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Abstract: The emergence of phage-resistant bacterial strains is one of the biggest challenges for
phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive
trade-offs, which supports a therapeutic strategy called “phage steering”. The key to phage steering
is to guide the bacterial population toward an evolutionary direction that is favorable for treatment.
Thus, it is important to systematically investigate the impacts of phages targeting different bacterial
receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to
impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the
genetic and phenotypic responses of their phage-resistant mutants. Among these strains with
impaired adsorptions, four types of mutations associated with bacterial receptors were identified,
namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and
exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly
showed significant growth impairment and virulence attenuation. Most mutants with T4P-related
mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants
with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart
from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with
phages, such as the presence of large-fragment mutants in this study, which may inspire the usage
of phage–antibiotic combination strategies. This work provides methods that leverage the merits
of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-
steering strategies.

Keywords: phage resistance; fitness cost; phage steering; phage therapy; receptor-related mutants

1. Introduction

Antibiotics are essential for combating bacterial infections. However, their efficacy
is imperiled by the emergence of multidrug-resistant bacteria in clinical settings due to
their overuse and misuse. The overuse of antibiotics has made Pseudomonas aeruginosa one
of the most common multidrug-resistant bacteria, and it is resistant to a wide range of
antibiotics, including beta-lactams, fluoroquinolones, and aminoglycosides [1]. In addition,
the discovery and development of new antibiotics are becoming increasingly challenging
due to the high cost and slow pace. This indicates that antibiotic resistance is a growing
global public health threat, driving the exploration of alternative therapies relative to
antibiotics in medicine [2]. As a result, alternative treatments are needed, and phage
therapy offers a potential treatment for highly drug-resistant infections. Compared with
antibiotics, phage therapy offers several advantages, including high specificity, minimal
adverse effects, low developmental costs, and ease of modification [3]. At present, phage
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therapy has become a multifaceted and comprehensive approach, and it is not limited to the
traditional antimicrobial strategy, which is based on lytic phages or phage cocktails [4], but
rather encompasses a range of therapeutic techniques. Phage therapy includes phage–antibiotic
combinations [5], phage-derived enzymes [6], phage steering based on bacterial fitness
trade-offs due to phage resistance [7], and antibiotic sensitivity restoration mediated by
temperate phages [8].

One of the challenges in the clinical application of phage therapy is the emergence
of phage resistance in bacteria [9]. Bacteria and phages engage in an arms race due to
continuous exposure to each other, resulting in high mutation rates and horizontal gene
transfer, which enhance their genetic traits and diversity [10]. Among the various defense
mechanisms against phages, changes in bacterial receptors due to mutations in the genome
may be the simplest way for bacteria to acquire phage resistance.

Gram-negative bacteria use different receptors to interact with phages, such as lipopoly-
saccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysac-
charides (EPSs) [11]. These receptors also have other functions, such as surface antigens,
virulence factors, nutritional auxiliary factors, and effluent carriers [12,13]. Accordingly,
such bacterial receptor-associated mutations may cause bacteria to develop trade-off strate-
gies with respect to adaptive costs, such as lowered fitness [14], reduced virulence [15], and
decreased antibiotic resistance [16]. Consequently, Gurney et al. proposed the concept of
“phage steering”, which uses the specific phage resistance of pathogenic bacteria to improve
infection outcomes [17]. In this concept, the bacteria surviving after phage infections will be
phage-resistant, but they will exhibit reduced virulence relative to the hosts or become more
sensitive to antibiotics. This approach can direct bacterial populations toward a more favor-
able therapeutic direction by using different phages or phage cocktails, enabling increased
scientific phage therapy during clinical treatment. Phage steering is a novel therapeutic
strategy that exploits the trade-offs between phage resistance and bacterial fitness.

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that
can resist most antibiotics via intrinsic and acquired mechanisms [18], such as beta-lactams,
fluoroquinolones, and aminoglycosides [1]. It is considered a top-priority pathogen that
requires immediate attention and alternative treatments, such as phage therapy or phage
steering. However, the effects of phage-resistant mutations on bacterial fitness traits, such
as growth rates, motility, biofilm formation, virulence factors, and antibiotic resistance, have
not been systematically investigated in P. aeruginosa strains. In this work, using P. aeruginosa
PAO1 as an example, we harnessed 20 different phages that can infect PAO1 and impose
strong evolutionary selection on the host strain, and we systematically examined the
impacts of PAO1 resistance relative to different phages at both the genotype and phenotype
levels. Our work can provide a basis for understanding the fitness of phage-resistant
bacteria and their relationship with the bacterial receptors of phages. The aim of our study
is to provide guidelines for selecting appropriate phages or phage cocktails in order to
guide phage-resistant bacterial populations toward a favorable direction for phage steering;
these guidelines focus on the following: reduced fitness, motility, biofilm formation, and
virulence, and increased antibiotic susceptibility.

