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Abstract: Over the last four decades, vanadium compounds have been extensively studied as
potential antidiabetic drugs. With the present review, we aim at presenting a general overview of
the most promising compounds and the main results obtained with in vivo studies, reported from
1899–2023. The chemistry of vanadium is explored, discussing the importance of the structure and
biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect.
The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic
resonance methodologies, emphasizing its relevance for understanding species activity, speciation,
and interaction with biological membranes. Finally, the most relevant studies regarding the use
of vanadium compounds to treat diabetes are summarized, considering both animal models and
human clinical trials. An overview of the main hypotheses explaining the biological activity of these
compounds is presented, particularly the most accepted pathway involving vanadium interaction
with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point
of view, the major discoveries regarding the pharmacological action of this family of compounds
are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in
metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an
insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover
a vanadium compound with the desired therapeutic properties.

Keywords: antidiabetic drugs; chemical speciation; insulin signaling; diabetes mellitus; metallophar-
maceuticals; vanadium; vanadium complexes

1. Introduction

Discovered in the early XIX century [1], vanadium (V) has garnered significant interest
from chemists, geologists, biologists, and biochemists, amongst others [2]. Ranking as
the 5th most abundant transition metal in the Earth’s crust, it constitutes approximately
0.014% of the crust’s abundance. Despite its relatively low occurrence, vanadium exhibits
widespread distribution and can vary considerably in concentration, with some deposits
and freshwater sources containing notably high levels.

Since its discovery, vanadium has played a vital role in metallurgy, with yearly produc-
tion surpassing 100,000 tons [3]. Its primary application lies in alloy production, particularly
as an additive in steel manufacturing. Notably, there is currently no viable substitute for
vanadium in aerospace titanium alloys, cementing its importance in this industry. More-
over, its economic significance has been on the rise, attributed to its usage in the emerging
field of new-generation vanadium redox flow batteries [4]. Beyond metallurgy, vanadium
has proven highly relevant in various scientific research domains, particularly in biomedical
and health sciences, where its unique properties are being explored for potential medical
applications [5–7].
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Being ubiquitous in the Earth’s crust, vanadium accumulates and serves diverse
functions in organisms such as bacteria, algae, fungi, plantae, and animals [8]. Various
enzymes, such as bromoperoxidases in algae, haloperoxidases in macro-algae, nitrogenases
in nitrogen-fixing bacteria, and chloroperoxidases in certain fungi, depend on vanadium
for their correct functioning [9]. Despite the absence of a specific identified biological role
for vanadium, it has also been shown that its deficiency poses a problem in birds, rodents,
fish, and lower animals [10].

The essentiality of vanadium in human physiology has been a subject of great debate
but remains largely unproven [1,10]. In humans, vanadium deficiency has been reported,
while its acute and chronic toxicity has been also extensively documented. The awareness
of vanadium’s physiological effects dates to the 1960s [11,12], and although the specific
mechanisms mediating its physiological functions remain unknown, researchers have
explored its potential application as a source for antitumor, anti-HIV, antituberculosis, and
particularly as antidiabetic therapeutics [6]. Herein, we provide an overview of the most
relevant studies on antidiabetic action reported from 1899–2023.

2. The Aqueous Chemistry of Vanadium

Vanadium is the third element of the first row of the transition metals and exhibits
typical characteristics of early transition metals. It shows a preference for high oxidation
states, high coordination numbers, and bonding with “hard”, negatively charged ligands,
such as oxygen. In aqueous solutions, the most common oxidation states are +3, +4,
and +5, with V(IV) and V(V) being prevalent in biological systems. These oxidation
states tend to form oxides represented by the vanadate anion (VO4

3−) and the vanadyl
cation (VO2+). Notably, in the biological milieu, VO4

3− predominates in the oxidizing
environment of the serum and extracellular fluid, while VO2+ appears to be more prevalent
in the reducing intracellular environment [13]. At physiological pH values, vanadate exists
as an equilibrium between H2VO4

− and HVO4
2− (pKa = 7.8) [14].

