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Abstract: Fruit ripening is a highly complicated process that is accompanied by the formation of
fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control
play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional
mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we
conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing
(AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit.
In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained.
Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing
full-length FLNC reads, including a large number of AS events associated with fruit ripening. In
addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have
APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose
and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both
enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation
might potentially have a key role in regulation of fruit ripening in watermelon. Taken together,
our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon
research, and provide new insights into the molecular mechanisms underlying the complex regulatory
networks of watermelon fruit ripening.

Keywords: watermelon; alternative splicing; alternative polyadenylation; lncRNA; fruit ripening

1. Introduction

Watermelon (Citrullus lanatus, 2 n = 2× = 22), a typical non-climacteric fruit, originated
in Africa, belongs to the xerophytic genus Citrullus Schrad. ex Eckl. et Zeyh. of the
botanical family Cucurbitaceae and is an important cucurbit crop grown throughout the
world. Watermelon is an important experimental model to study the molecular mechanisms
of non-climacteric fruits’ ripening [1]. This reflects its economic value and many favorable
genetic characteristics, such as relatively small genome size (359.8 Mb), diploid cultivar,
short life cycle (3–4 months), and efficient genetic transformation system [2].

Ripening of fleshy fruits is a highly complex process that involves dramatic changes
in sugar content, fruit color, fruit texture, flavor, and aroma [3,4]. In recent years, the
mechanisms of fruit ripening have been studied extensively at the transcriptional level, and
many transcription factors as well as 5-methylcytosine (5mC) DNA methylation at various
gene loci have been identified and proven to be responsible for transcriptional regulation
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of gene expression during the ripening process [5,6]. In addition, a series of studies have
demonstrated that posttranscriptional control also plays vital roles in fruit ripening such
as AS, APA, mRNA N6-methyladenosine RNA modification methylation and noncoding
RNAs [7–9].

AS and APA are two important post-transcriptional regulatory mechanisms that
increase transcriptomic and proteomic diversity in eukaryotic organisms [10,11]. AS is the
process through which multiple transcript isoforms are produced from a single gene [12].
Previous short-read RNA-seq analysis has shown that up to 40–60% of intron-containing
genes are alternatively spliced in different tissues or developmental stages, suggesting AS
plays key roles in the regulation of development in the model plants, such as Arabidopsis
thaliana and rice [13–16]. APA is a widespread phenomenon, generating mRNAs with
distinct 3′ ends [11]. The large-scale studies using transcriptome-wide techniques have
revealed that 70% of Arabidopsis genes and around 50% of rice genes have at least one
alternative poly(A) site [17,18]. Single-molecule real-time sequencing (SMRT), developed by
Pacific BioSciences (PacBio), offers longer read lengths than the RNA-seq which are needed
for transcriptome assembly, making it well-suited for unsolved problems in transcriptome
research [19].

Over the past decade, single molecule sequencing technology has been used to charac-
terize the transcriptome diversity in Salvia miltiorrhiza [20], Z. mays [21], Sorghum bicolor [22],
Fragaria vesca [23], Phyllostachys edulis [24], Trifolium pratense L. [25], Ricinus communis [26],
Ginkgo biloba [27], Populus [28], Solanum betaceum Cav [29] and so on. In these studies, most
of the full-length cDNAs were generated by combining in equal amounts total RNA from
different tissues and/or did not make replicates. In this study, we firstly carried out SMRT
long-read sequencing of four critical developmental stages in watermelon (three repeats
for each stage). A total of 7,837,450 reads of inserts (ROIs) were generated for 12 samples.
Finally, 6,921,295 error-corrected and mapped FLNC reads were obtained. The inclusion of
more high-quality FLNC reads is more conducive to conduct AS and APA analyses, which
can better reflect the dynamic changes during fruit ripening at post-transcriptional level.