2. Results

The phenotypic and genotypic characterization of phage-resistant PAO1 strains: A
total of 20 phages infecting PAO1 (Table S1) were used to impose evolutionary selec-
tion on the host strain, and we observed the emergence of 20 PAO1 mutants that could
survive after the corresponding phage infection and investigated their phenotypic and
genotypic characteristics. On the one hand, we adopted an adsorption assay to confirm the
phage-resistant phenotype. Based on the classification of surface receptors, we divided the
mutations into four groups, namely, LPS-related genes, T4P-related genes, OMP-related
genes, and EPS-related genes. As shown in Figure 1, all phages could adsorb to wild-
type PAO1, and there was no phage adsorption or impaired adsorption for the mutants.
On the other hand, we analyzed the genotypic information of all phage-resistant PAO1
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strains by comparing it with that of the wild-type PAO1 (Table S1). The mutations were
mapped in the reference PAO1 genome (Figure 2), which included insertion, deletion, and
substitution. A comparative analysis showed the presence of LPS-related gene mutations
in 11 out of 20 phage-resistant PAO1 strains, including large-fragment deletions (7 cases,
Figure 2A), single-nucleotide polymorphism (SNP, 1 case of SNP in wzzB and 2 cases of
SNP in glycosyltransferase, Figure 2B), and insertion (1 case, Figure 2B). Among these
mutants, the deletion sizes of the seven mutants with large-fragment deletions ranged
from 29,905 bp to 403,605 bp, all of which included the galU gene. This gene encodes
UTP-glucose-1-phosphate uridylyltransferase, which relates to the synthesis of LPS. With
the hmgA gene included in the large-fragment deletions, all large-fragment deletion strains,
except for R (PSJ-22-5D), had a brown phenotype. In addition, other LPS-related mutants
showed the presence of mutations in three genes, namely, the LPS O-antigen chain length
determinant protein gene wzzB, the O-antigen polymerase gene wzy, and the glycosyltrans-
ferase gene. The genome sequences of wild-type PAO1 and mutants were deposited at
the National Centre for Biotechnology Information (NCBI), under the BioProject accession
number PRJNA963233.
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Figure 2. A graphical representation of the genome-wide mutation that occurred in PAO1 mutants
with impaired phage adsorption. (A) LPS-related large-fragment deletion mutants; (B) other LPS-
related, OMP-related, EPS-related mutants; (C) T4P-related mutants. The color dots refer to the
different mutation types, and the gray bands indicate the large-fragment deletion (SNP: single-
nucleotide polymorphism; PTC: premature termination codon).

2.1. Growth Curves

As shown in Figure 3A, the large-fragment deletion mutants showed significantly
high fitness costs in growth compared to the wild-type PAO1 (p < 0.05). The maximum OD
of the strains with the brown phenotype decreased by about 50% compared with that of the
wild-type PAO1 after 24 h incubation. R(PSJ-22-5D), with only a 29,905 bp deletion, showed
less impaired growth than the strains with the brown phenotype, and its maximum OD
was reduced by about 25% compared with that of the wild-type PAO1. Additionally, other
LPS-related mutants showed varying degrees of growth changes. R(XP7) showed growth
advantages and an increase in maximum OD, whereas R(JP16) exhibited growth advantages
initially but a reduction in maximum OD after 24 h of incubation. The fitness costs caused
by mutations were not only related to specific genes but also strongly influenced by the
mutation site. In the case of premature termination codon (PTC)-type mutations, compared
to R(PSJ-17-1-2), R(PSJ-17-5D) showed a more significant decrease in maximum OD and
fluctuation in growth. Unlike LPS-related mutants, the growth of all T4P-related mutant
strains and the OMP mutant strain R(T96) did not differ significantly (p > 0.05) when
compared to that of the wild-type PAO1 (Figure 3B). Some of the T4P-related mutants, such
as R(PS3-1) and R(PSJ-58-5-2), had a slightly higher maximum OD than the wild-type PAO1.
However, the EPS-related mutant strain R(T58) showed the highest fitness cost among all
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phage-resistant strains in terms of growth, and it did not display a discernible logarithmic
phase, suggesting a possible defect in its growth kinetics.
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and other related mutants.

