Natural Compounds Purified from the Leaves of Aristotelia chilensis: Makomakinol, a New Alkaloid and the Effect of Aristoteline and Hobartine on NaV Channels
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of Purified Compounds from Aristotelia chilensis Leaves
2.2. Hobartine and Aristoteline Inhibit NaV Channels
2.3. Mechanism of Hobartine and Aristoteline NaV1.8 Block
3. Discussion
4. Material and Methods
4.1. General Information
4.2. Purification of Secondary Metabolites from Leaves of Aristotelia chilensis
4.3. Identification of Compounds Purified from Aristotelia chilensis
4.4. Theoretical Calculations
4.5. Cell Culture
4.6. Electrophysiology
4.7. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waxman, S.G.; Cummins, T.R.; Dib-Hajj, S.; Fjell, J.; Black, J.A. Sodium Channels, Excitability of Primary Sensory Neurons, and the Molecular Basis of Pain. Muscle Nerve 1999, 22, 1177–1187. [Google Scholar] [CrossRef]
- Lai, J.; Porreca, F.; Hunter, J.C.; Gold, M.S. Voltage-Gated Sodium Channels and Hyperalgesia. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 371–397. [Google Scholar] [CrossRef] [PubMed]
- Dib-Hajj, S.D.; Yang, Y.; Black, J.A.; Waxman, S.G. The Na v 1.7 Sodium Channel: From Molecule to Man. Nat. Rev. Neurosci. 2013, 14, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Alsaloum, M.; Higerd, G.P.; Effraim, P.R.; Waxman, S.G. Status of Peripheral Sodium Channel Blockers for Non-Addictive Pain Treatment. Nat. Rev. Neurol. 2020, 16, 689–705. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.L.; Clark, X.A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, F.; Biel, M.; Kaupp, U.B. International Union of Pharmacology. LI. Nomenclature and Structure-Function Relationships of Cyclic Nucleotide-Regulated Channels. Pharmacol. Rev. 2005, 57, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Sheets, P.L.; Waxman, S.G. The Roles of Sodium Channels in Nociception: Implications for Mechanisms of Pain. Pain 2007, 131, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Bhakuni, D.S.; Bittner, M.; Marticorena, C.; Silva, M.; Weldt, E.; Hoeneisen, M. Screening of Chilean Plants for Anticancer Activity. Lloydia 1976, 39, 225–243. [Google Scholar]
- Masoodi, H.; Villaño, D.; Zafrilla, P. A Comprehensive Review on Fruit: Aristotelia Chilensis (Maqui) for Modern Health: Towards a Better Understanding. Food Funct. 2019, 10, 3057–3067. [Google Scholar] [CrossRef]
- Paz, C.; Becerra, J.; Silva, M.; Cabrera-Pardo, J.; Burgos, V.; Heydenreich, M.; Schmidt, B. (−)-8-Oxohobartine a New İndole Alkaloid from Aristotelia Chilensis (Mol.) Stuntz. Rec. Nat. Prod. 2015, 10, 68–73. [Google Scholar]
- Cespedes, C.L.; Balbontin, C.; Avila, J.G.; Dominguez, M.; Alarcon, J.; Paz, C.; Burgos, V.; Ortiz, L.; Peñaloza-Castro, I.; Seigler, D.S.; et al. Inhibition on Cholinesterase and Tyrosinase by Alkaloids and Phenolics from Aristotelia Chilensis Leaves. Food Chem. Toxicol. 2017, 109, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Arias, H.R.; Ortells, M.O.; Feuerbach, D.; Burgos, V.; Paz, C. Alkaloids Purified from Aristotelia Chilensis Inhibit the Human A3β4 Nicotinic Acetylcholine Receptor with Higher Potencies Compared with the Human A4β2 and A7 Subtypes. J. Nat. Prod. 2019, 82, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Palacios, J.; Jofré, I.; Paz, C.; Nwokocha, C.R.; Paredes, A.; Cifuentes, F. Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta. Molecules 2019, 24, 2748. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, C.L.; Alarcon, J.; Avila, J.G.; El-Hafidi, M. Anti-Inflammatory, Antioedema and Gastroprotective Activities of Aristotelia Chilensis Extracts, Part 2. Bol. Latinoam. Caribe Plantas Med. Aromat. 2010, 9, 432–439. [Google Scholar]
- Muñoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical Study and Anti-Inflammatory, Analgesic and Antioxidant Activities of the Leaves of Aristotelia Chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 2011, 63, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lalko, J.; Lapczynski, A.; McGinty, D.; Bhatia, S.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Dihydro-β-Ionone. Food Chem. Toxicol. 2007, 45, S225–S228. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, L.A.; Lakshminarayan, S.; Yeung, K.K.C.; McGarvey, B.D.; Hannoufa, A.; Sumarah, M.W.; Benitez, X.; Scott, I.M. Repellent and Attractive Effects of α-, β-, and Dihydro-β- Ionone to Generalist and Specialist Herbivores. J. Chem. Ecol. 2016, 42, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.R.; Rosenberg, A. The cough suppressant effect of heroin and codeine: A controlled clinical study. Can. Med. Assoc. J. 1962, 86, 810. [Google Scholar]
