cell Res. Ther. 2022, 13, 220. [Google Scholar] [CrossRef]
- King, A.; Ndifon, C.; Lui, S.; Widdows, K.; Kotamraju, V.R.; Agemy, L.; Teesalu, T.; Glazier, J.D.; Cellesi, F.; Tirelli, N.; et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci. Adv. 2016, 2, e1600349. [Google Scholar] [CrossRef]
- Strasburger, J.F.; Eckstein, G.; Butler, M.; Noffke, P.; Wacker-Gussmann, A. Fetal Arrhythmia Diagnosis and Pharmacologic Management. J. Clin. Pharmacol. 2022, 62 (Suppl. S1), S53–S66. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Legrand, M. Epidemiology of sepsis and septic shock. Curr. Opin. Anaesthesiol. 2021, 34, 71–76. [Google Scholar] [CrossRef]
- Curley, G.; Hayes, M.; Laffey, J.G. Can ‘permissive’ hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit. Care 2011, 15, 212. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, D.; Chen, Y.; Abudou, H.; Wang, H.; Cai, J.; Wang, Y.; Liu, Z.; Liu, Y.; Fan, H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. Dis. Markers 2022, 2022, 63623441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y.; Yuan, Y.; Yao, F.; Zhang, H.; Zhao, C.; Luo, Y. miR-26a-5p protects against drug-induced liver injury via targeting bid. Toxicol. Mech. Methods 2022, 32, 325–332. [Google Scholar] [CrossRef]
- Billen, L.P.; Shamas-Din, A.; Andrews, D.W. Bid: A Bax-like BH3 protein. Oncogene 2008, 27 (Suppl. S1), S93–S104. [Google Scholar] [CrossRef]
- Shi, M.M.; Yang, Q.Y.; Monsel, A.; Yan, J.Y.; Dai, C.X.; Zhao, J.Y.; Shi, G.C.; Zhou, M.; Zhu, X.M.; Li, S.K.; et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12134. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Görgens, A.; Corso, G.; Hagey, D.W.; Wiklander, R.J.; Gustafsson, M.O.; Felldin, U.; Lee, Y.; Bostancioglu, R.B.; Sork, H.; Liang, X.; et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles 2022, 11, e12238. [Google Scholar] [CrossRef]
- Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018, 10, 218. [Google Scholar] [CrossRef]
- Ishikawa, R.; Yoshida, S.; Sawada, S.; Sasaki, Y.; Akiyoshi, K. Development and single-particle analysis of hybrid extracellular vesicles fused with liposomes using viral fusogenic proteins. FEBS Open Bio 2022, 12, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Paul, D.; Sarker, S.; Hasan, N.; Ghosh, R.; Prasad, S.E.; Vemula, P.K.; Das, R.; Adhikary, A.; Pal, S.K.; et al. Polyethylene Glycol-Mediated Fusion of Extracellular Vesicles with Cationic Liposomes for the Design of Hybrid Delivery Systems. ACS Appl. Bio Mater. 2021, 4, 8259–8266. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-S.; Zhou, Z.-R.; Wang, X.-Y.; Lv, J.; Li, D.-W.; Qian, R.-C. Engineered Extracellular Vesicle-Encapsuled Nanoreactors for Effective Targeting and Cascade Killing of Cancer Cells. ACS Appl. Bio Mater. 2023, 6, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, Z.F.; Graim, K.S.; He, M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv. Drug Deliv. Rev. 2023, 199, 114974. [Google Scholar] [CrossRef] [PubMed]
Type of Cancer | Origin of EVs | Engineered strategy | Functional Cargo | Mechanism | Ref. |
---|---|---|---|---|---|
GBM | HEK293 T; human neural progenitor cells | Coincubation; click-chemistry | miR-124; anti-PD-L1 siRNA | Decreased expression of mcl-1 and c-Myc; decreased expression of PD-L1 | [13,14] |
Ovarian Cancer | HEK293 T; fibroblasts; M1 macrophages | Transfection; electroporation; extrusion approach | miR-92b-3p; miR-199a-3p; efferocytosis inhibitor MRX-2843 | Suppressed expression of GABRA3; cell cycle arrest, increased expression of c-Met and mTOR; suppression of efferocytosis | [33,36,38,39] |
