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Abstract: Protein structure prediction continues to pose multiple challenges despite outstanding
progress that is largely attributable to the use of novel machine learning techniques. One of the widely
used representations of local 3D structure—protein blocks (PBs)—can be treated in a similar way
to secondary structure classes. Here, we present a new approach for predicting local conformation
in terms of PB classes solely from amino acid sequences. We apply the RMSD metric to ensure
unambiguous future 3D protein structure recovery. The selection of statistically assessed features
is a key component of the proposed method. We suggest that ML input features should be created
from the statistically significant predictors that are derived from the amino acids’ physicochemical
properties and the resolved structures’ statistics. The statistical significance of the suggested features
was assessed using a stepwise regression analysis that permitted the evaluation of the contribution
and statistical significance of each predictor. We used the set of 380 statistically significant predictors
as a learning model for the regression neural network that was trained using the PISCES30 dataset.
When using the same dataset and metrics for benchmarking, our method outperformed all other
methods reported in the literature for the CB513 nonredundant dataset (for the PBs, Q16 = 81.01%,
and for the DSSP, Q3 = 85.99% and Q8 = 79.35%).

Keywords: protein blocks (PBs); protein local structure; protein local structure prediction; DSSP
(Dictionary of Secondary Structure in Proteins); protein secondary structure prediction; machine
learning (ML)

1. Introduction

Recent advances in machine learning approaches have allowed for substantial im-
provement in the prediction of protein structures and functions from their sequences [1–4].
When describing and analyzing the secondary structures of proteins, for a long time, re-
searchers used the DSSP (Dictionary of Secondary Structure in Proteins) assignment, which
includes structures such as α-helixes, β-strands, coils, π-helixes, turns, bridges, etc. [5].
However, the DSSP does not reflect subtle changes in the local geometry of a protein’s struc-
ture. In particular, a coil represents a large and heterogeneous class prominently present
among the structures in the Protein Data Bank (PDB), which requires a more fine-grained
description [6]. One of the strategies to address these limitations involved analyzing
backbone angles that define the protein structure. A number of methods addressed the
prediction of backbone torsion angles (φ and ψ) [7–11] as well as the backbone Cα angle
θ (the angle between the Cαi−1 − Cα − Cαi+1 atoms) and the rotation angle τ (dihedral
angle of rotation around the Cαi − Cαi+1 bond) [12].
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Another strategy to grasp the diversity of local protein backbone conformations
involved generalizing based on the DSSP assignment: multiple protein structure alphabets
have been proposed. One of the most widely used alphabets is the 16-class protein blocks
(PBs), proposed by de Brevern et al. [13]. This alphabet offers refined subgroups for classical
structural elements (e.g., α-helix, β-sheet, and coil) as well as their adjacent structures (e.g.,
N-caps–β/α and C-caps–β/α) [13,14]. In particular, there are four classes describing
different coil structures, and they capture the abovementioned diversity in more detail.

In this context, a protein block (PB) is a five-residue long structural fragment defined
by its dihedral angles. Further, the authors defined a structural class by its center—a
protein block (PB)—and the five-residue long structures closest to it in terms of the RMSDA
(Root Mean Square Deviation of Angular values) [15] between the corresponding backbone
atoms. De Brevern et al. define the RMSDA between two protein blocks as follows:

RMSDA(PB1, PB2) =

√√√√√M−1
∑

i=1

[
(ψ1,i − ψ2,i)

2 + (ϕ1,i+1 − ϕ2,i+1)
2
]

2(M− 1)
(1)

where
{

ϕk,i, ψk,i
}

denotes the series of the (2M − 1) dihedral angles for k-th protein block
PBk and M = 5 for the PBs (as they are pentapeptides) [13]. Each class is then labeled with a
letter, and if two classes are structurally similar, their labels are close in the alphabetical
order. For instance, the PBs ‘d’, ‘e’, and ‘f’ correspond to classes with structures similar
in three dimensions (Supplemental Table S1). The complete list of protein blocks and the
dihedral angles through which they are defined can be found in Supplemental Table S1,
along with their mapping to the ‘classic’ secondary protein structures.

