Iridescent Features Correlating with Periodic Assemblies in Custom-Crystallized Arylate Polyesters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Iridescent Properties of PET and PTT
2.2. Iridescent Tests for Aryl Polyesters
2.3. Periodic Microstructures and Iridescent Features of POT and PNT
3. Materials and Methods
Apparatus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.C.; Wang, H.F.; Chiang, C.H.; Lee, Y.D.; Ho, R.M. Lamellar-twisting-induced circular dichroism of chromophore moieties in banded spherulites with evolution of homochirality. Angew. Chem. Int. Ed. 2014, 53, 4450–4455. [Google Scholar] [CrossRef]
- Wang, Z.; Alfonso, G.C.; Hu, Z.; Zhang, J.; He, T. Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from poly(ε-caprolactone) solution with constant concentration. Macromolecules 2008, 41, 7584–7595. [Google Scholar] [CrossRef]
- Yan, C.; Li, H.; Zhang, J.; Ozaki, Y.; Shen, D.; Yan, D.; Shi, A.C.; Yan, S. Surface-induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate: Epitaxy and soft epitaxy. Macromolecules 2006, 39, 8041–8048. [Google Scholar] [CrossRef]
- Qiu, Z.; Yan, C.; Lu, J.; Yang, W.; Ikehara, T.; Nishi, T. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride). J. Phys. Chem. B 2007, 111, 2783–2789. [Google Scholar] [CrossRef]
- Chuah, H.H. Orientation and Structure Development in Poly(trimethylene terephthalate) Tensile Drawing. Macromolecules 2001, 34, 6985–6993. [Google Scholar] [CrossRef]
- Abo el Maaty, M.I.; Hosier, I.L.; Bassett, D.C. A Unified Context for Spherulitic Growth in Polymers. Macromolecules 1998, 31, 153–157. [Google Scholar] [CrossRef]
- Mareau, V.H.; Prud’homme, R.E. In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films. Macromolecules 2005, 38, 398–408. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.; Wang, Z.; Gu, Q.; Wang, Y.; Huang, Y. Influence of flexible poly(trimethylene sebacate) segments on the lamellar twisting behavior of poly(trimethylene terephthalate) ring-banded spherulites. Ind. Eng. Chem. Res. 2013, 52, 1892–1900. [Google Scholar] [CrossRef]
- Ye, H.M.; Xu, J.; Guo, B.H.; Iwata, T. Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: Dependence on growth axis. Macromolecules 2009, 42, 694–701. [Google Scholar] [CrossRef]
- Ho, R.M.; Li, M.C.; Lin, S.C.; Wang, H.F.; Lee, Y.D.; Hasegawa, H.; Thomas, E.L. Transfer of chirality from molecule to phase in self-assembled chiral block copolymers. J. Am. Chem. Soc. 2012, 134, 10974–10986. [Google Scholar] [CrossRef]
- Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Keith, H.D.; Padden, F.J. The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites. J. Polym. Sci. 1959, 39, 123–138. [Google Scholar] [CrossRef]
- Rohindra, D. Miscibility determination in poly(ε-caprolactone)/poly(vinyl formal) blend by equilibrium melting temperature and spherulite morphology. J. Macromol. Sci. Part B Phys. 2009, 48, 1103–1113. [Google Scholar] [CrossRef]
- Yilgör, E.; Isik, M.; Söz, C.K.; Yilgör, I. Synthesis and structure-property behavior of polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer 2016, 83, 138–153. [Google Scholar] [CrossRef]
- Lustiger, A.; Lotz, B.; Duff, T.S. The morphology of the spherulitic surface in polyethylene. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 561–579. [Google Scholar] [CrossRef]
- Díaz, A.; Franco, L.; Estrany, F.; del Valle, L.J.; Puiggalí, J. Poly(butylene azelate-co-butylene succinate) copolymers: Crystalline morphologies and degradation. Polym. Degrad. Stab. 2014, 99, 80–91. [Google Scholar] [CrossRef]
- Keith, H.D.; Padden, F.J. Ringed spherulites in polyethylene. J. Polym. Sci. 1958, 31, 415–421. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, C.M.; Li, L.; Ng, K.M. Concentric-ringed structures in polymer thin films. Langmuir 2006, 22, 7384–7390. [Google Scholar] [CrossRef]
