Vanadium Compounds with Antidiabetic Potential
Abstract
:1. Introduction
2. The Aqueous Chemistry of Vanadium
3. Antidiabetic Properties of Vanadium
4. Vanadium Speciation in Biological Media
5. Antidiabetic Effects of Vanadium
5.1. Vanadium Therapy: Studies in Animal Models
5.2. Vanadium Therapy: Studies in Humans
6. Insights on Vanadium Mechanism of Action in Glucose Homeostasis
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [PubMed]
- Tracey, A.S.; Willsky, G.R.; Takeuchi, E.S. Vanadium: Chemistry, Biochemistry, Pharmacology and Practical Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Polyak, D.E. Vanadium Statistics and Information; Survey, U.S.G., Ed.; National Minerals Information Center: Reston, VA, USA, 2023. [Google Scholar]
- Lourenssen, K.; Williams, J.; Ahmadpour, F.; Clemmer, R.; Tasnim, S. Vanadium redox flow batteries: A comprehensive review. J. Energy Storage 2019, 25, 100844. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Etcheverry, S.; Gambino, D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015, 301–302, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. The potentiality of vanadium in medicinal applications. Inorg. Chim. Acta 2020, 504, 119445. [Google Scholar] [CrossRef]
- Hashmi, K.; Satya; Gupta, S.; Siddique, A.; Khan, T.; Joshi, S. Medicinal applications of vanadium complexes with Schiff bases. J. Trace Elem. Med. Biol. 2023, 79, 127245. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. The role of vanadium in biology. Metallomics 2015, 7, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef] [PubMed]
- Ścibior, A.; Pietrzyk, Ł.; Plewa, Z.; Skiba, A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J. Trace Elem. Med. Biol. 2020, 61, 126508. [Google Scholar] [CrossRef]
- Dimond, E.G.; Caravaca, J.; Benchimol, A. Vanadium: Excretion, Toxicity, Lipid Effect in Man. Am. J. Clin. Nutr. 1963, 12, 49–53. [Google Scholar] [CrossRef]
- Schroeder, H.A.; Balassa, J.J.; Tipton, I.H. Abnormal trace metals in man—Vanadium. J. Chronic Dis. 1963, 16, 1047–1071. [Google Scholar] [CrossRef]
- Rehder, D. The coordination chemistry of vanadium as related to its biological functions. Coord. Chem. Rev. 1999, 182, 297–322. [Google Scholar] [CrossRef]
- Chasteen, N.D. Vanadium in Biological Systems: Physiology and Biochemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Pettersson, L.; Hedman, B.; Nenner, A.-M.; Andersson, I. Multicomponent Polyanions. 36. Hydrolysis and Redox Equilibria of the H+–HVO42− System in 0.6 M Na(Cl). A Complementary Potentiometric and 51V NMR Study at Low Vanadium Concentrations in Acid Solution. Acta Chem. Scand. 1985, 39, 499–506. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Correia, I. Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. Inorganics 2021, 9, 17. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Santos, M.F.A.; Correia, I.; Sanna, D.; Sciortino, G.; Garribba, E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord. Chem. Rev. 2021, 449, 214192. [Google Scholar] [CrossRef]
- Castro MM, C.A.; Avecilla, F.; Geraldes, C.F.G.C.; de Castro, B.; Rangel, M. Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: Comparison with the vanadate–dmpp system. Inorg. Chim. Acta 2003, 356, 142–154. [Google Scholar] [CrossRef]
- Rangel, M.; Leite, A.; João Amorim, M.; Garribba, E.; Micera, G.; Lodyga-Chruscinska, E. Spectroscopic and Potentiometric Characterization of Oxovanadium(IV) Complexes Formed by 3-Hydroxy-4-Pyridinones. Rationalization of the Influence of Basicity and Electronic Structure of the Ligand on the Properties of VIVO Species in Aqueous Solution. Inorg. Chem. 2006, 45, 8086–8097. [Google Scholar] [CrossRef] [PubMed]
- Rangel, M.; João Amorim, M.; Nunes, A.; Leite, A.; Pereira, E.; Castro, B.d.; Sousa, C.; Yoshikawa, Y.; Sakurai, H. Novel 3-hydroxy-4-pyridinonato oxidovanadium(IV) complexes to investigate structure/activity relationships. J. Inorg. Biochem. 2009, 103, 496–502. [Google Scholar] [CrossRef]