In our recent work [16], we proposed using the same protein blocks as cluster centers,
but we assigned cluster labels based on the root mean square deviation (RMSD) [17]
distance instead of the RMSDA. The RMSD for protein blocks can be written as follows:

RMSD(PB1, PB2) = min

√√√√√ 3M
∑

i=1

[
(x1,i − x2,i)

2 + (y1,i − y2,i)
2 + (z1,i − z2,i)

2
]

3M
(2)

where xk,i = xi (PBk); yk,i = yi (PBk); zk,i = zi (PBk); and i = 1, . . ., 3M denote the Cartesian
coordinates of the backbone atoms N, Cα, and C, respectively, of the M–residue protein
block PBk (M = 5 for the PBs as in (1)), whereas the minimum is taken over by all of the
spatial colocalization of the two protein blocks PB1 and PB2. By definition, an RMSD
is close to zero only when two structures are identical in three dimensions, and using
the RMSD may therefore be preferable to using the RMSDA, which does not always
satisfy this criterion [16]. However, RMSD calculations require assessing all possible
alignments between two query fragments, and thus, they have higher computational costs
than RMSDA calculations.

Further investigations revealed that for regular structures and compact clusters (such
as ‘m’ and ‘d’), label assignments based on RMSDA values largely agree with those based
on RMSD values. However, the discrepancies between these two assignment systems
become higher as the structural irregularities increase, and for clusters covering irregular
structures, the two distances have qualitatively different meanings. Since we further aimed
at reconstructing the 3D coordinates rather than the fragment classifications, we needed
to approximate the distances between the atoms. For this purpose, we decided in favor
of using the RMSD despite its computational cost. The optimization procedure proposed
by Kabsch [17] was shown to reach the minimum RMSD [18], and its implementation in
Qmol [19] was previously integrated into our pipeline.

In the context of 3D coordinate reconstruction, cluster centers are treated as basic
structures, and distances from the query fragment to these basic structures are referred to
as “structural coordinates”. We previously demonstrated that, given a large enough set of
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basic structures, one can reconstruct the coordinates of the backbone atoms of a protein
fragment [16]. The number of basic structures required for such a reconstruction depends
on the number of degrees of freedom (i.e., bond angles, bond lengths, and dihedral angles).
For instance, for a five-residue fragment with all bond lengths and bond angles considered
to be fixed, one would need at least twelve basic structures to reconstruct the conforma-
tion of the backbone. We previously developed and implemented an algorithm [16] that
could unambiguously reconstruct a protein’s backbone coordinates from its “structural
coordinates” representation.

Applying structural alphabets to problems of protein structure predictions requires
efficient tools for local conformation predictions directly from an amino acid sequence.
Early methods for predicting PBs relied on statistical approaches that did not incorporate
evolutionary information [13,20]. In subsequent research, the incorporation of evolutionary
information boosted prediction performance [21,22].

A variety of machine learning (ML) methods have been applied to tackle sequence-
based structure predictions. SVM-PB-Pred [23] slightly improved the prediction quality
using sequence profiles (PSSM) compared to the Bayesian approach [20], despite its more
complex computational model. LOCUSTRA [24] employs a 15-amino-acid sliding-window
encoding method, with each residue represented by a PSI-BLAST [25] PSSM profile and
a 21-length, one-hot encoding vector (20 amino acids plus 1 extremity flag) per position.
PYTHIA [26] utilizes a hybrid encoding approach, incorporating a 20 one-hot encoding
vector, physicochemical properties from the AAindex [27] database, and a PSSM profile [28]
derived from a multiple-sequence alignment. PYTHIA has achieved an impressive perfor-
mance in predicting the PBs (Q16 = 59.9%) of challenging proteins from the CASP14 (Critical
Assessment of methods of protein Structure Prediction) [29] free modeling category [30].

In several studies, authors integrated evolutionary information and the physicochem-
ical properties of amino acids, decreasing the reliance on homologous sequences and
achieving a Q3 accuracy above 80% [31–33]. In another study [34], incorporated into the
SPIDER2 package [35], a dimension-reduced set of physicochemical properties [36] was
employed for artificial neural networks. This approach aimed to predict four distinct
structural properties: secondary structure, torsion angles; Cα-atom-based angles; dihedral
angles; and solvent-accessible surface area. Notably, in predicting secondary structure, this
method yielded an accuracy of Q3 = 82% [35].

Revolutionary ML approaches such as AlphaFold [2] focus solely on 3D structure
predictions and do not engage in local or secondary protein structure predictions. Although
AlphaFold performs exceptionally well overall, it shows a drop in performance on specific
CASP14 targets, such as flexible protein regions and components of multiprotein complexes.
Authors reported a high prediction quality (the original performance measure pLDDT > 90)
in only 35.7% of cases and a confident prediction (pLDDT > 70) in 58.7% of cases [37],
indicating the need for further investigation into certain protein families.