2.2. Motility Assays

We measured three motilities using Luria–Bertani (LB) agar plates with different
agarose concentrations (0.3% for swimming, 0.5% for swarming, and 1.0% for twitching)
and assessed the strength of these motilities via the diameter of the growth zone (Table S2).
In Figure 4A, most of the LPS-related mutant strains showed increased swimming motility
when compared to the wild-type PAO1 (13.0 ± 0.2 mm), except for R(JP16) and R(PSJ-17-5D).
It is worth noting that all strains with the brown phenotype showed a significant increase
(p < 0.05) in swimming motility (>15 mm). In addition, the swimming motility of the
phage-resistant strains with other mutations also varied significantly in comparison with
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that of the wild-type PAO1 (p < 0.05). As shown in Figure 4B, 75% of T4P-related mutants
showed enhanced swimming motility, and the EPS-related mutant R(T58) exhibited the
strongest swimming motility among the mutants (18.4 ± 0.8 mm). Figure 4C reveals that
there was a significant (p < 0.05) decrease in most LPS-related mutants’ swarming motility
(<8.3 ± 0.1 mm), except for R(PSJ-17-1-2) and R(XP7), which exhibited a significant (p < 0.05)
increase (9.6 ± 0.3 mm and 8.6 ± 0.2 mm). As shown in Figure 4D, most of the T4P-related
mutants showed a significant decrease in swarming motility (p < 0.05), while R(PJD61) and
R(PS3-2) showed a significant (p < 0.05) improvement (9.9 ± 0.2 mm and 12.9 ± 1.1 mm).
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related mutants, twitching; (F) T4P-related and other related mutants, twitching. Symbol * indicates
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the sample is significantly different (p < 0.05) from the control wild-type PAO1, and “ns” means
no significance.

When T4P-mediated twitching motility was tested, significant decreases in twitch-
ing motility (p < 0.05) were observed among the T4P-, OMP-, and EPS-related mutants
(Figure 4F). Among the mutants with large-fragment deletions, R(PS6-S) showed a signifi-
cant (p < 0.05) decrease in twitching motility (10.4 ± 1.2 mm) compared to the wild-type
PAO1 (13.3 ± 0.9 mm), but R(PSJ-22-5) and R(PSJ-22-5D) showed a significant (p > 0.05)
increase (14.7 ± 1.0 mm and 14.7 ± 0.3 mm) (Figure 4E). However, R(PSJ-17-1-2) and R(PSJ-
17-5D) showed completely opposite changes in twitching motility (Figure 4E, 11.4 ± 0.5 mm
and 18.2 ± 0.7 mm), which might be explained by their different mutation sites in the same
gene. The other LPS-related mutant strains showed no significant difference in twitching
motility compared to the wild-type PAO1 (p > 0.05).

2.3. Biofilm Formation

Among the LPS-related mutant strains (Figure 5A), all large-fragment deletion mu-
tations with the brown phenotype characterized by red dots were observed to have sig-
nificantly increased biofilm formation ability (p < 0.05), whereas the O-antigen-related
gene wzzB mutant strains showed a significant decrease (p < 0.05). R(PSJ-17-1-2) and
R(PSJ-17-5D), with different mutation sites in the glycosyltransferase gene, both showed
enhanced biofilm formation ability, and R(PSJ-17-1-2) was significantly different compared
to the wild-type PAO1 (p < 0.05). Since biofilm formation ability can be influenced by
T4P-mediated twitching motility, the T4P-related mutant strains all showed a significant
reduction in biofilm formation ability (p < 0.05), and this was consistent with the twitching
motility assay (Figure 5B). The OMP mutant strain R(T96) showed no significant differ-
ence from the wild-type PAO1 (p > 0.05). The EPS-related mutant strain R(T58) showed a
significant increase in biofilm formation ability (p < 0.05).