- Ferreira, S.; Leite, A.; Moniz, T.; Andrade, M.; Amaral, L.; De Castro, B.; Rangel, M. EPR and 51V NMR studies of prospective anti-diabetic bis(3-hydroxy-4-pyridinonato)oxidovanadium(iv) complexes in aqueous solution and liposome suspensions. New J. Chem. 2018, 42, 8088–8097. [Google Scholar] [CrossRef]
- WHO. W.H.O.—Diabetes—Fact Sheet; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46 (Suppl. S1), S19–S40. [Google Scholar] [CrossRef]
- Ahmad, K. Insulin sources and types: A review of insulin in terms of its mode on diabetes mellitus. J. Tradit. Chin. Med. 2014, 34, 234–237. [Google Scholar] [CrossRef]
- Ryan, G.J.; Jobe, L.J.; Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther. 2005, 27, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Teplizumab: First Approval. Drugs 2023, 83, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Abdalla, M.A.; Deshmukh, H.; Sathyapalan, T. Therapeutics for type-2 diabetes mellitus: A glance at the recent inclusions and novel agents under development for use in clinical practice. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211042145. [Google Scholar] [CrossRef] [PubMed]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef] [PubMed]
- Curran, G.L. Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat. J. Biol. Chem. 1954, 210, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Curran, G.L.; Azarnoff, D.L.; Bolinger, R.E. Effect of cholesterol synthesis inhibition in normocholesteremic young men. J. Clin. Investig. 1959, 38, 1251–1261. [Google Scholar] [CrossRef]
- Cantley, L.C., Jr.; Josephson, L.; Warner, R.; Yanagisawa, M.; Lechene, C.; Guidotti, G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 1977, 252, 7421–7423. [Google Scholar] [CrossRef]
- Tolman, E.L.; Barris, E.; Burns, M.; Pansini, A.; Partridge, R. Effects of vanadium on glucose metabolism in vitro. Life Sci. 1979, 25, 1159–1164. [Google Scholar] [CrossRef]
- Dubyak, G.R.; Kleinzeller, A. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. J. Biol. Chem. 1980, 255, 5306–5312. [Google Scholar] [CrossRef]
- Heyliger, C.E.; Tahiliani, A.G.; McNeill, J.H. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats. Science 1985, 227, 1474–1477. [Google Scholar] [CrossRef] [PubMed]
- Scior, T.; Guevara-Garcia, J.A.; Do, Q.T.; Bernard, P.; Laufer, S. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of “Big Pharma” Drug Research? A Critical Review. Curr. Med. Chem. 2016, 23, 2874–2891. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.H. Carcinogenicity classification of vanadium pentoxide and inorganic vanadium compounds, the NTP study of carcinogenicity of inhaled vanadium pentoxide, and vanadium chemistry. Regul. Toxicol. Pharmacol. 2007, 47, 110–114. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Gonçalves, G.; Roy, S.; Correia, I.; Mehtab, S.; Santos, M.F.A.; Santos-Silva, T. New insights on vanadium binding to human serum transferrin. Inorg. Chim. Acta 2014, 420, 60–68. [Google Scholar] [CrossRef]
- Mehtab, S.; Gonçalves, G.; Roy, S.; Tomaz, A.I.; Santos-Silva, T.; Santos MF, A.; Romão, M.J.; Jakusch, T.; Kiss, T.; Pessoa, J.C. Interaction of vanadium(IV) with human serum apo-transferrin. J. Inorg. Biochem. 2013, 121, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Chasteen, N.D.; Lord, E.M.; Thompson, H.J.; Grady, J.K. Vanadium complexes of transferrin and ferritin in the rat. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1986, 884, 84–92. [Google Scholar] [CrossRef]
- De Cremer, K.; Van Hulle, M.; Chéry, C.; Cornelis, R.; Strijckmans, K.; Dams, R.; Lameire, N.; Vanholder, R. Fractionation of vanadium complexes in serum, packed cells and tissues of Wistar rats by means of gel filtration and anion-exchange chromatography. JBIC J. Biol. Inorg. Chem. 2002, 7, 884–890. [Google Scholar] [CrossRef]
- Sanna, D.; Micera, G.; Garribba, E. Interaction of VO2+ Ion and Some Insulin-Enhancing Compounds with Immunoglobulin G. Inorg. Chem. 2011, 50, 3717–3728. [Google Scholar] [CrossRef]
- Sanna, D.; Bíró, L.; Buglyó, P.; Micera, G.; Garribba, E. Transport of the anti-diabetic VO2+ complexes formed by pyrone derivatives in the blood serum. J. Inorg. Biochem. 2012, 115, 87–99. [Google Scholar] [CrossRef]