In our previous work [16], we did not utilize evolutionary information. Instead, our
feature encoding relied solely on amino acids’ physicochemical properties and resolved
structures’ statistics. We employed the stepwise linear regression with bidirectional elimi-
nation of predictors to build the prediction model, achieving a classification accuracy of
Q16 at 67.9%. During the model’s development process, we found that a well-curated set of
predictors played a fundamental role in achieving high prediction accuracy. Each predictor
was designed to formalize a hypothesis about the factors influencing the local structure,
and the model-building procedure assessed their statistical significance. To facilitate the
mass assignment of such predictors, we implemented an ad hoc scripting language [38].

In the current study, we present a novel approach that combines our previous predictor
generation scheme with the use of deep learning methods, and this improved the prediction
accuracy of the method. Similar to our previous work, the method does not rely on
evolutionary information, but it managed to surpass the known accuracy of the local
structure prediction methods for both the CB513 dataset [39] and the CASP14 free modeling
targets [30]. Furthermore, it provides sufficient information to reconstruct the Cartesian
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coordinates of the protein backbone. We also applied the same set of statistically significant
predictors to perform classic secondary structure predictions using an ML method.

2. Results
2.1. Improved Q16 Classification with RMSD-Based Protein Blocks

One of the most common tasks in protein local structure prediction is the classification
of structural fragments to a given set of classes. Here, we used the 16 protein blocks
from the studies by de Brevern et al. [13,20] with the RMSD distance and the three most
commonly used datasets to assess our method’s performance: PISCES30 [40], CB513 [39],
and a small set of proteins without known homologues from CASP14 (the so-called free
modeling category [30]). Table 1 shows the performance of our method on several datasets.
Because it is the largest, the PISCES30 dataset was used to train, validate, and test the
model. On the CB513 dataset, which is widely used for benchmarking secondary structure
prediction methods, our algorithm achieved a classification accuracy of Q16 = 81.01%.
This is 13.5% higher than the classification accuracy reported by the latest leading method,
PYTHIA [26].

Table 1. Q16, Q8, and Q3 classification accuracies for the datasets with known Cartesian coordinates.

Dataset Q16, % Q8, % Q3, % Dataset Size,
Residues

Validation 76.75 78.15 84.93 357,338
Test 76.53 77.91 84.81 1,155,341

Train 79.37 80.27 86.42 2,334,579
CB513 81.01 79.35 85.99 102,719

CASP14 76.35 76.11 83.51 2110
The table shows the percentages of correct classifications for the Q16, Q8, and Q3 tasks. The CASP14 subset
included free modeling targets only. The training, test, and validation subsets of the PISCES30 dataset were
designed by randomly sampling protein chains with the 6:3:1 ratio, correspondingly. The test set was used for
hyperparameter optimization, and the validation set was only used to evaluate the performance of the final
model. The last column reflects the total number of five-residue fragments with known Cartesian coordinates
in each dataset. As each PB is a pentapeptide with known Cartesian coordinates, we excluded two amino acids’
residues at both the N-end and the C-end. The same approach was applied to flank all the amino acids’ residues
without known Cartesian coordinates, and so two residues to the left and two to the right were excluded for each
residue/chain with the unknown Cartesian coordinates.

One of the most challenging scenarios in secondary structure prediction is when
a query protein does not have homologues with resolved structures. In this case, we
benchmarked our model against the leading prediction methods reported in the literature
(LOCUSTRA [24] and PYTHIA [26]) by examining 10 targets from the CASP14 contest
in the free modeling category. These targets were particularly challenging for the 3D
structure prediction as they featured distinct folds and lacked close homologues with
resolved structures that could serve as templates. Table 2 presents the results for each of
the CASP14 free modeling targets, and for 8 of the 10 targets, our model showed higher
overall accuracy.

To benchmark our predictions against those of AlphaFold [2], we used the targets
from the CASP14 [29] free modeling category [30]. For each five-residue fragment in a
given target, we calculated its Q16 classification accuracy based on the RMSD distance
from the structure predicted by AlphaFold and compared it to the classification accuracy
predicted by our method. For T1027 7D2OA, our method outperformed AlphaFold by
20% (Q16 = 68.3% for our method and Q16 = 48.2% for AlphaFold); for T1029 6UF2A, our
method outperformed AlphaFold by 0.9% (Q16 = 71.9% for our method and Q16 = 71.0%
for AlphaFold); and for T1049 6Y4FA, AlphaFold outperformed our method by 3.1%
(Q16 = 72.3% for our method and Q16 = 75.4% for AlphaFold). The detailed RMSD
profiles and correlation values between the predicted and native structures can be found in
Supplemental Figure S1.
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Table 2. Benchmarking the Q16 classification on the CASP14 dataset.