Breast Cancer | Dendritic cells; MDA-MB-231; HEK293 T | Electroporation; transfection | Human neutrophil elastase (ELANE) and Hiltonol (TLR3 agonist); miR-205; miRNA let-7a; Dox | Antitumor immunity; chemotherapy; targeting of Bcl-2; downregulation of c-Myc | [41,42,43] |
Cervical Cancer | Bone marrow-derived MSC | Transfection | miR-375 | Ferroptosis | [48] |
Melanoma | Melanoma cell lines | Transfection | miR-195-5p | Induced hypodiploidy | [56] |
Gastric Cancer | HEK293 T | Transfection | circDIDO1 | Increased expression of SCOS2 | [57] |
Colon Cancer | HEK293 T | Transfection; electroporation | miR-21 inhibitor; 5-FU | Cell cycle arrest; chemotherapy | [61] |
Pancreatic Cancer | PANC-1; U937 | Coincubation; sonication | Paclitaxel | Chemotherapy | [65] |
Liver Cancer | HEK293 T | Transfection; sonication | miR-26a; CD47; Erastin; Rose Bengal | Targeting of ARPP19 and CDC6; ferroptosis; photosensitization | [50,67,68,69,70,71] |
Osteosarcoma | Osteosarcoma cells | Transfection | lncRNA MEG3 | Sponging of miR-185-5p | [73,74] |
Type of Neurological Disease | Origin of EV | Engineered Strategy | Functional Cargo | Mechanism | Ref. |
---|---|---|---|---|---|
Alzheimer’s Disease | Dendritic cells | Electroporation; transfection | BACE1 siRNA | Inhibition of BACE1 protease | [12,91] |
Parkinson’s Disease | Dendritic cells | Transfection | shRNA | Decreased expression of alpha-synuclein | [83] |
Cocaine-induced Neuroinflammation | Dendritic cells | Transfection | miR-124 | Halting activation of microglial cells | [84] |
Stroke; Cerebral Ischemia | Brain endothelial cells | Coincubation | Mitochondria; HSP27 | Decrease tight junction permeability; protect brain endothelium | [85] |
Target | Composition of the Unit | Engineered Strategy (Method of Addition) | Application Mentioned | Ref. |
---|---|---|---|---|
αvβ3 integrin | RGD; cRGD | Click-chemistry | Various cancer cell types within tumor and vasculature | [24,25,26] |
TNBC Cells | α-Lactalbumin | Transfection | TNBC | [41] |
EGFR | GE11 peptide (YHWYGYTPQNVI) | Transfection | Breast cancer cells overexpressing EGFR | [42] |
Her2 protein | target-Her2-LAMP2-GFP | Transfection | Colon cancer cells overexpressing Her2 | [61] |
Apo-A1 | SR-B1 receptor | Transfection | Liver cancer cells overexpressing Apo-A1 | [67] |
PD-L1 | Anti-PD-L1 | Transfection | Tumor cells expressing PD-L1 | [77] |
Alpha-B crystalline | CSTSMLKAC | Conjugation reaction | Infarcted heart tissue | [80] |
Acetylcholine receptor | RVG peptide (YTIWMPENPRPGTPCDIFTNSRGKRASNG) | Transfection | Neurons | [12] |
αvβ3 integrin | RGD-C1C2 (RGD fused to phosphatidylserine-binding domains of MFGE8) | Click-chemistry | Ischemic brain tissue | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziegler, J.N.; Tian, C. Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. Int. J. Mol. Sci. 2023, 24, 15206. https://doi.org/10.3390/ijms242015206
Ziegler JN, Tian C. Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. International Journal of Molecular Sciences. 2023; 24(20):15206. https://doi.org/10.3390/ijms242015206
Chicago/Turabian StyleZiegler, Jessica N., and Changhai Tian. 2023. "Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications" International Journal of Molecular Sciences 24, no. 20: 15206. https://doi.org/10.3390/ijms242015206
APA StyleZiegler, J. N., & Tian, C. (2023). Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. International Journal of Molecular Sciences, 24(20), 15206. https://doi.org/10.3390/ijms242015206