- Sanna, D.; Ugone, V.; Serra, M.; Garribba, E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J. Inorg. Biochem. 2017, 173, 52–65. [Google Scholar] [CrossRef]
- Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta 2013, 1830, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.N.; Rangel, M. The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022, 27, 1784. [Google Scholar] [CrossRef] [PubMed]
- Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physioliol. 2014, 5, 299. [Google Scholar]
- Sanna, D.; Garribba, E. Pharmacologically Active Vanadium Species: Distribution in Biological Media and Interaction with Molecular Targets. Curr. Med. Chem. 2021, 28, 7339–7384. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Micera, G.; Garribba, E. On the Transport of Vanadium in Blood Serum. Inorg. Chem. 2009, 48, 5747–5757. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. The future of/for vanadium. Dalton Trans. 2013, 42, 11749–11761. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, K.; Lu, J.; Crans, D.C. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord. Chem. Rev. 2003, 237, 103–111. [Google Scholar] [CrossRef]
- Sanna, D.; Serra, M.; Micera, G.; Garribba, E. Interaction of Antidiabetic Vanadium Compounds with Hemoglobin and Red Blood Cells and Their Distribution between Plasma and Erythrocytes. Inorg. Chem. 2014, 53, 1449–1464. [Google Scholar] [CrossRef]
- Shechter, Y. Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 1990, 39, 1–5. [Google Scholar] [CrossRef]
- Sekar, N.; Kanthasamy, A.; William, S.; Subramanian, S.; Govindasamy, S. Insulinic actions of vanadate in diabetic rats. Pharmacol. Res. 1990, 22, 207–217. [Google Scholar] [CrossRef]
- Meyerovitch, J.; Farfel, Z.; Sack, J.; Shechter, Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J. Biol. Chem. 1987, 262, 6658–6662. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Tsuchiya, K.; Nukatsuka, M.; Sofue, M.; Kawada, J. Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J. Endocrinol. 1990, 126, 451–459. [Google Scholar] [CrossRef]
- Ramanadham, S.; Mongold, J.J.; Brownsey, R.W.; Cros, G.H.; McNeill, J.H. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol.-Heart Circ. Physiol. 1989, 257, H904–H911. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Cukier, S.; DeFronzo, R.A.; Torres, M.; Puchulu, F.M.; Redondo, J.C.P. Vanadyl Sulfate Improves Hepatic and Muscle Insulin Sensitivity in Type 2 Diabetes 1. J. Clin. Endocrinol. Metab. 2001, 86, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Yanardag, R.; Karabulut-Bulan, O.; Tunali, S. Effects of Vanadyl Sulfate on Kidney in Experimental Diabetes. Biol. Trace Elem. Res. 2003, 95, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Pederson, R.A.; Ramanadham, S.; Buchan, A.M.; McNeill, J.H. Long-term effects of vanadyl treatment on streptozocin-induced diabetes in rats. Diabetes 1989, 38, 1390–1395. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Saha, R.; Saha, B. Toxicity of inorganic vanadium compounds. Res. Chem. Intermed. 2015, 41, 4873–4897. [Google Scholar] [CrossRef]
- Srivastava, A.K. Anti-diabetic and toxic effects of vanadium compounds. Mol. Cell. Biochem. 2000, 206, 177–182. [Google Scholar] [CrossRef]
- Domingo, J.L.; Gomez, M.; Sanchez, D.J.; Llobet, J.M.; Keen, C.L. Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation. Mol. Cell. Biochem. 1995, 153, 233–240. [Google Scholar] [CrossRef]
- Jaiswal, M.R.; Kale, P.P. Mini review–vanadium-induced neurotoxicity and possible targets. Neurol. Sci. 2020, 41, 763–768. [Google Scholar] [CrossRef]
- Wilk, A.; Szypulska-Koziarska, D.; Wiszniewska, B. The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations. Postepy Higieny Med. Dosw. 2017, 71, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Goldwaser, I.; Gefel, D.; Gershonov, E.; Fridkin, M.; Shechter, Y. Insulin-like effects of vanadium: Basic and clinical implications. J. Inorg. Biochem. 2000, 80, 21–25. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.H.; Yuen, V.G.; Hoveyda, H.R.; Orvig, C. Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J. Med. Chem. 1992, 35, 1489–1491. [Google Scholar] [CrossRef] [PubMed]