- Ulbricht, W. Sodium Channel Inactivation: Molecular Determinants and Modulation. Physiol. Rev. 2005, 85, 1271–1301. [Google Scholar] [CrossRef]
- Chen, R.; Chung, S.H. Mechanism of Tetrodotoxin Block and Resistance in Sodium Channels. Biochem. Biophys. Res. Commun. 2014, 446, 370–374. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, X.; Zheng, H.; Hu, D.; Zhang, Y.; Guan, Q.; Liu, L.; Ding, Q.; Li, Y. Clematichinenoside Inhibits VCAM-1 and ICAM-1 Expression in TNF-α-Treated Endothelial Cells via NADPH Oxidase-Dependent IκB Kinase/NF-ΚB Pathway. Free Radic. Biol. Med. 2015, 78, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mi, J.; Lu, K.; Lu, Y.; Wang, K.W. Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine. PLoS ONE 2015, 10, e0128653. [Google Scholar] [CrossRef]
- Stevens, M.; Peigneur, S.; Tytgat, J. Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels. Front. Pharmacol. 2011, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Moczydlowski, E.G. The Molecular Mystique of Tetrodotoxin. Toxicon 2013, 63, 165–183. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Autschbach, J.; Ziegler, T.; Van Gisbergen, S.J.A.; Baerends, E.J. Chiroptical Properties from Time-Dependent Density Functional Theory. I. Circular Dichroism Spectra of Organic Molecules. J. Chem. Phys. 2002, 116, 6930–6940. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef]
Carbon | 13C (ppm) | 1H (ppm) | HMBC |
---|---|---|---|
138.3 | 8.09, s | 3, 8, 3′, 7′ | |
3 | 115.7 | - | |
3′ | 127.7 | - | |
4 | 123.0 | 8.28, d, J = 7.5 Hz | 3(w), 6, 7(w), 3′(w), 7′ |
5 | 123.6 | 7.24, m | |
6 | 124.7 | 7.24, m | |
7 | 113.0 | 7.46, d, J = 7.4 Hz | 3′, 7′(w) |
7′ | 138.3 | - | |
8 | 189.8 | - | |
9 | 169.0 | - | |
11 | 149.8 | - | |
12 | 42.0 | 3.90, br | 9, 11, 14, 16, 17 |
13 | 30.3 | 2.21, ddd, J = −12.6, 6.2, 2.8 Hz 1.75, ddd, J = −12.6, 3.3, 2.3 Hz | 12, 15 9, 12, 14, 18 |
14 | 38.6 | 2.08, m | 12, 13, 15, 16, 18, 19 |
15 | 40.5 | 1.52, m 2.41, ddt, J = −13.0, 5.6, 2.8 Hz | 11, 13, 14, 16, 18, 19 11, 13, 14, 16 |
16 | 68.3 | 4.21, ddt, J = 11.9, 5.1, 2.5 Hz | 11(w), 12, 16 |
17 | 108.4 | 5.00, br s 4.92, br s | 11(w), 12, 16 11(w), 12, 16 |
18 | 60.3 | - | |
19 | 27.0 | 1.53, s | 14, 18, 20 |
20 | 31.0 | 1.33, s | 14, 18, 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, R.; Figueredo, C.; Burgos, V.; Cabrera-Pardo, J.R.; Schmidt, B.; Heydenreich, M.; Koch, A.; Deuis, J.R.; Vetter, I.; Paz, C. Natural Compounds Purified from the Leaves of Aristotelia chilensis: Makomakinol, a New Alkaloid and the Effect of Aristoteline and Hobartine on NaV Channels. Int. J. Mol. Sci. 2023, 24, 15504. https://doi.org/10.3390/ijms242115504
Pérez R, Figueredo C, Burgos V, Cabrera-Pardo JR, Schmidt B, Heydenreich M, Koch A, Deuis JR, Vetter I, Paz C. Natural Compounds Purified from the Leaves of Aristotelia chilensis: Makomakinol, a New Alkaloid and the Effect of Aristoteline and Hobartine on NaV Channels. International Journal of Molecular Sciences. 2023; 24(21):15504. https://doi.org/10.3390/ijms242115504
Chicago/Turabian StylePérez, Rebeca, Claudia Figueredo, Viviana Burgos, Jaime R. Cabrera-Pardo, Bernd Schmidt, Matthias Heydenreich, Andreas Koch, Jennifer R. Deuis, Irina Vetter, and Cristian Paz. 2023. "Natural Compounds Purified from the Leaves of Aristotelia chilensis: Makomakinol, a New Alkaloid and the Effect of Aristoteline and Hobartine on NaV Channels" International Journal of Molecular Sciences 24, no. 21: 15504. https://doi.org/10.3390/ijms242115504
APA StylePérez, R., Figueredo, C., Burgos, V., Cabrera-Pardo, J. R., Schmidt, B., Heydenreich, M., Koch, A., Deuis, J. R., Vetter, I., & Paz, C. (2023). Natural Compounds Purified from the Leaves of Aristotelia chilensis: Makomakinol, a New Alkaloid and the Effect of Aristoteline and Hobartine on NaV Channels. International Journal of Molecular Sciences, 24(21), 15504. https://doi.org/10.3390/ijms242115504