2. Results
2.1. Watermelon Fruit Transcriptome Sequencing Using PacBio Iso-Seq

Samples were collected at four key developmental stages (10 days after pollination
(DAP), 18 DAP, 26 DAP and 34 DAP) (Figure 1), and each stage had three repeats. These
samples were the same as in our previously published study [30]. In this current study,
PacBio sequel II platform was used to generate long reads for the above 12 samples. A total
of 7,837,450 reads of inserts (ROIs) were generated for 12 samples, and on average 88% of
them were full-length non-chimeric (FLNC) reads with the entire transcript region from
the 5′ to the 3′ end based on the inclusion of barcoded primers and the 3′ poly(A) tails. A
total of 843,963,605 paired-end (PE) reads from our previously published transcriptomic
data were used to correct the FLNC reads, then the corrected FLNC reads were mapped to
the watermelon genome (97103, V2.5 version) using minimap2 [31]. Finally, we obtained
6,921,295 error-corrected and mapped (high-quality) FLNC reads, and the average FLNC
reads of 12 samples is 576,774 (Table 1). These FLNC reads cover 73.49% of annotated genes,
and 14,520 genes were supported by at least three PacBio reads (Supplementary Figure S1).
The repeatability analysis of 12 samples showed that the results of APA quantification were
reliable (Supplementary Figure S2).
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Figure 1. Flowchart of the experimental design and analysis for PacBio long-read sequencing
and RNA-seq. In total, 6,921,295 mapped full-length non-chimeric (FLNC) reads were used for
the downstream analysis, including alternative splicing (AS), alternative polyadenylation (APA)
and lncRNA.

Table 1. Summary of PacBio sequencing.

Sample cDNAsize
Number
of Reads
of Insert

Number of
Five-Five

Primer
Reads

Number of
Three-Three

Primber
Reads

Number
of

Adaptor
Reads

Number of
Filtered

Short Reads

Number of
Full-Length

Non-Chimeric
Reads

Error-
Corrected

and Mapped
FLNC

DAP10-1 1-10k 632,678 19,259 7905 3 0 580,464 577,193
DAP10-2 1-10k 726,681 12,245 22,527 12 0 663,057 661,727
DAP10-3 1-10k 639,781 146,488 7345 18 0 463,837 460,828
DAP18-1 1-10k 727,467 20,973 7599 14 0 681,511 679,326
DAP18-2 1-10k 696,383 104,864 12,243 9 0 557,964 555,213
DAP18-3 1-10k 690,537 29,087 11,170 15 0 629,609 626,298
DAP26-1 1-10k 618,696 21,428 12,025 6 0 573,505 569,181
DAP26-2 1-10k 707,380 24,627 14,069 7 0 654,125 651,197
DAP26-3 1-10k 550,489 13,507 5581 7 0 520,269 516,792
DAP34-1 1-10k 587,052 98,357 18,328 42 0 457,391 453,471
DAP34-2 1-10k 531,201 11,605 5697 3 0 502,478 499,375
DAP34-3 1-10k 729,105 27,788 14,078 3 0 673,739 670,694