- Yuen, V.G.; Orvig, C.; McNeill, J.H. Glucose-lowering effects of a new organic vanadium complex, bis(maltolato)oxovanadium(IV). Can. J. Physiol. Pharmacol. 1993, 71, 263–269. [Google Scholar] [CrossRef]
- Poucheret, P.; Verma, S.; Grynpas, M.D.; McNeill, J.H. Vanadium and diabetes. Mol. Cell. Biochem. 1998, 188, 73–80. [Google Scholar] [CrossRef]
- Wang, J.; Yuen, V.G.; McNeill, J.H. Effect of vanadium on insulin and leptin in Zucker diabetic fatty rats. Mol. Cell. Biochem. 2001, 218, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Liboiron, B.D.; Sun, Y.; Bellman, K.D.; Setyawati, I.A.; Patrick, B.O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K.; et al. Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. J. Biol. Inorg. Chem. 2003, 8, 66–74. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, C.; Zhao, P.; Yang, X.; Wang, K. A new salicylic acid-derivatized kojic acid vanadyl complex: Synthesis, characterization and anti-diabetic therapeutic potential. J. Inorg. Biochem. 2011, 105, 1081–1085. [Google Scholar] [CrossRef]
- Wei, Y.-B.; Yang, X.-D. Synthesis, characterization and anti-diabetic therapeutic potential of a new benzyl acid-derivatized kojic acid vanadyl complex. BioMetals 2012, 25, 1261–1268. [Google Scholar] [CrossRef]
- Adachi, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Bis(allixinato)oxovanadium(IV) Complex Is a Potent Antidiabetic Agent: Studies on Structure−Activity Relationship for a Series of Hydroxypyrone−Vanadium Complexes. J. Med. Chem. 2006, 49, 3251–3256. [Google Scholar] [CrossRef]
- Adachi, Y.; Yoshikawa, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKAy mice by bis(allixinato)oxovanadium(IV) complex. Biochem. Biophys. Res. Commun. 2006, 345, 945–950. [Google Scholar] [CrossRef]
- Rangel, M.; Tamura, A.; Fukushima, C.; Sakurai, H. In vitro study of the insulin-like action of vanadyl-pyrone and -pyridinone complexes with a VO(O4) coordination mode. J. Biol. Inorg. Chem. 2001, 6, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Metelo, A.M.; Pérez-Carro, R.; Castro, M.M.; López-Larrubia, P. VO(dmpp)2 normalizes pre-diabetic parameters as assessed by in vivo magnetic resonance imaging and spectroscopy. J. Inorg. Biochem. 2012, 115, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Domingues, N.; Pelletier, J.; Ostenson, C.G.; Castro, M.M.C.A. Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats. J. Inorg. Biochem. 2014, 131, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Reul, B.A.; Amin, S.S.; Buchet, J.-P.; Ongemba, L.N.; Crans, D.C.; Brichard, S.M. Effects of vanadium complexes with organic ligands on glucose metabolism: A comparison study in diabetic rats. Br. J. Pharmacol. 1999, 126, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.S.; Cryer, K.; Zhang, B.; Dutta, S.K.; Eaton, S.S.; Anderson, O.P.; Miller, S.M.; Reul, B.A.; Brichard, S.M.; Crans, D.C. Chemistry and Insulin-Mimetic Properties of Bis(acetylacetonate)oxovanadium(IV) and Derivatives1. Inorg. Chem. 2000, 39, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Makinen, M.W.; Brady, M.J. Structural Origins of the Insulin-mimetic Activity of Bis(acetylacetonato)oxovanadium(IV). J. Biol. Chem. 2002, 277, 12215–12220. [Google Scholar] [CrossRef] [PubMed]
- Willsky, G.R.; Chi, L.-H.; Godzala, M.; Kostyniak, P.J.; Smee, J.J.; Trujillo, A.M.; Alfano, J.A.; Ding, W.; Hu, Z.; Crans, D.C. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord. Chem. Rev. 2011, 255, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H. A New Concept: The Use of Vanadium Complexes in the Treatment of Diabetes Mellitus. Chem. Rec. 2002, 2, 237–248. [Google Scholar] [CrossRef]
- Watanabe, H.; Nakai, M.; Komazawa, K.; Sakurai, H. A new orally active insulin-mimetic vanadyl complex: Bis(pyrrolidine-N-carbodithioato)oxovanadium(IV). J. Med. Chem. 1994, 37, 876–877. [Google Scholar] [CrossRef]