Regarding the latter species, it is important to mention that as the solution becomes
acidic H2VO4

− may undergo further protonation reactions that give rise to a different
species, usually represented as the ion VO2

+(aq) = [VO2(H2O)4]−, in which the geometry
of the vanadium center changes from tetrahedral to pseudo-octahedral. The process is
dependent on the pH and vanadium concentration. The protonation constants and redox
behavior of this vanadate cation have been thoroughly studied by potentiometry and 51V
NMR by Peterson et al. [15]. In acidic and reducing conditions the VO2

+(aq) ion may
undergo reduction originating the vanadyl ion, VO2+(aq). The equilibrium between the
two vanadium cations is also well-established and characterized [15].

The latter equilibrium is particularly important in the discussion of the solution
chemistry of vanadium complexes since both cations may undergo hydrolysis and ligand
exchange giving rise to a variety of oxovanadium complexes with different coordination
numbers, geometry, and nuclearity [16,17].

The biological activity of vanadium is thought to arise from the structural and elec-
tronic resemblance between VO4

3− and phosphate (PO4
3−) [2,6,9,10]. Both species form

tri-anions with a tetrahedral structure, contributing to their functional similarities. VO4
3−

has been identified as an inhibitor of phosphatases, ATPases, and phosphorylases, suggest-
ing its regulatory role in cellular processes. However, a notable distinction arises in the
behavior of vanadate at neutral pH values, where it tends to undergo hydrolysis [16].

Inside cells, the vanadyl ion (VO2+) is usually predominant and exists associated
with proteins or in its hydrated form ([VO(H2O)5]2+) [13]. At pH values lower than 3,
[VO(H2O)5]2+ is stable, while hydroxy-vanadyl species emerge at pH levels above 4 [9]. At
neutral pH, the aqueous chemistry is dominated by hydrolysis reaction and the solubility
product of hydrolyzed species [VO(HO)2]n [9,16]. However, at physiological concentrations
(~30 nM), precipitation is not the prevalent outcome. Instead, both monomeric and dimeric
anionic species, namely [VO(OH)3]− and [(VO)2(OH)5]−, coexist, with the latter being
more prevalent [9]. At neutral pH, VO2+ tends to undergo oxidation, potentially leading to
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the formation of VO4
3−. It is still not clear whether it is the action of the negatively charged

[VO(OH)3]− or this propensity for oxidation that explains the ability of vanadyl to inhibit
intracellular phosphatases.

Various spectroscopic techniques have been employed for the structural characteriza-
tion and speciation of vanadium compounds. A comprehensive review of these method-
ologies can be found in the work of Pessoa et al. [17]. Magnetic resonance spectroscopy,
including both Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance
(EPR), has been particularly instrumental in this field [9,17].

V(V) is a diamagnetic species with an electronic configuration of [Ar] 3d0, making
it suitable for NMR studies. This can be achieved through more common 13C and 1H
NMR studies of compounds directly interacting with the vanadium ion, or alternatively, by
directly assessing 51V [2]. 51V possesses a nuclear spin of 7/2 and a natural abundance of
99.76%, making it an excellent NMR probe. Additionally, the chemical shift of 51V can be
notably influenced by the coordination sphere around the vanadium atom.

V(IV) is a one-electron radical, characterized by an electron configuration of [Ar] 3d1,
and its presence can be observed using EPR techniques. Notably, at room temperature,
vanadium exhibits a distinctive 8-line EPR spectrum resulting from the 7/2 nuclear spin
of 51V [9].

EPR and 51V NMR are not only useful to structurally characterize V(IV) and V(V)
species per se but also to characterize oxidation-reduction processes undergone by vana-
dium complexes and the study of their interactions with biological membranes.

In order to illustrate the power of using both magnetic resonance techniques in tandem,
we will focus on studies performed in our group regarding oxovanadium(IV) complexes of
3-hydroxy-4-pyridinone ligands [18–21].

In the most recent study [21] we reported EPR and 51V NMR characterization of
vanadium(IV/V) species, (Figures 1 and 2), originating from bis(3-hydroxy-4-pyridinonato)
oxidovanadium(IV) complexes, including VO(dmpp)2, ((8), Figure 3) in aqueous solu-
tion at pH 7.4 (MOPS buffer) under aerobic conditions and in liposome suspensions
(POPC), in order to improve solubility and also foreseeing the potential of these systems as
delivery vehicles.