2.2. Identification of Full-Length Splicing Isoforms

Till now, the study of the watermelon transcriptome is not totally complete, in particu-
lar the annotation of full-length splice isoforms. We obtained a total of 5,891,183 intron-
containing FLNC reads that collapsed into 42,285 distinct full-length splice isoforms repre-
senting 135,772 unique introns. The consensus donor sites and acceptor sites of watermelon
are TTAAAG|GTAAG and TGCAG|GTTAAA, respectively (Figure 2A). The consensus
donor and acceptor sites were similar to those in rice and moso bamboo [24,32]. The
median number of introns in intron-containing genes in Arabidopsis [33] and moso bam-
boo [24] is four and seven, respectively, whereas that for each unique splicing isoform in
watermelon is six. Due to the limit of read length, it is challenging to identify full-length
splicing isoforms accurately by RNA-seq, while PacBio long reads could produce more
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comprehensive annotation of splicing isoforms with superior contiguity [24,34]. Therefore,
we examined the full-length transcript structures of distinct splicing isoforms using PacBio
long-read sequencing data. In total, 16,495 AS events were identified without transcriptome
assembly, so any possible artificial result could be avoided (Supplementary Data S1). We
further classified these AS events into seven distinct types: 5574 retained introns (RI),
3557 skipping exon (SE), 3104 alternative 5′ splice-site (A5), 3141 alternative 3′ splice-site
(A3), 697 alternative first exon (AF), 267 alternative last exon (AL) events and 155 mutu-
ally exclusive exons (MX) (Supplementary Figure S3A, Supplementary Data S1). Consis-
tent with previous studies, intron retention comprised the majority of AS events [24,32].
KEGG analysis of genes undergoing AS showed that fructose and mannose metabolism,
starch and sucrose metabolism and carotenoid biosynthesis were enriched, which in-
cluded tonoplast sugar transporter 2 (TST2), Sugars Will Eventually Be Exported Transporter
3 (SWEET3), insoluble acid invertase (IAI, Cla97C05G099220), UDP-Gal/Glc PPase (UGGP,
Cla97C08G148810), Phytoene synthase (PSY, Cla97C01G008760) and Phytoene desaturase (PDS,
Cla97C07G142100) (Supplementary Figure S4, Supplementary Data S2 and S3). All the
enriched KEGG terms are listed in Supplementary Data S2. Next, we validated the retained
intron event of PDS (Cla97C02G037750, carotenoid biosynthetic enzyme) by RT-PCR. Con-
sistently, RT-PCR could amplify two bands, which also meet the expected size (Figure 2B,C).
Considering the relatively low sequencing depth of PacBio long-read sequencing, we quan-
tified differential splicing events using Illumina short reads. The results are shown in
Supplementary Figure S3B–D and Supplementary Data S3.
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Figure 2. Comprehensive identification of splicing isoforms in watermelon fruit. (A) The nucleotide
distributions flanking the 5′ donor (left) or 3′ acceptor sites (right). (B) Wiggle plot showing the intron
retention event of the PDS gene (Cla97C02G037750). The red arrows represent the primers’ position.
(C) Validation of the intron retention event in Figure 3B using RT-PCR. (D) Statistics of total AS
events in watermelon fruit. RI: retained introns; SE: skipping exon; A5: alternative 5′ splice-site; A3:
alternative 3′ splice-site; AF: alternative first exon; AL: alternative last exon; MX: mutually exclusive
exons (MX).
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Figure 3. Genome-wide identification of alternative polyadenylation in watermelon fruit. (A) Distri-
bution of the number of poly(A) sites per gene. (B) Length distribution introns with polyadenylation
cleavage sites and all introns. (C) KEGG analysis of genes undergoing APA. (D,E) The nucleotide
composition profile around proximal and distal poly(A) sites, respectively.

2.3. Profiling of Global APA Sites and Differential APA

Global establishment of the accurate polyadenylation cleavage sites to define the
3′ end of genes will greatly improve the gene annotation. PacBio long-read sequencing
produces full-length of cDNA, which is suitable to identify APA events. In this study,
we firstly carried out long-read sequencing to study the global polyadenylation events at
single-nucleotide resolution in watermelon. In total, we characterized 21,506 polyadeny-
lation sites from 11,611 genes, and 8703 genes contained two or more polyadenylation
sites (Figure 3A, Supplementary Data S4). Furthermore, a total of 4959 intronic polyadeny-
lation sites were identified (Supplementary Data S4). Interestingly, these introns were
longer than those without polyadenylation sites (Figure 3B). Next, we validated the
APA event of Cla97C01G008870 (Isocitrate dehydrogenase (ICDH), citric acid biosyn-
thetic enzyme) by 3′-RACE. Consistently, PCR could amplify multiple bands, which
represented different 3′ ends for transcript variants (Supplementary Figure S5). Mo-
tifs around the watermelon polyadenylation region contained UGUA and AAUAAA
(Supplementary Figure S6A), which were similar to previous studies in Sorghum bicolor,
Ginkgo biloba and moso bamboo [22,24,27]. Proximal and distal poly(A) cleavage sites
displayed extremely similar distribution, suggesting that proximal sites are real poly(A)
cleavage sites (Figure 3D–E). Similar to AS, KEGG analysis showed that fructose and
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mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were
also enriched in genes undergoing APA (Figure 3C, Supplementary Data S5), which
included IAI (Cla97C05G099220), Sucrose Synthase (SUS, Cla97C10G194010), Trehalose 6-
phosphate phosphatase (TPP, Cla97C07G136350, Cla97C01G018360), PSY (Cla97C01G008760,
Cla97C07G137500), PDS (Cla97C07G142100, Cla97C10G198770) and 9-cis-epoxy-carotenoid
dioxygenase (NCED, Cla97C07G137260, Cla97C01G024630). All the enriched KEGG terms are
listed in Supplementary Data S5. Finally, we quantified differential APA, and the results
are shown in Supplementary Figure S6B–D and Supplementary Data S6.