- Sakurai, H.; Watanabe, H.; Tamura, H.; Yasui, H.; Matsushita, R.; Takada, J. Insulin-mimetic vanadyl—Dithiocarbamate complexes. Inorg. Chim. Acta 1998, 283, 175–183. [Google Scholar] [CrossRef]
- Sakurai, H.; Kojima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasui, H. Antidiabetic vanadium(IV) and zinc(II) complexes. Coord. Chem. Rev. 2002, 226, 187–198. [Google Scholar] [CrossRef]
- Sakurai, H.; Sano, H.; Takino, T.; Yasui, H. An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J. Inorg. Biochem. 2000, 80, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Hiromu, S.; Hiromi, S.; Toshikazu, T.; Hiroyuki, Y. A New Type of Orally Active Insulin-Mimetic Vanadyl Complex: Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) with VO(S2O2) Coordination Mode. Chem. Lett. 1999, 28, 913–914. [Google Scholar]
- Takeshita, S.; Kawamura, I.; Yasuno, T.; Kimura, C.; Yamamoto, T.; Seki, J.; Tamura, A.; Sakurai, H.; Goto, T. Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally active insulin–mimetic vanadyl complex: Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) with VO(S2O2) coordination mode. J. Inorg. Biochem. 2001, 85, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sharfalddin, A.A.; Al-Younis, I.M.; Mohammed, H.A.; Dhahri, M.; Mouffouk, F.; Abu Ali, H.; Anwar, M.J.; Qureshi, K.A.; Hussien, M.A.; Alghrably, M.; et al. Therapeutic Properties of Vanadium Complexes. Inorganics 2022, 10, 244. [Google Scholar] [CrossRef]
- Lima, L.M.A.; Belian, M.F.; Silva, W.E.; Postal, K.; Kostenkova, K.; Crans, D.C.; Rossiter, A.K.F.F.; da Silva Júnior, V.A. Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. J. Inorg. Biochem. 2021, 216, 111312. [Google Scholar] [CrossRef] [PubMed]
- Shaik, A.; Kondaparthy, V.; Aveli, R.; Manwal, D.D. Studies on the serum glucose reducing effect of vanadium metal complexes on Wistar rats. J. Mol. Struct. 2022, 1261, 132825. [Google Scholar] [CrossRef]
- Xie, M.-J.; Li, L.; Yang, X.-D.; Liu, W.-P.; Yan, S.-P.; Niu, Y.-F.; Meng, Z.-H. A new insulin-enhancing agent: [N,N′-bis(4-hydroxysalicylidene)-o-phenylene-diamine]oxovanadium(IV) and its permeability and cytotoxicity. Eur. J. Med. Chem. 2010, 45, 2327–2335. [Google Scholar] [CrossRef]
- El-Saied, F.A.; Salem, T.A.; Aly, S.A.; Shakdofa, M.M.E. Evaluation of Anti-Hyperglycemic Effect of Synthetic Schiff Base Vanadium(IV) Complexes. Pharm. Chem. J. 2017, 51, 833–842. [Google Scholar] [CrossRef]
- Xie, M.; Chen, D.; Zhang, F.; Willsky, G.R.; Crans, D.C.; Ding, W. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J. Inorg. Biochem. 2014, 136, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Buglyó, P.; Crans, D.C.; Nagy, E.M.; Lindo, R.L.; Yang, L.; Smee, J.J.; Jin, W.; Chi, L.-H.; Godzala, M.E.; Willsky, G.R. Aqueous Chemistry of the VanadiumIII (VIII) and the VIII−Dipicolinate Systems and a Comparison of the Effect of Three Oxidation States of Vanadium Compounds on Diabetic Hyperglycemia in Rats. Inorg. Chem. 2005, 44, 5416–5427. [Google Scholar] [CrossRef] [PubMed]
- Munawar, K.S.; Ali, S.; Tahir, M.N.; Khalid, N.; Abbas, Q.; Qureshi, I.Z.; Shahzadi, S. Investigation of derivatized schiff base ligands of 1,2,4-triazole amine and their oxovanadium(IV) complexes: Synthesis, structure, DNA binding, alkaline phosphatase inhibition, biological screening, and insulin mimetic properties. Russ. J. Gen. Chem. 2015, 85, 2183–2197. [Google Scholar] [CrossRef]
- Crans, D.C.; Henry, L.; Cardiff, G.; Posner, B.I. Developing vanadium as an antidiabetic or anticancer drug: A clinical and historical perspective. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; Peggy, L.C., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 203–230. [Google Scholar]
- Smith, D.M.; Pickering, R.M.; Lewith, G.T. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM Int. J. Med. 2008, 101, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Halberstam, M.; Shlimovich, P.; Chang, C.J.; Shamoon, H.; Rossetti, L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1995, 95, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Chen, X.; Ruiz, J.; van Rossum, G.D.V.; Turco, S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metab.-Clin. Exp. 1996, 45, 1130–1135. [Google Scholar] [PubMed]