PDB ID and Chain
ID (Last Letter) Query Length Our Model PYTHIA (Balanced) LOCUSTRA

6UF2A 125 71.9 69.4 47.7
6XC0C 105 84.7 61.1 59.5
6Y4FA 141 72.3 57.7 48.2
6YA2A 199 66.9 47.8 45.5
6ZYCA 148 63.9 68.1 57.0
7D2OA 174 68.9 42.1 30.4
7JTLA 107 73.4 43.6 37.6

7K7WA 197 65.2 69.2 56.4
7M7AA 590 83.1 69.6 64.5
7M7AB 590 84.3 70.5 66.5

Mean – 73.5 59.9 51.3
The table shows the Q16 classification accuracy (% of correctly classified fragments) on the CASP14 free modeling
targets for our method, the PYTHIA model (balanced accuracy), and the LOCUSTRA method. The last row
(‘Mean’) presents the prediction accuracies averaged across all 10 targets, where each target was weighted equally
(independent of the length of the protein chain). This was performed to ensure our results were comparable to
those reported for PYTHIA and LOCUSTRA.

2.2. Accurate Prediction of the Distances to the Cluster Centers as the First Step in 3D
Coordinate Reconstruction

In order to reconstruct the Cartesian coordinates of a query for the protein backbone,
it is crucial to predict the distances from the query peptides to the PB cluster centers as
accurately as possible [16]. We examined, observed, and predicted the RMSD profiles
for each PB class individually in all three datasets. For all the datasets and all the PB
classes, our method achieved a Pearson’s correlation coefficient of ≥ 0.9 (r = 0.91 ± 0.02).
The complete correlation table can be found in Supplemental Table S2. Figure 1 shows
a representative example of the predicted and observed RMSD distances to the protein
block ‘d’ and for each five-residue fragment (always shifted by one amino acid) in the
displayed chain, illustrating substantial agreement between the observed data and our
model’s output.

The correlation coefficients for the validation and test datasets are nearly identical
(Supplemental Table S2) for all the PBs. The training dataset demonstrated higher correla-
tion values, as it was used for neural network training. These consistent results indicate
that the neural network yielded robust outcomes.

2.3. Improved Performance of the DSSP-Based Secondary Structure Prediction

Using the same feature set and network architecture, we retrained the network for the
Q3 and Q8 classification tasks based on the DSSP classes. Table 1 shows the percentages of
correct classifications for each task. The normalized Q3 and Q8 confusion matrices can be
found in Supplemental Table S3.

For the Q3 and Q8 classification tasks on the CB513 dataset, our method outperformed
the state-of-the-art secondary structure prediction methods reported in the literature (the
values shown in Tables 3 and 4 are as reported in the original articles [41–43]).
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Figure 1. The observed and predicted RMSDs to the cluster center PB (‘d’). (A) The observed and
predicted RMSD profiles from the five-residue fragments of the 1 gmp chain ‘B’ to the protein block
(‘d’) cluster center. The observed and predicted distances are displayed for the central residue of a
five-residue fragment. The Pearson correlation between the predicted and observed profiles is 0.95.
(B) The difference between the observed and predicted RMSDs.

Table 3. CB513 Q3 secondary structure prediction method benchmarks.

Method FSVM [44] GApred
[41] Jpred4 [45] MUFold-SS

[46]
SPIDER3

[47] SSpro5 [48] Our
Method

Q3, % 83.0 85.3 65.6 85.1 84.5 82.0 86.0

Table 4. CB513 Q8 secondary structure prediction method benchmarks.

Method BLSTM
[47]

DCRNN2 a

[49]
DeepCNF

[50]
eCRRNN a

[42]
MUFold-SS

[46]
NCCNN a

[51]
Our

Method

Q8, % 67.4 70.4 68.3 74.0 72.4 71.4 79.4

‘a’ index indicates employment of the so called ‘ensemble model’ described in the original article [42]

3. Discussion

In this study, we introduced a model for predicting protein local conformations in
terms of protein blocks (PBs). Modifying the approach originally presented by
de Brevern et al. [13,14], we used the same PBs as cluster centers but represented them
using 3D coordinates rather than dihedral angles. When classifying query protein frag-
ments, we also determined the closest PBs in terms of the RMSD (root mean square
deviation) distance.