2.4. Identification of Long Non-Coding RNA from PacBio Sequences

In plants, lncRNAs are largely involved in regulation of plant growth and develop-
ment, synthesizing secondary metabolites, and responding to environmental stress [35].
Recently, a series of noncoding RNAs (ncRNAs), especially lncRNAs, have been function-
ally characterized in fruit quality formation and fruit ripening at the posttranscriptional
level [7]. Using PacBio long-read data, we identified a total of 594 high-confidence lncRNAs
in watermelon fruit, which presented a shorter exon length than that of coding genes
(Figure 4A, Supplementary Data S7). Furthermore, 72 lncRNAs were up-regulated and
79 lncRNAs were down-regulated in 10 DAP vs. 18 DAP group, 37 lncRNAs were up-
regulated and 12 lncRNAs were down-regulated in 18 DAP vs. 26 DAP group, and 26 lncR-
NAs were up-regulated and 14 lncRNAs were down-regulated in 26 DAP vs. 34 DAP group
(Figure 4B–D, Supplementary Data S8). These differentially expressed lncRNAs might play
important roles in watermelon fruit ripening.
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from lncRNA transcripts and protein-coding transcripts. Volcano plot showing differentially ex-
pressed lncRNAs: (B) in DAP10 vs. DAP18 group; (C) in DAP18 vs. DAP26 group; and (D) in DAP26
vs. DAP34 group.
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3. Discussion

Watermelon is an important fruit crop, and an ideal model plant for studies on non-
climacteric fruit ripening. In this study, using PacBio single-molecule long-read sequencing,
we present the full-length transcriptome of four key developmental stages in watermelon.
In total, we obtained 6,921,295 error-corrected and mapped FLNC reads. In addition,
843,963,605 paired-end (PE) reads from our previously published study were also used in
this work. These high-quality datasets provided a solid foundation for our subsequent analyses.

AS and APA play a crucial role in the functional diversity of a gene by generating
different isoforms to regulate gene expression at the post-transcriptional level in higher
eukaryotes. To date, genome-wide analyses of alternative splicing have been studied in
some fruits, including tomato [36], kiwifruit [37], olive (Olea europaea) [38], papaya [39],
peach [39], melon [39], cucumber [39], blueberry [40], citrus [41], grape (Vitis vinifera) [42],
sweet cherry (Prunus avium) [43], strawberry [23,44] and watermelon (Citrullus lanatus) [45].
All the studies conducted RNA-seq to identify AS events except in strawberry and olive,
which employed PacBio long-read sequencing. In cucumber and melon, AS was signif-
icantly more prevalent at the ripe stage than at the immature stage, while the opposite
trend was shown in papaya and peach, implying that developmental stages adopt different
alternative splicing strategies for their specific functions [39]. In addition, all vegetative
tissues of tetraploid watermelon except the fruit displayed an increased level of AS than
diploid watermelon throughout the growth period [45]. In this study, we found AS events
were significantly increased at the ripe stage (26 DAP and 34 DAP) than at the immature
stage (Figure 2D), which was similar to cucumber and melon.

Common RNA-seq could not provide a better understanding of genome-wide profiling
of polyadenylation sites [46]. Previous developed polyadenylation site sequencing (PAS-
seq) was used to comprehensively identify plant APA events [17,47]. However, the method
has an internal priming issue in that the oligo (dT) primer could also bind internal A-
rich sequences [48]. PacBio long-read sequencing generated full-length structures of each
splicing isoform and allowed the identification of exact polyadenylation sites [22]. Till now,
global APA identification during fleshy fruit development has rarely been reported. In this
study, PacBio sequencing was employed to generate long reference sequences and profiling
of APA from 8703 genes in watermelon. KEGG analysis showed that fructose and mannose
metabolism, starch and sucrose metabolism and carotenoid biosynthesis were enriched
in genes undergoing AS and APA, respectively. Interestingly, IAI (Cla97C05G099220),
(PSY, Cla97C01G008760) and PDS (Cla97C07G142100) were simultaneously regulated by
both AS and APA. Taken together, these results suggested that AS and APA might play
important roles in watermelon fruit ripening. In total, 4959 introns from 3073 genes included
intronic polyadenylation, which might encode shorter proteins (Ozso-lak et al., 2010).
In Arabidopsis and moso bamboo, introns with polyadenylation sites always contain
transposable elements (TEs), which result in introns with polyadenylation sites are longer
than that without polyadenylation sites [24,49,50]. In addition, previous studies showed
that association of intronic TE elements through epigenetic regulation (DNA methylation,
histone modification) impact the intronic polyadenylation in Arabidopsis [49,50]. In this
study, we also found that introns with polyadenylation sites are longer in watermelon fruit
(Figure 3B). In future, more fruit ripening-related epigenetic data will reveal the interplay
between epigenetic regulation and intronic polyadenylation in watermelon, such as histone
modification and DNA methylation.