- Halberstam, M.; Cohen, N.; Shlimovich, P.; Rossetti, L.; Shamoon, H. Oral Vanadyl Sulfate Improves Insulin Sensitivity in NIDDM but Not in Obese Nondiabetic Subjects. Diabetes 1996, 45, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Goldfine, A.B.; Patti, M.-E.; Zuberi, L.; Goldstein, B.J.; LeBlanc, R.; Landaker, E.J.; Jiang, Z.Y.; Willsky, G.R.; Kahn, C.R. Metabolic effects of vanadyl sulfate in humans with non—Insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metab.-Clin. Exp. 2000, 49, 400–410. [Google Scholar] [CrossRef]
- Lyonnet, M. Martin: Emploi therapeutique des derives du vanadium. Presse Med. Sem. 1899, 32, 191. [Google Scholar]
- Goldfine, A.B.; Simonson, D.C.; Folli, F.; Patti, M.E.; Kahn, C.R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 1995, 80, 3311–3320. [Google Scholar]
- Mohammad, A.A., Jr.; Mahdi, K.; Seid, M.M.; Forough, N. Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type 2 diabetic patients. Malays. J. Nutr. 2008, 14, 113–119. [Google Scholar] [PubMed]
- Jacques-Camarena, O.; González-Ortiz, M.; Martínez-Abundis, E.; López-Madrueño, J.F.P.; Medina-Santillán, R. Effect of Vanadium on Insulin Sensitivity in Patients with Impaired Glucose Tolerance. Ann. Nutr. Metab. 2008, 53, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Orvig, C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J. Inorg. Biochem. 2006, 100, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Lichter, J.; LeBel, C.; Scaife, M.C.; McNeill, J.H.; Orvig, C. Vanadium treatment of type 2 diabetes: A view to the future. J. Inorg. Biochem. 2009, 103, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Gómez, M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem. Toxicol. 2016, 95, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Soveid, M.; Dehghani, G.A.; Omrani, G.R. Long-term efficacy and safety of vanadium in the treatment of type 1 diabetes. Arch. Iran. Med. 2013, 16, 408–411. [Google Scholar] [PubMed]
- Willsky, G.R.; Halvorsen, K.; Godzala, M.E., III; Chi, L.-H.; Most, M.J.; Kaszynski, P.; Crans, D.C.; Goldfine, A.B.; Kostyniak, P.J. Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics 2013, 5, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Ghalichi, F.; Saghafi-Asl, M.; Kafil, B.; Faghfouri, A.H.; Jourshari, M.R.; Naserkiadeh, A.A.; Ostadrahimi, A. Insulin Receptor Substrates Regulation and Clinical Responses Following Vanadium-Enriched Yeast Supplementation in Obese Type 2 Diabetic Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Biol. Trace Elem. Res. 2023, 201, 5169–5182. [Google Scholar] [CrossRef]
- Gresser, M.; Tracey, A.; Stankiewicz, P. The interaction of vanadate with tyrosine kinases and phosphatases. Adv. Protein Phosphatases 1987, 4, 35–57. [Google Scholar]
- McLauchlan, C.C.; Peters, B.J.; Willsky, G.R.; Crans, D.C. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev. 2015, 301–302, 163–199. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; McLauchlan, C.C.; Rompel, A.; Crans, D.C. Polyoxidovanadates’ interactions with proteins: An overview. Coord. Chem. Rev. 2022, 454, 214344. [Google Scholar] [CrossRef]
- Sonksen, P.; Sonksen, J. Insulin: Understanding its action in health and disease. Br. J. Anaesth. 2000, 85, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Steiner, D.F.; Philipson, L.H. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Sakurai, H.; Yoshikawa, Y.; Yasui, H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 2008, 37, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, M.; Hosseini, H.; ArabSadeghabadi, Z.; Babaei-Khorzoughi, R.; Gorgani-Firuzjaee, S.; Meshkani, R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J. Physiol. Biochem. 2022, 78, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. Vanadium in health issues. ChemTexts 2018, 4, 20. [Google Scholar] [CrossRef]