It is worth noting that within a single PB class, there can be significant structural
variations. Therefore, when a fragment is assigned a single label (the closest PB), some
information is inevitably lost. One way to circumvent this is to view the task as a regression
rather than a classification problem, i.e., to retain the distances to all the cluster centers.
When combined into a vector, these distances can be regarded as ‘structural coordinates’
that encapsulate more information about the 3D structure of the query protein fragment’s
backbone than a single class label. Moreover, for any five-residue protein fragment, its
Cartesian coordinates can be recovered from its structural coordinates with any accuracy
if certain conditions are met (i.e., if there are enough basic structures that are sufficiently
different from one another).
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Further, our prediction method does not rely on evolutionary information and is
independent of the availability of structural data for the homologous proteins. Particularly
for the proteins in the CASP14 free modeling category (or artificial proteins), this is an
advantage because none of the target proteins had a homologue with a resolved structure.

On the other hand, for protein chains involved in interactions with other protein
chains, such as disulfide bridges or multiple interchain hydrogen bonding, predictions may
be significantly distorted. For instance, for a class of proteins known as ‘small proteins’,
their tertiary structure is typically maintained by disulfide bridges [52], metal ligands [53],
and/or cofactors such as heme [54]. In such cases, a prediction model based solely on an
amino acid sequence lacks the necessary information about the interactions between the
protein chains or ligands, but an alignment-based method may greatly benefit from the
existence of homologous proteins with resolved structures.

Overall, the application of neural network-based ML methods substantially improved
the prediction accuracy compared to the traditional methods that we previously employed.
For local conformation predictions in terms of protein blocks Q16, the accuracy increased
from 67.9% [16] to 76.8%, and for the secondary structure prediction Q3, it rose from
81.3% [38] to 84.9%. To inspect our method’s performance in greater detail, we analyzed
the confusion matrices for the following three classification tasks: Q16 (based on protein
blocks), Q8, and Q3 (based on the DSSP classes).

3.1. Q16 Confusion Matrix

Figure 2A reveals that many errors in the PB16 classification were associated with
structurally similar classes. For example, for the PB ‘c’ (one of the variations of the N-caps
of the β-sheet), with 48.3% correct predictions, 28.4% were predicted as structurally similar
to PB ‘d’ (β-sheet). Indeed, these PBs had very close conformations based on the RMSD
metric (RMSD (‘c’, ‘d’) = 0.647 Å, see Figure 2B). For such small RMSDs, the 3D structure
recovery step would yield approximately the same Cartesian coordinates. This shows that
when a misclassification falls within structurally similar classes, it does not prevent the
accurate recovery of the Cartesian coordinates.

Misclassifications that occurred between relatively distant classes in the alphabet
(e.g., for ‘a’ and ‘g’, 11.4% of ‘a’ predicted as ‘g’ and 13% of ‘g’ predicted as ‘a’) could
also be explained by the proximity of these classes in terms of the RMSDs (RMSD (‘a’,
‘g’) = 1.035 Å). PB ‘a’ was the closest neighbor to PB ‘g’ and vice versa, although this is not
the case for all the PB pairs (Figure 2B). For example, for the PB pair with the maximum
RMSD (‘d’, ‘o’) = 3.494 Å, these PBs (corresponding to secondary structure classes C-caps
of the α-helix and β-sheet) have few misclassifications between them.

3.2. Q8 Confusion Matrix

In the Q8 classification problem, the class that suffered from the most misclassifications
was ‘B’ (β-bridge).

This class represents a single amino acid’s residue (a single pair of β-sheet hydrogen
bond formations), which is determined by hydrogen bonds and allows for significant
conformational variations in the protein chains. Unsurprisingly, for such a heterogeneous
class, 50.8% of its misclassifications fell into the ‘coil’ class, and 27.62% were labeled as class
‘E’ (β-sheet). The rarely occurring class ‘I’ is structurally closer to the well-represented class
‘H’ than it is to ‘G’ or ‘T’, and class ‘G’ fell between ‘H’ and ‘T’, which aligned with the
prediction data for these classes (Supplemental Table S3B).
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percentages) for the local structure by the PB prediction. The rows and columns represent the true
and the predicted class assignments of a fragment corresponding to our model. The values reflect
the percentages of the fragments of a given class that were predicted to have each of the possible
16 classes. For example, the value 2.28 in row ‘a’ and column ‘b’ is the percentage of true ‘a’ fragments
that were classified as ‘b’ by our model. (B) The RMSDs (Å) between the protein block cluster centers.