- Clough, S.B.; Stein, R.S. Multiple-order light scattering from ringed spherulites. J. Polym. Sci. Part A Polym. Phys. 1968, 6, 783–786. [Google Scholar] [CrossRef]
- Auriemma, F. Polymer Crystallization II; Auriemma, F., Alfonso, G.C., de Rosa, C., Eds.; Advances in Polymer Science; Springer International Publishing: Cham, Switzerland, 2017; Volume 277, ISBN 978-3-319-50683-8. [Google Scholar]
- Crist, B.; Schultz, J.M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016, 56, 1–63. [Google Scholar] [CrossRef]
- Lotz, B.; Cheng, S.Z.D. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 2005, 46, 577–610. [Google Scholar] [CrossRef]
- Tanaka, H.; Nishi, T. Local phase separation at the growth front of a polymer spherulite during crystallization and nonlinear spherulitic growth in a polymer mixture with a phase diagram. Phys. Rev. A 1989, 39, 783–794. [Google Scholar] [CrossRef]
- Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J.A.; Douglas, J.F. Growth and form of spherulites. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2005, 72, 011605. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Punin, Y.O.; Gunn, E.; Kahr, B. Spherulites. Chem. Rev. 2012, 112, 1805–1838. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Song, S.; Feng, H.; Chen, P.; Wang, Z.; Gu, Q. Synchronous architecture of ring-banded and non-ring-banded morphology within one spherulite based on in situ ring-opening polymerization of cyclic butylene terephthalate oligomers. RSC Adv. 2016, 6, 94524–94530. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Lee, S.C.; Shin, K. Crystal structure of poly(octamethylene terephthalate) determined by X-ray fiber diffraction and molecular modeling. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 276–283. [Google Scholar] [CrossRef]
- Bateman, J.; Richards, R.E.; Farrow, G.; Ward, I.M. Molecular motion in polvethylene terephthalate and other glycol terephthalate polymers. Polymer 1960, 1, 63–71. [Google Scholar] [CrossRef]
- Nam, Y.; Shim, K.B.; Kim, S.H.; Kim, B.C. Effect of Silica Nanoparticle on the Quiescent and the Shear Induced Crystallization Behaviors of Poly(trimethylene terephthalate). Polym. J. 2004, 36, 519–530. [Google Scholar] [CrossRef]
- Chuang, W.-T.; Su, W.-B.; Jeng, U.-S.; Hong, P.-D.; Su, C.-J.; Su, C.-H.; Huang, Y.-C.; Laio, K.-F.; Su, A.-C. Formation of Mesomorphic Domains and Subsequent Structural Evolution during Cold Crystallization of Poly(trimethylene terephthalate). Macromolecules 2011, 44, 1140–1148. [Google Scholar] [CrossRef]
- Ho, R.M.; Chiang, Y.W.; Lin, S.C.; Chen, C.K. Helical architectures from self-assembly of chiral polymers and block copolymers. Prog. Polym. Sci. 2011, 36, 376–453. [Google Scholar] [CrossRef]
- Chen, H.B.; Chen, L.; Zhang, Y.; Zhang, J.J.; Wang, Y.Z. Morphology and interference color in spherulite of poly(trimethylene terephthalate) copolyester with bulky linking pendent group. Phys. Chem. Chem. Phys. 2011, 13, 11067–11075. [Google Scholar] [CrossRef]
- Chen, Y.F.; Woo, E.M. Annular multi-shelled spherulites in interiors of bulk-form Poly(nonamethylene terephthalate). Macromol. Rapid Commun. 2009, 30, 1911–1916. [Google Scholar] [CrossRef]
- Daubeny, R.D.P.; Bunn, C.W.; Brown, C.J. The crystal structure of polyethylene terephthalate. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1954, 226, 531–542. [Google Scholar]
- Lugito, G.; Woo, E.M. Multishell oblate spheroid growth in poly(trimethylene terephthalate) banded spherulites. Macromolecules 2017, 50, 5898–5904. [Google Scholar] [CrossRef]