Analysis of the EPR spectra of bis(3-hydroxy-4-pyridinonato)oxidovanadium(IV)complexes
shows that upon dissolution a single species is present in solution, [VOL2], and that the
use of liposome suspensions significantly improves solubility. In the presence of air [VOL2]
is oxidized to three species, [VO2L2]−, [VO2L], and V1(H2VO4

−) as characterized by the
51V NMR spectra. Also, we studied the systems for three hours following the oxidation
process by monitoring both the EPR and NMR spectra of the solutions.

To mimic the potential effect of reducing ligands, present in the cell milieu, on the vana-
dium (V) species present in solution, we studied the effect of the addition of sodium ascor-
bate, and we verified that the latter is reduced to the original [VOL2] complex (Figure 2).
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Figure 1. EPR spectra of VO(dmpp)2 in buffer (MOPS) (upper panel, left) and in liposome suspen-
sion (POPC) (upper panel, right) at 0 h (a); 1 h (b); 2 h (c) 3 h (d); 51V NMR spectra of VO(dmpp)2 in 
MOPS (lower panel, left) and POPC (lower panel, right) at 0 h, 1 h, 2 h and 3 h. Adapted and 
reproduced from [21]. 

 
Figure 2. 51V NMR for the complex VO(dmpp)2 in buffer at 0 h and 3 h and after the addition of 
sodium ascorbate (4 h) (left). EPR spectra of the complex in buffer (right) after the addition of so-
dium ascorbate (4 h). Adapted and reproduced from [21]. 

Figure 1. EPR spectra of VO(dmpp)2 in buffer (MOPS) (upper panel, left) and in liposome suspension
(POPC) (upper panel, right) at 0 h (a); 1 h (b); 2 h (c) 3 h (d); 51V NMR spectra of VO(dmpp)2 in
MOPS (lower panel, left) and POPC (lower panel, right) at 0 h, 1 h, 2 h and 3 h. Adapted and
reproduced from [21].
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Figure 3. Representative formulae of the most relevant vanadium compounds tested in animal and
human studies.

3. Antidiabetic Properties of Vanadium

Diabetes mellitus (DM) is classified as a pandemic by the World Health Organization
(WHO), and it stands as a major risk factor contributing to the rising mortality rates from
non-communicable diseases [22]. The hallmark of diabetes is hyperglycemia, a condition
characterized by elevated blood sugar levels. The two main types of this disease arise
from either lack or decreased insulin production, known as type 1 diabetes (T1D), or
increased resistance to this hormone action, designated as type 2 diabetes [23]. In T1D,
the insufficient production of insulin mostly results from β-cell death. Conversely, type
2 diabetes (T2D) arises from increased tissue resistance to insulin action. A significant
number of patients ultimately require insulin therapy for the effective management of
their condition. However, the increased resistance to insulin therapy among patients is a
pressing issue for clinicians.
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Until recently, insulin was the only pharmacotherapeutic option for the treatment of
T1D, and a variety of insulin formulations (basal and prandial) and modes of administra-
tion (syringe, pen, prefilled pen, and pump) are available [24]. Alternative or adjuvant
therapies include Pramlintide, an injectable amylin analog, and Teplizumab, a monoclonal
antibody that specifically targets immune cells involved in the destruction of β-cells [25,26].
Therapies for T2D patients include several oral agents, with alpha-glucosidase inhibitors,
metformin, dopamine-2 agonists, DPP-4 inhibitors, GLP-1 receptor agonists, meglitinides,
Sodium-glucose transporter (SGLT) 2 inhibitors, sulfonylureas, and thiazolidinediones
being the primary medications used to control diabetes [27–29].

The achievement of glycemic control through these treatments has been proven to
reduce the complications associated with both types of diabetes. However, the physiology
of glucose homeostasis is complex, and the use of insulin and oral agents corrects only part
of the underlying pathophysiology of diabetes.

In this context, vanadium has garnered attention as a potential adjuvant therapy
for diabetes due to its lack of deleterious effects on normal metabolism. vanadium is
ubiquitous and naturally occurring in our organism [10]. It can be absorbed from dietary
intake, drinking water, and even inhaled air through the lungs. Once absorbed, vanadium
accumulates in most human organs, with approximately 50% being stored in the bones,
while substantial reserves can also be found in the liver and spleen [10]. The clearance
and residence times of vanadium vary significantly between organs, contributing to its
distribution throughout the body, but most of the absorbed vanadium is excreted through
the urine or feces, and at homeostatic levels, no toxicity has been reported [1,5].