3.3. Q3 Confusion Matrix

The table in Supplemental Table S3A is essentially a condensed version of the more
comprehensive confusion matrix for Q8 (Supplemental Table S3B). As with the eight
DSSP classes, for the three classes, predictions for class ‘H’ were more accurate than they
were for the others. This could be explained by the α-helix’s more distinct (than other
classes) structure, which is solely based on the main chain conformation, and so it could be
effectively recognized. Errors in the predictions for class ‘E’ (β-sheet) and vice versa were
minimal at 1.32% and 2.57%, respectively.

A slightly higher level of “leakage” occurred from class ‘H’ to ‘coil’, which was due
to the presence of the structurally close class ‘T.’ Among the conformations assigned to
the ‘coil’ class, a significant proportion closely resembles the classical β-sheet, but they
lack specific β-sheet hydrogen bonds (e.g., the polyproline II helix). As a result, there were
significant misclassifications between these classes, with 18.82% of ‘E’ predicted as ‘coil’
and 8.80% being the opposite.

3.4. Structure Alphabets and Their Applicability

A classification task can be substantially influenced by the choice of categories to
which objects are classified. There are a number of structure classification schemes in the
literature, with varying numbers and compositions of classes. The two class assignments we
addressed here—PB-based and DSSP-based classes—are very similar for regular structures
such as α-helix and β-sheet. The classical α-helix corresponds to the ‘H’ class in DSSP and
the ‘m’ class in PB, and similarly for a β-sheet, it is ‘E’ in DSSP and ‘d’ in PB, respectively.
For other classes, there are no clear one-to-one correspondences between PBs and the DSSP.
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This is because not all structures can be as precisely defined, and they may not always fit
neatly into compact, homogeneous classes.

The rule of thumb for good partitioning is that intraclass similarity (between objects
from different clusters) should be high and the interclass similarity (objects within the same
class) should be low. In the case of short fragment structures, object similarity is reflected
by the RMSD, and the lower the RMSD, the more similar two structures are. Since the
PBs and the DSSP assignments were not designed to satisfy this criterion, introducing
other structural alphabets could potentially improve the descriptive potential as well as
the prediction accuracy of RMSD-based methods. It is important that the distance measure
used when designing new alphabets is the same as the one used for labeling or building
predictive algorithms afterwards. We suppose that the structural alphabets suitable for the
3D coordinate reconstruction of a protein backbone would contain more categories than
the PBs and the DSSP assignments, and they would possibly be based on protein fragments
larger than five residues.

3.5. Feature Selection Prior to Model Training

Our method involves the following two main steps: feature design and selection,
followed by model training. As an established approach in classical machine learning,
in training a neural network, it is less common to separate feature selection and model
training. Here, doing so allowed us to train a shallow network and avoid fitting too
many parameters, making our model faster to train and less prone to overfitting. Second,
it increased the interpretability of the model and allowed us to evaluate each feature’s
importance, which is a task that is usually less straightforward when dealing with deep
learning models.

While leaving feature selection to the model or performing it separately can be de-
bated, we considered that a more crucial step in our approach was feature design. We
constructed features based on the physicochemical properties of the amino acids, the occur-
rence statistics of the structural elements corresponding to the same fixed sequence, and
the various hypotheses about the factors that influence protein structure (for instance, the
periodicity of hydrophobic amino acids). Attempting to access as many factors as possible
that influence the local protein structure, we developed a method that streamlined feature
generation on a large scale. For instance, it designed features with the different periodicities
of hydrophobic acids, and for features based on occurrence statistics, it attempted different
regular expressions to group sequences of proteins with resolved structures.

3.6. Recovering Tertiary Structure

Recovering the tertiary structure of a protein directly from alternative structural
coordinates can be challenging, especially for long heterogeneous protein fragments where
small deviations in each part may accumulate and lead to substantial errors in the final
tertiary structure. To restore the tertiary structure effectively, an algorithm that involves
scanning a database of resolved protein structures to identify conformations that closely
resemble the predicted extended fragment would be needed. Particularly, various advanced
sequence alignment methods could be applied to protein block sequences rather than to
amino acid sequences. However, it is important to note that the accuracy of such a recovery
can depend on the availability of data and the quality of similar structures in a database.
For complex and unique protein structures, specialized methods and algorithms may yet
be required.