Galleria mellonella infection models. To compare the virulence between the phage-
resistant strains and wild-type PAO1, we employed a Galleria mellonella (G. mellonella)
larvae model to monitor the survival of larvae challenged with different strains [19]. As
shown in Figures 6 and S1, the larvae treated with the wild-type PAO1 were all dead after
24 h. However, the larvae of the other treatment groups, which were challenged with
mutants carrying LPS-related mutations (large-fragment deletion and glycosyltransferase
mutations) and the EPS-related mutation, all survival after 24 h. The groups treated with
other LPS-related mutants, including R(XP7) and R(JP16), showed no significantly different
survival rates compared with those treated with the wild-type PAO1 (p < 0.05). These
results indicate that selective pressure had a great impact on reducing the virulence of most
LPS-related mutant strains and the EPS-related mutant R(T58). In addition, the virulence
of the T4P-related mutants was also investigated since motility has an indirect association
with bacterial virulence. Motility is characterized by the ability to translocate to preferred
hosts, the efficiency of nutrient acquisition, and access to optimal colonization sites within
hosts [20]. The G. mellonella larvae virulence model demonstrated heterogeneity in the
groups treated with the T4P-related mutants. Compared with the wild-type PAO1, the
24 h survival rates of the groups treated with R(PX-5-1), R(PX-4) and R(PJD61) showed no
significant differences (p > 0.05). It is worth noting that the 24 h survival rates of the groups
treated with R(PSJ-58-5-2), R(PS3-1), R(XP13), and R(PS3-2) showed a significant decrease
(p < 0.05).

Antibiotic susceptibility tests. After analyzing the mutation results, we found that
the large-fragment deletion strains lost antibiotic resistance-associated genes, such as
mexXY, which may trigger increased antibiotic susceptibility. We determined the minimum
inhibitory concentrations (MICs) of the wild-type PAO1 and fragment deletion strains
against gentamicin, amikacin, levofloxacin, and ofloxacin, as described by Masuda et al.
and Nakamura et al. [21,22]. As shown in Table 1, all large-fragment deletion strains
showed a 16-fold increase in susceptibility to gentamicin and a 4- or 8-fold increase in
susceptibility to amikacin. Unlike the two antibiotics of the aminoglycoside class, only



Int. J. Mol. Sci. 2023, 24, 15594 8 of 17

R(PS1) and R(PX-31) showed twice the susceptibility to levofloxacin as compared to the
wild-type PAO1; the rest of the strains did not show increased susceptibility to levofloxacin
or ofloxacin.
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Figure 5. Biofilm formation abilities of PAO1 and its mutants, expressed as OD550 values using the
crystal violet staining method. The size of the dot represents the absolute value of the OD550 value
difference with PAO1. (A) LPS-related mutants. Red dots: large-fragment deletion mutation with
brown phenotype. Blue dots: other LPS-related mutants. (B) T4P-related and other related mutants.
Green dots: T4P-related mutants. Purple dot: OMP-related mutant. Yellow dot: EPS-related mutant.
All data were statistically analyzed to evaluate the difference between the mutants and wild-type
PAO1. Symbol * indicates the sample is significantly different (p < 0.05) from the control wild-type
PAO1, and “ns” means no significance.
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Table 1. Minimum inhibitory concentrations (MICs) of antibiotics against PAO1 and large-fragment
deletion mutants.

Name Aminoglycoside Quinolone

Gentamicin
MIC (mg/L)

Amikacin MIC
(mg/L)

Levofloxacin
MIC (mg/L)

Ofloxacin MIC
(mg/L)

PAO1 4 8 0.5 1
R(PS1) 0.25 1 0.25 1

R(PX-31) 0.25 1 0.25 1
R(PS6-S) 0.25 2 0.5 1

R(PSJ-22-5) 0.25 2 0.5 1
R(PSJ-58-2) 0.25 2 0.5 1
R(PSJ-17-1) 0.25 1 0.5 1

R(PSJ-22-5D) 0.25 2 0.5 1

3. Discussion

Phage therapy is becoming an antibiotic alternative due to the increasing prevalence
of multidrug-resistant bacteria [23]. The emergence of phage-resistant bacteria is typically
unfavorable for phage therapy [24], because bacteria cannot be killed directly by phages.
However, a strategy called “phage steering” is based on the emergence of phage-resistant
bacteria because the development of phage resistance is often accompanied by fitness
costs [17]. We can exploit such phenomena by applying appropriate selective pressure to
steer the evolution of phage-resistant bacterial strains in directions that are beneficial for
treatment. In this study, 20 isolated phages were used to exert selective pressure on the
P. aeruginosa strain PAO1 to obtain corresponding phage-resistant strains. Sequencing and
comparative genomics were used to analyze the phage-resistant mutants with mutations
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in receptor-related genes, and various aspects of these resistant strains were evaluated,
including growth, biofilm formation, motility, virulence, and antibiotic susceptibility.

This research indicates that bacteria became phage-resistant at high fitness costs.
Most importantly, for phage steering, this study could help to determine whether the
physiological changes caused by phage resistance are positive or negative for treatment.
Based on these results, better phages or phage cocktails could be selected to guide the
bacterial population toward a beneficial treatment direction.