The effects of vanadium on human metabolism have been recognized almost since
its discovery. vanadium was observed to impact cholesterol production, leading to a
reduction in blood plasma levels [30,31]. Further, it was described that it affects energy
metabolism by inhibiting liver ATP production. A significant breakthrough occurred
when vanadium was found to act as an inhibitor of membrane-bound Na+-K+ ATPase
activity [32], prompting new research in the field. In 1979, Tollman demonstrated in a
series of in vitro systems that vanadium affects glucose metabolism [33]. This was swiftly
followed by Dubyak and Kleinzeller’s work showing stimulation of glucose oxidation
by vanadyl and vanadate in rat adipocytes [34]. Finally, the seminal work by Heyliger
and co-workers showed that sodium vanadate was effective at controlling hyperglycemia
in vivo, using the streptozotocin (STZ)-induced diabetes rat model [35].

The described results led to a significant interest in the insulin-mimetic or insulin-like
activity of vanadium. Several studies, reviewed below, were carried out initially with
vanadium salts and ultimately with vanadium chelates. Vanadium administration was
found to alleviate several diabetes-related metabolic changes while offering two advantages
over insulin: it is orally active and seems to avoid the risk of hypoglycemia. Nevertheless,
vanadium does not fully substitute insulin in any in vivo model of diabetes, and it is better
described as having an insulin-enhancing effect.

When considering vanadium compounds as therapeutic agents, it must be highlighted
that vanadium is known to be toxic [10,36]. V2O5 is a well-recognized environmental and
occupational hazard, being a common source of pulmonary intoxication and ultimately
pulmonary fibrosis [5]. Because vanadium accumulates in several organs and promotes
oxidative stress, it has been described to have hepatotoxic, nephrotoxic, cardiotoxic, and
neurotoxic actions [10]. Although disputed, vanadium is also considered a category 2
carcinogen, with long-term exposure increasing the cellular rate of mutagenesis [37]. How-
ever, toxic effects are highly dependent on the vanadium species being presented, as
different vanadium compounds will result in different organ accumulation and residence
time [1,10]. Additionally, the probability of reaching effective toxic levels through normal
dietary intake is very low. Intoxication is only likely to occur from exposure to highly
enriched environments, such as those that may be encountered in the metallurgy and petrol
industries [2].
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4. Vanadium Speciation in Biological Media

Upon absorption in the intestine or lungs, vanadium enters the bloodstream, where its
oxidation state may be altered depending on the administered species, oxygen tension, or
presence of biological reductants, such as NADH and glutathione, causing interconversion
between V(V) or V(IV) forms. Within the blood plasma, vanadium predominantly binds to
Serum transferrin (Tf), the systemic iron transporter [14,38–40]. Additionally, binding to
Human Serum Albumin (HSA) and Immunoglobulins has been observed [41–44]. Vana-
dium ions may bind to HSA at the recognized metal ion binding sites or the reduced
cysteine residue, while vanadium complexes can interact with HSA non-specifically or at
the known drug binding sites [45,46]. Notably, the binding of vanadium to HSA has been
reported to enhance the activity of vanadium compounds.

Mechanisms governing the cellular uptake of vanadium exhibit significant variability
depending on its speciation within the extracellular environment. Most vanadium is
believed to enter cells bound to Tf when vanadium-containing Tf is recognized by the Tf
receptor [38]. Vanadium bound to HSA can also be taken up by cells via HSA cell surface
receptors [47]. Additionally, vanadium in the blood plasma can be associated with low
molecular weight compounds like phosphate, citrate, or lactate [48,49], potentially allowing
entry into cells through interactions with their corresponding transporters [1]. Negatively
charged vanadium oxides, including HVO4

2−, might access cells through anion channels
such as those used for phosphate and sulfate [50]. Moreover, certain vanadium compounds,
like those linked to hydroxypyridinones, could enter cells by passive diffusion through the
cell membrane [21,51].

Once inside cells, V(V) is often believed to undergo reduction, primarily by NADH
or glutathione, leading to its presence mainly in the V(IV) state as the vanadyl cation.
Intracellularly, most vanadium is incorporated into ferritin, the protein responsible for
iron storage [40,41]. In addition, a labile and readily exchangeable fraction of intracellular
vanadium is associated with phosphate and low molecular weight organic acids [41].
Furthermore, vanadium can interact with phosphate-rich molecules, including ATP and
DNA [5,9]. Interestingly, when incorporated into red blood cells, vanadium extensively
binds to hemoglobin [41,52].