4. Methods and Materials
4.1. Dataset Preparation

The PISCES30 dataset [40] is a curated subset of the Protein Data Bank (PDB) [6],
stratified by the resolution of resolved structures and sequence similarity. Here, we applied
a resolution cutoff of 2.5 Å and an R-factor cutoff of 1.0, and we allowed a sequence identity
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of up to 30%. This led to the selection of 17,148 protein chains, all of which had their
structures resolved through X-ray methods (i.e., no NMR-resolved structures).

The CB513 dataset [39] was originally designed by Cuff and Barton to evaluate sec-
ondary structure prediction methods, and it remains a widely used benchmark. The dataset
consists of 513 nonhomologous protein domains accounting for 438 protein chains in total
(some chains contain two or more domains).

The CASP14 dataset consists of 10 proteins from the free modeling category of the
CASP14 contest [30]. Importantly, the proteins in this dataset do not have homologues with
resolved structures, making this dataset an important benchmarking tool.

4.2. Feature Design and Selection

Dataset composition and feature design is a crucial step not only for classic ML model
development but also for many deep learning methods. A curated feature set has the
following two main characteristics: it is comprehensive, which enables learning, and it
does not contain too many redundant predictors, which makes the learning more effective.

In this work, we used 5-residue long protein fragments, but the design principles
described below can be applied to a protein fragment of any size. The feature design
involved two conceptually different strategies. The first type of feature was based on the
physicochemical properties of the amino acids acquired from the AAindex database [27].
The initial feature set was composed by applying a number of functional transformations of
AAindex parameters, such as scales of hydrophobicity, flexibilities of amino acid residues,
solvation free energy, etc. The following example illustrates feature generation: assume
there is a sequence fragment of n residues {a1, . . ., an}. Each amino acid {ai, i = 1, . . ., n} has
a certain value of hydrophobicity {Hi, i = 1, . . ., n}. Further, a functional transformation
F(H1, . . ., Hn) is applied to the array of property values {H1, . . .,Hn}. In this particular
example, F(H1, . . ., Hn) reflects a periodic change in hydrophobicity with period T in a
given fragment of n residues:

F(H1, . . . , Hn) =

√√√√( n

∑
k=1

Hk cos
(

k
2π

T

))2

+

(
n

∑
k=1

Hk sin
(

k
2π

T

))2

(3)

which reaches its maximum when the hydrophobicity of the amino acids along the backbone
chain varies harmoniously with the T period and thus captures the similarity between
the query structure and the standard α-helix periodicity of 3.6 with high precision. The
complete features generation procedure involves various transformations F(). Initially we
created more than 10,000 initial predictors, which were substantially decreased by using the
stepwise regression analysis. Details can be found in Supplemental Methods S5 as well as in
our previous works [16,38]. The C++ implementation of the method is available at Github
(https://github.com/Milchevskiy/ML.Proteins.2023, https://github.com/Milchevskiy/
protein-encoding-projects (accessed on 26 October 2023)).

To generate predictors based on the resolved structures’ statistics, we split all the
resolved structures into classes of 5-residue fragments with the same amino acid sequence.
For each structural element in a given class, we calculated the RMSD to each of the 16 PBs,
and we recorded the means and standard deviations of such distances within a class. Then,
different characteristics of the distributions could be calculated, for instance, the first and
second momentums. A detailed description of the algorithm can also be found in our
previous work [38].

Having generated an extensive pool of putatively predictive features, we applied
a stepwise regression analysis to select statistically significant features for each of the
16 regression tasks individually. Features with F-statistics below a specified threshold were
excluded. We then selected predictors with F-statistics greater than 100, ranked them by
descending F-statistic values, and removed duplicates. Subsequently, we examined the
Pearson correlations between the included predictors. For pairs with Pearson correlation
coefficients exceeding 0.9, we kept the feature with the higher F-statistic. This process

https://github.com/Milchevskiy/ML.Proteins.2023
https://github.com/Milchevskiy/protein-encoding-projects
https://github.com/Milchevskiy/protein-encoding-projects
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resulted in a set of 76 features associated with a single 5-residue fragment (see Supplemental
Table S4 for the full list and the Supplemental Methods S5 for the full description of all
possible features and their parameters).

To account for a possible interaction effect from flanking amino acids, we extended
our view field to 9 residues, which included the 5 original residues and the 2 before and the
2 after the pentapeptide. This resulted in four additional fragments: a fragment shifted by
one residue to the left, two residues to the left, one residue to the right, and two residues
to the right from the target. For each of the additional fragments, we included the same
76 features. This led to the final set of 380 (76 × 5) features, which were then used as inputs
to the neural network.