LPS-related mutants with large-fragment deletions (in the galU-containing region),
insertion, or SNP in the bacterial genome displayed varied bacterial fitness, because these
genes are involved in biosynthesis, transcriptional regulation, and nutrient transport. The
loss of hmgA results in the accumulation of the brown pigment pyomelanin, so mutants
with large-fragment deletions including the hmgA gene often show a brown phenotype [22].

Different phage-resistant strains showed different levels of fitness costs in growth,
including a prolonged lag phase, reduced maximum optical density (OD), and diminished
growth rate, which were influenced by the selective pressure exerted by the phages. In
growth assays, all mutants with large-fragment deletions showed a severe growth im-
pairment, suggesting that growth is one of the adaptive trade-offs. On the one hand,
the size of the deleted fragments on the genome affects the bacterial growth to different
extents. For example, R(PSJ-22-5D) showed a minimum OD reduction among all the mu-
tants with large-fragment deletions. On the other hand, mutations at different sites of
the same gene also have different effects on bacterial growth, such as in the cases of the
glycosyltransferase-gene-related mutants R(PSJ-17-1-2) and R(PSJ-17-5D). However, not all
LPS-related mutations caused severe impairment of bacterial growth, which might be ex-
plained by different contributions of genes to fitness, like O-antigen-related mutants R(XP7)
and R(JP16). Overall, the reduced fitness of bacteria caused by LPS-related mutations is a
valid direction for phage steering to be applied in clinical therapy.

Swimming, swarming, and twitching are three classical types of motilities in
P. aeruginosa [25], and they are crucial for reaching preferred infection sites, promoting
biofilm formation, and adhering to surfaces or host cells [26]. Changes in bacterial motility
in phage-resistant mutants can be utilized in phage therapy. LPS-related mutations can
affect bacterial motility in different ways [27,28]. In motility assays, the large-fragment
deletion mutants showed an enhancement in swimming motility and a reduction in swarm-
ing motility, which are both mediated by flagella. Similar phenomena have been reported
indicating that genomic deletions in P. aeruginosa lead to defects in types of swarming and
swimming motilities, but rather than causing defects in flagellar synthesis or function,
cell hydrophobicity increases, resulting in stronger cell-to-cell binding [28]. In addition,
O-antigens may mediate surface translocation by acting as surfactants or increasing cell sur-
face “wettability” [29]. So, a fragment deletion in the genome and the mutations associated
with the O-antigen might induce a decrease in the swarming ability of mutants. For phage
steering, the screening of LPS-targeted selective pressure can indeed reduce the motility in
bacterial populations and further reduce the migration ability of bacteria in hosts.

Biofilm formation is related to virulence, antibiotic resistance, and other factors [30],
which is advantageous for bacteria to adapt to environments. Biofilm formation can be
regulated by many factors. Flagellar-mediated swimming and T4P-mediated twitching
have an important association with the early stages of biofilm formation, and EPS also plays
a crucial role [31–33]. LPS, as a highly dynamic structure, plays an important role in biofilm
formation [34]. In the early stages of biofilm development, changes in the LPS core capped
by the O-specific antigen (OSA) can affect biofilm structure by altering adhesion, cohesion,
and viscoelasticity, and the common polysaccharide antigen (CPA) plays a stronger role
than OSA in forming a strong biofilm [35]. In this biofilm assessment assay, the OSA
mutant strains showed a significant decrease in biofilm formation (p < 0.05), confirming
the positive effects in biofilm formation regulated by the wzzB and wzy genes. All large-
fragment deletion strains exhibited significant increases in biofilm formation (p < 0.05),
except for R(PSJ-22-5D). This difference may be related to the phenotypes associated with
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the deletions of hmgA and other genes. Overall, these results support the notion that
selecting O-antigen-targeting phages to apply selective pressure can weaken the formation
of bacterial biofilms.

To improve therapeutic efficacy, screening for phage-resistant mutants with reduced
virulence is one application of phage steering [35]. LPS is an important virulence factor of
P. aeruginosa [36] and one of the most common receptors for phages. In our G. mellonella viru-
lence model, most of the LPS-related mutants, including the large-fragment deletion strains
and the mutants with PTC in glycosyltransferases, showed significant decreases (p < 0.05)
in virulence when compared to the wild-type PAO1, suggesting that they are applicable in
phage steering, as described by Lau et al. [35]. Additionally, Van Nieuwenhuyse et al. [37]
and Li et al. [38] showed that phage steering based on decreased virulence was well used
in clinical therapy.