- Peters, K.G.; Davis, M.G.; Howard, B.W.; Pokross, M.; Rastogi, V.; Diven, C.; Greis, K.D.; Eby-Wilkens, E.; Maier, M.; Evdokimov, A.; et al. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J. Inorg. Biochem. 2003, 96, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.Z.; Pandey, S.K.; Théberge, J.-F.; Srivastava, A.K. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem. Biophys. 2006, 44, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.; Sharma, V.; McNeill, J.H. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol. Cell. Biochem. 2002, 233, 139–143. [Google Scholar] [CrossRef]
- Li, M.; Ding, W.; Baruah, B.; Crans, D.C.; Wang, R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J. Inorg. Biochem. 2008, 102, 1846–1853. [Google Scholar] [CrossRef]
- Vardatsikos, G.; Mehdi, M.Z.; Srivastava, A.K. Bis(maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes toits glucoregulatory responses (Review). Int. J. Mol. Med. 2009, 24, 303–309. [Google Scholar]
- Elberg, G.; He, Z.; Li, J.; Sekar, N.; Shechter, Y. Vanadate activates membranous nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes 1997, 46, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- García-Vicente, S.; Yraola, F.; Marti, L.; Gonzaález-Muñoz, E.; García-Barrado, M.A.J.; Cantó, C.; Abella, A.; Bour, S.; Artuch, R.; Sierra, C.; et al. Oral Insulin-Mimetic Compounds That Act Independently of Insulin. Diabetes 2007, 56, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Kenner, K.A.; Hill, D.E.; Olefsky, J.M.; Kusari, J. Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor I. J. Biol. Chem. 1993, 268, 25455–25462. [Google Scholar] [CrossRef] [PubMed]
- Semiz, S.; Orvig, C.; McNeill, J.H. Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats. Mol. Cell. Biochem. 2002, 231, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Kiersztan, A.; Modzelewska, A.; Jarzyna, R.; Jagielska, E.; Bryła, J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem. Pharmacol. 2002, 63, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, S. The potential effect of vanadium compounds on glucose-6-phosphatase. Biosci. Horiz. Int. J. Stud. Res. 2013, 6, hzt002. [Google Scholar] [CrossRef]
- Brownsey, R.W.; Dong, G.W. Evidence for selective effects of vanadium on adipose cell metabolism involving actions on cAMP-dependent protein kinase. Mol. Cell. Biochem. 1995, 153, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, U.; Jamal, R.A.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Omer, I.; Choudhary, M.I. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)–hydrazide complexes. J. Enzyme Inhib. Med. Chem. 2009, 24, 1336–1343. [Google Scholar] [CrossRef]
- Platt, D.C.; Rink, J.; Braich, K.; McLauchlan, C.C.; Jones, M.A. 2′-3′-Cyclic Nucleotide 3′-Phosphodiesterase Inhibition by Organometallic Vanadium Complexes: A Potential New Paradigm for Studying CNS Degeneration. Brain Sci. 2021, 11, 588. [Google Scholar] [CrossRef]
- Percival, M.D.; Doherty, K.; Gresser, M.J. Inhibition of phosphoglucomutase by vanadate. Biochemistry 1990, 29, 2764–2769. [Google Scholar] [CrossRef]
- Fantus, I.G.; Kadota, S.; Deragon, G.; Foster, B.; Posner, B.I. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989, 28, 8864–8871. [Google Scholar] [CrossRef] [PubMed]
- Schieven, G.; Kirihara, J.; Myers, D.; Ledbetter, J.; Uckun, F. Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase- dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 1993, 82, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Cortizo, A.M.; Caporossi, M.; Lettieri, G.; Etcheverry, S.B. Vanadate-induced nitric oxide production: Role in osteoblast growth and differentiation. Eur. J. Pharmacol. 2000, 400, 279–285. [Google Scholar] [CrossRef]