- Chen, Y.F.; Woo, E.M.; Li, S.H. Dual types of spherulites in poly (octamethylene terephthalate) confined in thin-film growth. Langmuir 2008, 24, 11880–11888. [Google Scholar] [CrossRef]
- Woo, E.M.; Nurkhamidah, S.; Chen, Y.F. Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate). Phys. Chem. Chem. Phys. 2011, 13, 17841–17851. [Google Scholar] [CrossRef]
- Yang, C.-E.; Woo, E.M.; Nagarajan, S. Epicycloid extinction-band assembly in Poly(decamethylene terephthalate) confined in thin films and crystallized at high temperatures. Polymer 2021, 212, 123256. [Google Scholar] [CrossRef]
- Woo, E.M.; Lugito, G.; Nagarajan, S. Dendritic polymer spherulites: Birefringence correlating with lamellae assembly and origins of superimposed ring bands. J. Polym. Res. 2020, 27, 7. [Google Scholar] [CrossRef]
- Parker, A.R. 515 Million Years of Structural Colour. J. Opt. A Pure Appl. Opt. 2000, 2, R15. [Google Scholar] [CrossRef]
- Vignolini, S.; Gregory, T.; Kolle, M.; Lethbridge, A.; Moyroud, E.; Steiner, U.; Glover, B.J.; Vukusic, P.; Rudall, P.J. Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis. J. R. Soc. Interface 2016, 13, 20160645. [Google Scholar] [CrossRef]
- Lo, M.-L.; Lee, C.-C. Structural color mechanism in the Papilio blumei butterfly. Appl. Opt. 2014, 53, A399. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, G. Dynamic structural color in the nacre of Hyriopsis Cumingii and its cause. Optik 2017, 135, 252–255. [Google Scholar] [CrossRef]
- De Haan, L.T.; Willigers, T.J.J.; Wijkhuijs, L.E.A.; Hendrikx, M.; Nguyen, C.T.; Leclère, P.; Souren, A.E.J.; Zhou, G.; Debije, M.G. Contactless Control of Local Surface Buckling in Photoaligned Gold/Liquid Crystal Polymer Bilayers. Langmuir 2018, 34, 10543–10549. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Q.; Wang, C.; Wang, D.; Song, M.; Li, Z.; Xue, X.; Zhang, G.; Qing, G. Multimodal, Convertible, and Chiral Optical Films for Anti-Counterfeiting Labels. Adv. Funct. Mater. 2022, 32, 2204487. [Google Scholar] [CrossRef]
- Zhou, Q.; Park, J.G.; Bae, J.; Ha, D.; Park, J.; Song, K.; Kim, T. Multimodal and Covert–Overt Convertible Structural Coloration Transformed by Mechanical Stress. Adv. Mater. 2020, 32, 2001467. [Google Scholar] [CrossRef]
- Bardet, R.; Roussel, F.; Coindeau, S.; Belgacem, N.; Bras, J. Engineered pigments based on iridescent cellulose nanocrystal films. Carbohydr. Polym. 2015, 122, 367–375. [Google Scholar] [CrossRef]
- Barrera-Patiño, C.P.; Vollet-Filho, J.D.; Teixeira-Rosa, R.G.; Quiroz, H.P.; Dussan, A.; Inada, N.M.; Bagnato, V.S.; Rey-González, R.R. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings. Sci. Rep. 2020, 10, 5786. [Google Scholar] [CrossRef]
- Hinton, H.E.; Gibbs, D.F. Diffraction Gratings in Phalacrid Beetles. Nature 1969, 221, 953–954. [Google Scholar] [CrossRef]
- Mika, F.; Matějková-Plšková, J.; Jiwajinda, S.; Dechkrong, P.; Shiojiri, M. Photonic crystal structure and coloration of wing wcales of butterflies exhibiting Selective wavelength iridescence. Materials 2012, 5, 754–771. [Google Scholar] [CrossRef]
- Dechkrong, P.; Jiwajinda, S.; Dokchan, P.; Kongtungmon, M.; Chomsaeng, N.; Chairuangsri, T.; Yu, C.C.; Hsiao, C.N.; Shiojiri, M. Fine structure of wing scales of butterflies, Euploea mulciber and Troides aeacus. J. Struct. Biol. 2011, 176, 75–82. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, P.; Nan, F.; Zhou, L.; Zhang, J. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromolecules 2014, 15, 4343–4350. [Google Scholar] [CrossRef]
- Dong, X.; Li, D.; Wu, J.M.; Zhang, Z.L.; Wang, Z.L.; Song, F.; Wang, X.L.; Wang, Y.Z. Non-iridescent and Wide-Color-Range Structural Coloration Enabled by Cellulose Nanocrystals with a Controlled Long-Range Photonic Structure and Helical Pitch. ACS Sustain. Chem. Eng. 2022, 10, 10641–10648. [Google Scholar] [CrossRef]