4.3. Neural Network Architecture and Training

We trained, tested, and validated the model using the PISCES30 dataset. First, the
protein chains from the dataset were split into training, test, and validation sets in the
following ratio: 6:3:1. By sampling complete chains instead of 5-residue fragments, we
ensured that overlapping fragments could only appear in the same dataset, but no two
fragments from different datasets would have an overlap. Then, for each 5-residue frag-
ment, we calculated the 380 features described above, and we used them as inputs to the
neural network.

For the local structure prediction of the 16 PBs, we utilized a multioutput regression
neural network with four hidden layers, and we used the standard mean squared error loss
between the predicted and observed RMSDs, the sigmoid (nn.Sigmoid()) as the activation
function, and kaiming_uniform_() for the initialization of the weights. The input and
output layers’ sizes were determined by the predictor set (380 nodes) and the number of PB
classes (16), respectively. The model was implemented in PyTorch 1.12.1+cu116 [55] using
Python 3.8 as well as the pandas 1.5.1 and numpy 1.22.3 libraries.

For the 3- and 8-group classification tasks based on the DSSP assignments, we utilized
the same network architecture as above but adjusted the output layer dimensions. By using
one-hot encoding, we converted a multioutput regression into a classification task, e.g., (1,
0, 0, 0, 0, 0, 0, 0) corresponded to the first class ‘H’ in the DSSP-8 classification list. In other
words, the resulting class label corresponded to the DSSP class that was predicted to have
the smallest RMSD to the query protein fragment.

In both cases, we used the torch.optim.Adam() optimizer with an initial learning rate
of 10−2. We gradually reduced the learning rate by a factor of five whenever the optimizer’s
improvement stopped, ultimately reaching a final learning rate of 10−5. Even despite the
differences in the sizes of the test and validation sets, we observed a high similarity between
the performance metrics of our model—for both the classification error and confusion
rates for the individual clusters—which indicated the reproducibility of our results. The
training and prediction scripts and the prediction model are available on GitHub (https:
//github.com/Milchevskiy/ML.Proteins.2023 (accessed on 26 October 2023).

4.4. Measures for the Evaluation of the Model’s Performance

In this work, we applied the most widely used measure to evaluate the local and
secondary protein structure prediction performance, namely, the Q measure, which was
defined as the percentage of residues predicted correctly. This measure was formulated
in [56], and for three DSSP classes, it can be written as follows:

Q3 = ∑
S∈{C,H,E}

O+(S)
N

(4)

where O+(S) is the observed number of correctly predicted residues in the class S, and N is
the total number of residues in the query protein. This measure does not depend on the
number of prediction classes, and so it can be used for 3-classes, 8-classes, and 16-classes
(protein blocks).

https://github.com/Milchevskiy/ML.Proteins.2023
https://github.com/Milchevskiy/ML.Proteins.2023
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Confusion matrices [57] can supply extended information about the interrelationships
of predictions for different classes of secondary structures or PBs. Each row of the confusion
matrix represents the instances in an actual class, while each column represents the instances
in a predicted class. Thus, we can analyze the mispredictions, i.e., how the prediction
model confuse two classes (mislabeled one as another).

5. Conclusions

The method we presented here predicts local and secondary protein structures from
sequences. We observed that combining an extensive feature design and selection procedure
with a shallow neural network architecture yielded results that outperformed the other
local or secondary structure prediction methods reported in the literature. An analysis of
the CASP14 results revealed that at some targets from the free modeling classification, our
set of statistically significant features with a nonintricate neural network can outperform
other local structure prediction methods, even such powerful methods as AlphaFold.

Another contribution to the method came from the choice of distance measure be-
tween the structural fragments. The RMSD-based distance appeared to allow for the 3D
coordinate reconstruction of a query fragment. Lastly, since our method does not rely on
structural alignment, it is especially beneficial for synthetic proteins or proteins that do
not have homologues with resolved structures. There are several paths that could further
improve the model’s accuracy. A different set of basic structures could be beneficial for the
classification tasks, as it is important that the central structures are sufficiently different
from one another in terms of their RMSDs. For the efficient and accurate reconstruction of
3D coordinates, a larger set of basic structures or even the consideration of fragments of
larger sizes appears to be promising. We are currently addressing these challenges.
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com/article/10.3390/ijms242115656/s1.
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