Mutations in antibiotic resistance-associated genes caused by phage selective pressure
allow bacteria to make trade-offs between phage resistance and antibiotic resistance [39].
Ricci et al. [40] and Chan et al. [41] took advantage of phage resistance to re-sensitize
pathogens to antibiotics when the phage receptor was also the efflux pump for the antibi-
otic and proposed phage–antibiotic combination therapy based on their findings. In clinical
therapy, Bao et al. [42] employed the combination of sulfamethoxazole–trimethoprim with a
phage cocktail to successfully cure a patient with a recurrent urinary tract infection. Herein,
we investigated the effects of the pressure of different phages on the antibiotic susceptibil-
ity of P. aeruginosa and observed that mutants with antibiotic resistance-associated gene
deletions had increased antibiotic susceptibility. Firstly, we identified several antibiotic
resistance-associated genes, such as the OprD family porin, multidrug efflux RND trans-
porter periplasmic adaptor subunit MexX, multidrug efflux RND transporter permease
subunit MexY, multidrug efflux SMR transporter, and TolC family protein, in the LPS-
associated mutants with large-fragment deletions. Then, four antibiotics associated with
mexXY and other deleted genes [43] were used to evaluate the antibiotic susceptibility of
these mutants. As expected, these strains exhibited increased antibiotic susceptibility, in
which the sensitivity to gentamicin and amikacin was increased by 16/4 or 8-fold. There-
fore, increased antibiotic susceptibility is one of the favorable outcomes in phage-resistant
mutants associated with LPS-related genes, and this positive feedback could be applied for
phage–antibiotic combination therapy.

Among the 20 phage-resistant PAO1 strains, T4P-related gene mutations were present
in 7 cases. The mutations directly associated with T4P included the lower periplasmic ring
genes pilN and pilO, cytoplasmic ring gene pilM [44], fiber-associated pilin-like protein
gene pilX [45], and pilus-associated adhesin and anti-retraction protein gene pilY1 [46].
Two other genes indirectly related to T4P included the two-component transcriptional
regulator gene pilR [47] and the GspE/PulE family ATPase, which provides power to
the T4P system [48]. In the other two phage-resistant strains, one was related to TonB-
dependent receptors as outer membrane proteins, which participate in the uptake of
essential nutrients, including iron [49], and the other one was related to EPS, namely, the
anti-sigma factor gene mucA, which inhibits the sigma factor gene algU, causing R(T58) to
exhibit a mucoid phenotype [50].

Compared to the high fitness cost in bacterial growth caused by LPS mutations, the
strains with mutations related to T4P and OMP did not show significant differences in com-
parison with the wild-type PAO1 (p < 0.05). However, R(T58) with EPS-related mutations
showed the highest fitness cost among all phage-resistant strains. The explanation might
be that the mutation of mucA leads to the overproduction of alginate and then inevitably
affects the growth metabolism of the bacteria [50].

All T4P mutant strains showed a significant decrease in twitching motility, but the
effects of T4P-related mutations on other motilities showed considerable heterogeneity. For
example, the pilSR deletion mutant had a defect in swimming motility [47], and the pilR
and pilA mutants were unable to swarm [51]. These findings indicate that flagella-mediated
swimming and swarming motilities are also affected by T4P-related genes. For the mucA
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mutant R(T58) with a mucoid phenotype, its resulting overexpression of estA led to a
significant decrease in twitching motility (p < 0.05), although it played an important role in
enhancing swimming and swarming [52]. The motility variations in the TonB-dependent
receptor mutant might be caused by the indirect effect of the mediate energy-dependent
uptake of molecule changes in flagella and T4P [53]. Consequently, using T4P-targeted
phages to apply selective pressure in phage steering can effectively make the population
evolve toward a twitching-deficient phenotype, thereby affecting a series of physiological
characteristics mediated by T4P and twitching motility.

The T4P-related mutants all exhibited a decreased biofilm formation capacity because
T4P is crucial for the initial phases of biofilm formation [54]. However, the mucA mutant
showed a greatly enhanced ability to form biofilms due to the extracellular mucoid effect
on biofilm formation [52]. This indicates that phages using T4P as bacterial receptors
could be a good choice for phage steering to weaken the biofilm formation ability of
bacterial populations.