- Minasi, L.A.; Willsky, G.R. Characterization of vanadate-dependent NADH oxidation stimulated by Saccharomyces cerevisiae plasma membranes. J. Bacteriol. 1991, 173, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Aureliano, M.; De Sousa-Coelho, A.L.; Dolan, C.C.; Roess, D.A.; Crans, D.C. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int. J. Mol. Sci. 2023, 24, 5382. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. The potentiality of vanadium in medicinal applications. Future Med. Chem. 2012, 4, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Salmeen, A.; Andersen, J.N.; Myers, M.P.; Meng, T.C.; Hinks, J.A.; Tonks, N.K.; Barford, D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 2003, 423, 769–773. [Google Scholar] [CrossRef]
- Crans, D.C.; Trujillo, A.M.; Pharazyn, P.S.; Cohen, M.D. How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord. Chem. Rev. 2011, 255, 2178–2192. [Google Scholar] [CrossRef]
- Winter, P.W.; Al-Qatati, A.; Wolf-Ringwall, A.L.; Schoeberl, S.; Chatterjee, P.B.; Barisas, B.G.; Roess, D.A.; Crans, D.C. The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Trans. 2012, 41, 6419–6430. [Google Scholar] [CrossRef]
- Shaik, A.; Kondaparthy, V.; Begum, A.; Husain, A.; Manwal, D.D. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: A Kinetic Approach. Biol. Trace Elem. Res. 2023, 201, 5037–5052. [Google Scholar] [CrossRef]
Oral Treatment | Experimental Design | Main Results | Reference |
---|---|---|---|
Vanadyl sulfate 100 mg/day (50 mg twice daily) 3 weeks active 2 weeks follow-up | Single-blind, placebo-controlled 6 T2D patients No diabetic subjects | Reduction in plasma glucose and HbA1c Reduction of FFA Gastrointestinal intolerance | [92] |
Sodium metavanadate 125 mg/day (50 + 50 + 25 mg/daily) 2 weeks active 2 weeks follow-up | Non-randomized, non-placebo-controlled 5 T1D patients 5 T2D patients No diabetic subjects | No changes in insulin sensitivity in T1D patients No changes in plasma glucose and HbA1c in both diabetic types Decrease of total cholesterol in both diabetic types Mild gastrointestinal side effects in both diabetic types | [97] |
Vanadyl sulfate 100 mg/day (50 mg twice daily) 4 weeks active 4 weeks follow-up | Single-blind, placebo-controlled 8 T2D patients No diabetic subjects | Reduction in plasma glucose No information about HbA1c Gastrointestinal side-effects | [93] |
Vanadyl sulfate 100 mg/day (50 mg twice daily) 3 weeks active No follow-up | Single-blind, placebo-controlled 7 T2D patients 6 non-diabetic subjects | Reduction in plasma glucose and HbA1c Decrease of total cholesterol Reduction of FFA Minor gastrointestinal side-effects Stool discoloration | [94] |
Vanadyl sulfate 75, 150, and 300 mg/day (25, 50, and 100 mg/3 times daily) 6 weeks active 2 weeks follow-up | Single-blind, placebo-controlled 16 T2D patients No diabetic subjects | Reduction in plasma glucose and HbA1c Some gastrointestinal intolerance | [95] |
Vanadyl sulfate 150 mg/day (50 mg 3×/daily) 6 weeks active 6 weeks follow-up | Single-blind, non-placebo-controlled 11 T2D patients 5 non-diabetic subjects | Reduction in plasma glucose and HbA1c Minor gastrointestinal side-effects | [51] |
BEOV Phase I—10–90 mg/day 2 weeks active No-follow up Phase II—20 mg/day 28 days 14 days follow-up | Single-blind, placebo-controlled 40 non-diabetic subjects Single-blind, placebo-controlled 7 T2D patients | No information about plasma glucose and HbA1c No side effects Reduction in plasma glucose and HbA1c Renal side effects | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, L.M.P.F.; Moniz, T.; Silva, A.M.N.; Rangel, M. Vanadium Compounds with Antidiabetic Potential. Int. J. Mol. Sci. 2023, 24, 15675. https://doi.org/10.3390/ijms242115675
Amaral LMPF, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. International Journal of Molecular Sciences. 2023; 24(21):15675. https://doi.org/10.3390/ijms242115675
Chicago/Turabian StyleAmaral, Luísa M. P. F., Tânia Moniz, André M. N. Silva, and Maria Rangel. 2023. "Vanadium Compounds with Antidiabetic Potential" International Journal of Molecular Sciences 24, no. 21: 15675. https://doi.org/10.3390/ijms242115675
APA StyleAmaral, L. M. P. F., Moniz, T., Silva, A. M. N., & Rangel, M. (2023). Vanadium Compounds with Antidiabetic Potential. International Journal of Molecular Sciences, 24(21), 15675. https://doi.org/10.3390/ijms242115675