- Bardet, R.; Belgacem, N.; Bras, J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl. Mater. Interfaces 2015, 7, 4010–4018. [Google Scholar] [CrossRef]
- Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test. 2004, 23, 187–194. [Google Scholar] [CrossRef]
- Lugito, G.; Woo, E.M. Novel approaches to study the crystal assembly in banded spherulites of poly(trimethylene terephthalate). CrystEngComm 2016, 18, 6158–6165. [Google Scholar] [CrossRef]
- Chuang, W.T.; Hong, P.-D.; Chuah, H.H. Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites. Polymer 2004, 45, 2413–2425. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Nagarajan, S.; Rahmayanti, W.; Lee, L.-T.; Woo, E.M. Iridescence from tuned microstructures in poly(octamethylene terephthalate). Express Polym. Lett. 2023, 17, 867–880. [Google Scholar] [CrossRef]
- Tu, C.-H.; Woo, E.M.; Nagarajan, S.; Lugito, G. Sophisticated dual-discontinuity periodic bands of poly(nonamethylene terephthalate). CrystEngComm 2021, 23, 892–903. [Google Scholar] [CrossRef]
- Yang, C.-E.; Nagarajan, S.; Rahmayanti, W.; Su, C.-C.; Woo, E.M. From Nano-Crystals to Periodically Aggregated Assembly in Arylate Polyesters—Continuous Helicoid or Discrete Cross-Hatch Grating? Nanomaterials 2023, 13, 1016. [Google Scholar] [CrossRef]
- Nudelman, F.; Gotliv, B.A.; Addadi, L.; Weiner, S. Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 2006, 153, 176–187. [Google Scholar] [CrossRef]
- Cuif, J.P.; Dauphin, O.Y.; Sorauf, J.E. Biominerals and Fossils Through Time; Cambridge University Press: Cambridge, UK, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Jackson, A.P.; Vincent, J.F.V.; Turner, R.M. The mechanical design of nacre. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1988, 234, 415–440. [Google Scholar]
- Kinoshita, S.; Yoshioka, S.; Fujii, Y.; Okamoto, N. Photophysics of structural color in the morpho butterflies. Forma 2002, 17, 103–121. [Google Scholar]
Polymer | d-Spacing (Laser Diffraction) (µm) | BS (POM) (µm) | BS (SEM for Top Surface) (µm) | BS (SEM for Interior) (µm) | θ1 (°) | θ2 (°) |
---|---|---|---|---|---|---|
PTT | 5.5 | 5.5 | 5.5 | - | 5.7 | 11.2 |
POT | 3.6 | 3.6 | 3.7 | 3.6 | 17.1 | - |
PNT | 7.1 | 6.9 | 7.1 | 7.1 | 8.7 | - |
PDT | 3.1 | 3.3 | 3.2 | 3.1 | 12.1 | - |
Polymers | Chemical Structures |
---|---|
Poly(ethylene terephthalate) (PET) | |
Poly(trimethylene terephthalate) (PTT) | |
Poly(octamethylene terephthalate) (POT) | |
Poly(nonamethylene terephthalate) (PNT) | |
Poly(decamethylene terephthalate) (PDT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmayanti, W.; Nagarajan, S.; Sun, Y.-S.; Woo, E.M. Iridescent Features Correlating with Periodic Assemblies in Custom-Crystallized Arylate Polyesters. Int. J. Mol. Sci. 2023, 24, 15538. https://doi.org/10.3390/ijms242115538
Rahmayanti W, Nagarajan S, Sun Y-S, Woo EM. Iridescent Features Correlating with Periodic Assemblies in Custom-Crystallized Arylate Polyesters. International Journal of Molecular Sciences. 2023; 24(21):15538. https://doi.org/10.3390/ijms242115538
Chicago/Turabian StyleRahmayanti, Widyantari, Selvaraj Nagarajan, Ya-Sen Sun, and Eamor M. Woo. 2023. "Iridescent Features Correlating with Periodic Assemblies in Custom-Crystallized Arylate Polyesters" International Journal of Molecular Sciences 24, no. 21: 15538. https://doi.org/10.3390/ijms242115538
APA StyleRahmayanti, W., Nagarajan, S., Sun, Y. -S., & Woo, E. M. (2023). Iridescent Features Correlating with Periodic Assemblies in Custom-Crystallized Arylate Polyesters. International Journal of Molecular Sciences, 24(21), 15538. https://doi.org/10.3390/ijms242115538