In addition to mediating twitching motility, T4P also acts as a sensor for regulating
surface-induced gene expression and pathogenicity [55,56]. In the G. mellonella larvae
infection model, phage-resistant strains with pilX, pilM, pilR, and pilY1 mutations showed
enhanced virulence. Similar phenomena have been reported in the variant libraries of
P. aeruginosa PAO1 with resistance to phages PP7 and E79, and many genes related to phage
resistance and Pseudomonas virulence were found to be upregulated in these mutants [57].
The mucoid phenotypic strain R(T58) selected by phages had a decrease in virulence that
was similar to the mucoid phenotypes isolated from cystic fibrosis patients [58]. However,
we still need to consider other effects caused by excessive alginate as the main pathogenic
determinant during chronic respiratory tract infection [59]. Although the evolutionary
direction of bacterial populations under phage selection pressure do not always evolve
in a beneficial direction for treatment, the study of phage-resistant strains can help us
choose appropriate phage-steering strategies and reduce the emergence of hard-to-treat
phage-resistant bacteria populations.

In this work, we imposed phages to P. aeruginosa PAO1 and obtained 20 mutants with
mutations related to LPS, T4P, OMP, and EPS. The growth, motility, biofilm formation,
virulence, and antibiotic sensitivity of these strains were systematically evaluated. Due to
the complexity of bacterial infections and the diversity of phage types, phage resistance-
induced changes in bacterial physiological characteristics are heterogeneous. On the
one hand, employing LPS-targeted phages might significantly reduce the virulence of
pathogens or make them re-sensitize to antibiotics, and both outcomes are favorable for
phage therapy or phage–antibiotic combination therapy. On the other hand, T4P-targeted
phages can be used to screen for defective populations in twitching motility and biofilm
formation, which are more effective in clearing bacteria from the environment. However,
our findings also revealed that mutants resistant to one single phage might evolve toward
unfavorable therapeutic directions, triggering the usage of phage cocktails to maximize
the profits of phage steering in the future. In conclusion, our work provides a basis for
understanding phage-resistant mutants and for informing the rational selection of phages
or phage cocktails to respond to different needs for clinical treatments. As the adaptive
trade-off mechanisms of phage resistance are further investigated, phage steering will be
increasingly used as an effective strategy for clinical treatment.

4. Materials and Methods

Phages and phage-resistant strains. P. aeruginosa PAO1 was used as a host to isolate
phages from sewage samples of different hospitals in China in our previous work. Twenty
phages infecting P. aeruginosa PAO1 were obtained, and their genome information is shown
in Table S1.

Phage-resistant strains were prepared via the double-layer method. Briefly, 200 µL of
phage solution (108 PFU/mL) and 100 µL of overnight PAO1 culture were added to 5 mL of
LB soft agar and incubated at 37 ◦C overnight. After overnight growth, the phage-resistant
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bacteria were picked up from the overlayed plates, and they were inoculated into 5 mL of
LB broth medium and incubated at 37 ◦C with shaking for 8 h.

Adsorption assays of phages. Double-layer plates containing 200 µL overnight PAO1
culture in soft agar were prepared for adsorption assays, as described by Piel et al. [60].
Phages (106 PFU/mL) were mixed with PAO1 and phage-resistant strains (108 CFU/mL)
at an MOI of 0.01 at room temperature for 15 min. A control group was treated by adding
phosphate-buffered saline (PBS, Biosharp, Hefei, China). Then, the mixture was centrifuged
at 12,000× g for 10 min to discard cells adsorbed with phages. Afterward, the supernatant
was 10-fold serially diluted, and 2 µL of each dilution was dropped onto the soft agar to de-
termine the remaining free phage particles. The experiments were performed at least twice.
The adsorption capacity of phage-resistant strains to phages was estimated by comparing
the number of remaining free phage particles with that of the wild-type PAO1 strain. For
instance, if the free phage particles were more than the wild-type PAO1, the phage-resistant
phenotype could be confirmed through the impaired adsorption performance.

Genomic DNA extraction, sequencing, and a comparative genomic analysis of phage-
resistant strains. The genomes of all phage-resistant strains with impaired adsorption were
extracted using a Bacterial Genomic DNA Extraction Kit (Solarbio, Beijing, China). The
sequencing of phage-resistant bacteria was carried out by Novogene Co., Ltd. (Qingdao,
China accessed on 7 December 2022), and the sequencing platform was Illumina Novaseq
6000 (Paired-end 150 bp). The quality of the raw sequencing data was analyzed using
FastQC v0.11.5, and low-quality reads and adapter regions were filtered using Trimmomatic
0.36 with default parameters [61]. The clean data were assembled using SPAdes v3.13.0 [62],
and mutations in resistant strains were analyzed using breseq v0.37.1 [63].