Based on our previously published transcriptomic data, we found that a few splicing-
related factors displayed obvious up-regulated expression during watermelon fruit ripening
such as serine/arginine-rich splicing factor (SR), DEAD-box ATP-dependent RNA helicase
(DDX), cyclin-dependent kinase g-2 (CDK), and pre-mRNA-processing factor 39 (PRP39)
(Figure 5). Additionally, APA-associated factors also showed different expression during
ripening such as cleavage and polyadenylation specificity factor (CPSF), poly(A) poly-
merase (PAP) and pre-mRNA cleavage factor Im 25 kDa subunit 1 (CFIm25) (Figure 5).
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These differential splicing-related and APA-associated genes might take part in regulation
of AS and APA during fruit ripening in watermelon.
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factors. SR: serine/arginine-rich splicing factor; DDX: DEAD-box ATP-dependent RNA helicase;
CDK: cyclin-dependent kinase; PRP39: pre-mRNA-processing factor 39; DHX16: DEAH-box protein,
ATP-dependent RNA helicase; HSP: 35S_U5_associated_proteins; CLASRP: CLK4-associating ser-
ine/arginine rich protein. (B) APA-related factors. CPSF: cleavage and polyadenylation specificity
factor; PAP: poly(A) polymerase; CFIm25: pre-mRNA cleavage factor Im 25 kDa subunit.

Climate change will have profound effects on food production. The production and
quality of fresh fruit can be directly or indirectly affected by exposure to high temperatures
and elevated levels of carbon dioxide and ozone. Accelerated crop improvement (tradi-
tional breeding methods, genetic modification and gene editing), and new cultivation and
processing techniques are required to produce sufficient food supplies and/or economize
the production cost, so as to meet the basic nutrient requirements of the growing human
population in this age of climate change. Our comprehensive PacBio long-read sequencing
present a comprehensive view of fruit ripening-related AS, APA and lncRNA, which pro-
vides a better understanding of the complex post-transcriptional regulatory networks of
fruit ripening in watermelon. Knowledge of the gene function and regulatory networks
can make a significant contribution to the development of modern varieties that are able to
withstand and adapt to the climatic conditions brought about by climate change.
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4. Materials and Methods
4.1. Plant Materials

Watermelon C. lanatus (Thunb.) Matsum. & Nakai subsp. vulgaris cv 97,103 was used
in this study. In order to make the fruit grow uniformly, we kept only one watermelon per
plant. Flowers were hand-pollinated at 3–5 nodes and tagged. PacBio long-read sequencing
was performed on three biological replicates of watermelon center flesh samples; these
were collected at four developmental stages (10, 18, 26 and 34 DAP (days after pollination),
Figure 1), each replicate resulting from the pooling of at least 10 fruits. Samples were
rapidly frozen in liquid nitrogen and stored at −80 ◦C. All the samples used in this study
were the same as from our previous study [30].

4.2. Total RNA Extraction, Construction of PacBio Library and Sequencing

Total RNA was isolated with a Total RNA Rapid Extraction Kit (Huayueyang Biotech-
nologies Co. Ltd., Beijing, China). Three biological replicates were carried out for Iso-Seq.
The purity and concentration of total RNA were assessed using NanoDrop 2000, and the
RNA integrity was evaluated with the Agilent 2100/4200 system. A total of 2 µg RNA
was used for library construction. PacBio single-molecule real-time (SMRT) bell library
preparation was performed using SMRTbell Express Template Prep Kit 2.0 (Pacific Bio-
sciences, PN 101-853-100) in accordance with the manufacturer’s instructions. In brief, first
strand cDNA was synthesized by reverse transcription after adding primer with Oligo dT
paired with poly(A). Template switching was performed by adding the other primer paired
with TS oligo. Full-length cDNA was obtained by cDNA amplification with barcoded
cDNA PCR primers. Amplified cDNA was purified ProNex Beads and quantified by Qubit
fluorometer (Invitrogen, Carlsbad, CA, USA). SMRTbell library was prepared using the
Kit 2.0. Single-strand overhangs were removed, and then we performed DNA damage
reparation, end-repair, A-tailing and adapter ligation. After library purification using 0.45X
AMPure® PB Beads and 1–10 Kb size selection, the library was prepared for sequencing for
30 h movie on the Sequel II system (Pacific Biosciences, Menlo Park, CA, USA).

4.3. Data Analysis

Watermelon reference genome and annotated gene models (97103, V2.5 version)
were downloaded from CuGenDB (http://cucurbitgenomics.org/, accessed on 9 October
2023). The generated raw data were processed using the SMRT Analysis software (ISOseq
version3.0). HiFi reads were generated by SMRTLink 10.0 software with parameters --
min-passes = 3 --min-rq = 0.99. According to whether the sequence contained 5′ primers,
3′ primer or the poly(A) tail, the HiFi reads were divided into full-length and non-full-
length sequences. Only the HiFi reads without any inter primer were considered as a
full-length non-chimeric (FLNC) read. The FLNC were corrected by RNA-seq reads via
LSC 1.alpha with Bowtie 2 v.2.2.1 alignment [51]. The error-corrected FLNC reads were then
mapped to watermelon reference genome using minimap2 by the command (minimap2
-ax splice uf k14--sam-hit-only secondary=no) [31]. Alignment files were sorted, indexed,
and filtered (-F 2048) by SAMtools. Stringtie2 (V2.2.1) was used for transcript assembly
with the option -L –conservative [52]. Next, the collapsed transcripts were compared to
reference annotation by Gffcompare (V0.12.6) with default parameter. MEME (V5.5.3) was
used to search the upstream and downstream cis elements of polyadenylation sites [53].
KEGG pathway enrichment analyses were performed by the ClusterProfiler R- package,
and the ggplot2 R-package was used for visualization [54].

4.4. Quantification of Differential Alternative Splicing

The AS event was identified by SUPPA2 (V2.3) generateEvents with options ‘-e SE SS
MX RI FL -f ioe’ [55]. The quantification of AS event was performed by Salmon (V1.10.1)
with options ‘—gcBias –validateMappings’ using RNA-seq. The differential alternative
splicing events were quantified by SUPPA2 diffSplice using the option --method (empirical).
Throughout, AS events with p < 0.05 were regarded as differential AS events.

http://cucurbitgenomics.org/
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4.5. Quantification of Differential Alternative Polyadenylation

Poly(A) site with >5% usage rate was remained as candidate poly(A) site. The distance
between two distinct poly(A) sites should be more than 30 nt. The reads with termination
site located 12 nt immediately upstream and downstream a poly(A) site was assigned to
the poly(A) site. The poly(A) site with higher abundance was selected as the major sites.
The abundance for each poly(A) site was normalized based on read count from the highest
sites and library size. Fisher’s exact test was used for differential APA sites among the
DAP10 vs. DAP18 group, DAP18 vs. DAP26 group and DAP26 vs. DAP34 group (p < 0.05).

4.6. Identification of lncRNA

For lncRNA identification, FLNC reads were merged together and aligned to genome
by minimap2 [31] to generate BAM files, which were assembled to the transcripts by
Stringtie2 [52]. Transcripts with only one exon and exon lengths of <200 bp were filtered
out from downstream analysis. The prediction of lncRNA were preformed by CPC2, PLEK,
lncFinder and Pfam with default options. The expression of lncRNA was quantificatied by
Salmon with RNA-seq data.

4.7. PCR Validation of AS and APA

Two micrograms of total RNA was subjected to first-strand cDNA synthesis using
a TransScript First-Strand cDNA Synthesis SuperMix (TransGen Biotech, Cat# AT301-02,
Beijing, China) and an oligo (dT18) primer. AS was validated by RT-PCR using 2 × Phanta
Max Master Mix (Dye Plus) (Vazyme, Cat# P525-01, Nanjing, China) with 5 × diluted
cDNA as the template. The PCR products were visualized in 1.2% agarose gel stained
by GelStain. The APA events were validated using a 3′ RACE Kit (Clontech, cat # 6106)
according to the manufacturer’s instructions. Primer lists used in the validation are listed
in Supplementary Table S1.

4.8. Data Presentation

All the statistical analyses and plots were carried out using Python matplotlib packages
(version 3.8.0).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms242015333/s1.
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