The growth curves of PAO1 and its phage-resistant strains. To evaluate the growth
rates of PAO1 and its phage-resistant strains, each strain was introduced into the wells of a
96-well plate (Corning-Costar, New York, NY, USA) containing 200 µL LB liquid medium
to reach a final concentration of 106 CFU/mL. Subsequently, the plate was incubated at
37 ◦C for 24 h. A control group was established without adding any bacterial strains. The
OD600 of the 96-well plate was measured every hour using Thermo Scientific™ Multiskan™
FC (Thermo Fisher Scientific, Shanghai, China). The growth curves of PAO1 and its phage-
resistant strains were generated based on the OD600, and each growth curve assay was
performed in triplicate.

Motility assays. Swimming and swarming assays were carried out with 0.3% LB
agar plates and 0.5% LB agar plates, respectively, as described by Xuan et al. [64], with a
minor revision. A single colony of PAO1 or its phage-resistant mutants were inoculated
into swimming or swarming plates at 1/2 depth, respectively, and then the swimming or
swarming zones were recorded after incubating at 37 ◦C for 24 h. To conduct the twitching
assay, PAO1 and its phage-resistant mutants were stab-inoculated to the bottom of the
1% LB agar layer with a pipette tip. After incubation at 37 ◦C for 48 h, the agar was
carefully removed, and the Petri dish was stained with 0.1% crystal violet ammonium
oxalate solution (Solarbio, Beijing, China) for 30 min. Then, the twitching mobility zone
was measured after excess dye was washed away. All plates were photographed using
Tanon 4600SF (Tanon, Shanghai, China), and the diameters of the mobility zones were
measured using Nano Measurer 1.2.5 [65].

Biofilm formation assays. The crystal violet staining method was used to evaluate the
biofilm formation of bacterial strains [64]. Briefly, PAO1 and its mutants were inoculated in
a 96-well plate containing 150 µL LB broth and incubated at 37 ◦C for 24 h. Subsequently,
non-adherent bacterial cells were removed, and the wells were washed thrice with 200 µL
of PBS. To stain and assess the biofilm, 200 µL of 1% crystal violet ammonium oxalate
solution (Solarbio, Beijing, China) was added to each well and allowed to incubate at room
temperature for 30 min. The excess crystal violet solution was washed away with PBS,
and the plate was dried at room temperature for 30 min. Afterward, 200 µL of 30% acetic
acid solution was added to each well and incubated at room temperature with 100 rpm for
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20 min. Each experiment was performed in triplicate. The OD550 was measured using a
Thermo Scientific™ Multiskan™ FC to quantitatively determine the biofilm formation.

Antibiotic susceptibility tests. The MICs of each antibiotic against P. aeruginosa PAO1
and the phage-resistant strains with large-fragment deletions were determined in 96-well
microplates via the double dilution of each antibiotic in CAMHB (Cation-Adjusted Mueller
Hinton II Broth, Solarbio, Beijing, China). Then, 1.0 × 106 CFU/mL of each strain was
inoculated into each well and incubated at 37 ◦C for 24 h, and PBS was inoculated as a
control in each assay. Each experiment was conducted in triplicate. MIC was defined as the
concentration present in the first optically clear well after incubation.

G. mellonella larvae infection models. The larvae of G. mellonella were purchased from
Huiyude Biotech Company (Tianjin, China), and the G. mellonella infection assay was
based on the method described by Hill et al., with modifications [66]. Briefly, 6 µL of
105 CFU/mL bacterial strains was injected into the hindmost proleg of each G. mellonella
larva. The experiment was conducted with 10 larvae in each group. The infected larvae
were incubated at 37 ◦C, and their health index scoring for live/dead was examined at 8,
12, 16, 20, and 24 h. The negative control group comprised 10 larvae that were injected with
equivalent PBS.

Statistical analysis. All data are expressed as means ± SD (standard deviation), and the
index in different assays was statistically analyzed using different methods to evaluate the
difference between the wild-type PAO1 and mutants (denoted as p < 0.05). An Analysis of
Variance (ANOVA) was used to analyze the difference in the growth, motility, and biofilm
assays, and the log-rank test was used to analyze the survival rates in the G. mellonella
larvae infection model. A statistical analysis was carried out using GraphPad Prism v.8.0.2
software. p-value < 0.05 was considered statistically significant.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms242115594/s1.
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