5. Antidiabetic Effects of Vanadium
5.1. Vanadium Therapy: Studies in Animal Models

The use of vanadium in diabetes treatment has been of scientific interest since 1985
when Heyliger et al. [35] published their first study. In this research, the authors investigated
the effects of sodium orthovanadate on STZ-induced diabetic rats. They demonstrated that
vanadate administered in drinking water controlled the high blood glucose and prevented
the decline in cardiac performance due to diabetes. This discovery triggered a great deal
of work demonstrating the beneficial effects of vanadium in the treatment of diabetes and
several studies were carried out using vanadate and vanadyl inorganic salts.

One significant effect of vanadate administration is a sustained decrease in blood
glucose levels. This suggests that vanadate can improve glucose homeostasis in conditions
where there is a lack of insulin production. Additionally, vanadate has been shown to
substantially improve glucose homeostasis in hyperinsulinemia insulin-resistant animals,
indicating that vanadate may be effective in improving insulin sensitivity and addressing
insulin resistance, a common characteristic of T2D [35,53–55].

On the other hand, it has been demonstrated that vanadyl compounds can enhance the
effectiveness of administered insulin. Since vanadyl sulfate was reported to be 6–10 times
less toxic than vanadate, this vanadium form was extensively investigated for its insulin-
like effects. Vanadyl derivatives have shown partial correction of pancreas alterations,
suggesting a potential beneficial effect on the insulin-producing cells in the pancreas[56–59].

In vivo, at low doses, vanadate and vanadyl have been shown to repeatedly counteract
both the hyperglycemia and hyperlipidemia of diabetes, T1D and T2D diabetic animal
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models. Finally, the long-term effects of vanadyl treatment on glucose homeostasis have
been observed even after the cessation of treatment, indicating a sustained benefit [60].

While these findings are promising, there are some potential toxic effects associated
with vanadium salts [61–66]. Experiments have been conducted to address the challenges
associated with the continuous administration of vanadium compounds and the subse-
quent accumulation in tissues, which can lead to significant side effects. To mitigate these
issues, researchers have explored the use of vanadium compounds in the form of metal
ion chelates. The administration of vanadium as a coordinated complex should help to
overcome gastrointestinal side effects and enhance vanadium absorption through the gut.
McNeill and co-workers performed animal studies with one of the first organic vanadium
complexes, bis(maltolato)oxovanadium(IV), BMOV ((1), Figure 3) [67–69]. They demon-
strated that this compound effectively produced glucose-lowering effects at a significantly
lower dose than previously used for inorganic vanadium salts, without any apparent
toxicity. The effectiveness of bis(ethylmaltolato)oxovanadium(IV), BEOV ((2), Figure 3) and
bis(isopropylmaltolato)oxovanadium(IV), BIOV ((3), Figure 3) complexes have also been
reported [70,71].

These compounds exhibit potential as hypoglycemic agents, indicating their capability
to reduce blood glucose levels. Moreover, they have demonstrated enhanced potency and
efficacy when compared to vanadyl sulfate in glucose-lowering ability; however, this effect
was not correlated with blood vanadium levels.

Other strategies to reduce vanadium toxicity included the synthesis of ligands con-
taining a pyrone skeleton as a coordination motif and an antioxidative group derived
from natural antioxidants. The antidiabetic effects of bis((5-hydroxy-4-oxo-4H-pyran-2-
yl)methyl 2-hydroxybenzoatato)oxovanadium (IV) (BSOV) ((4), Figure 3) were evaluated
using STZ-induced diabetic rats. In comparison to BMOV, used as a positive control, BSOV
demonstrated remarkable results. It effectively reduced blood glucose levels, ameliorated
hepatic and renal damage in diabetic rats, and improved lipid metabolism [72].

Oral administration of bis ((5-hydroxy-4-oxo-4H-pyran-2-yl)methyl benzoatato)oxovanadium
(IV) (BBOV) ((5), Figure 3) restored the blood glucose to normal levels and ameliorated
glucose tolerance in 4 weeks treatment on streptozotocin (STZ)-induced diabetic rats [73].

There has been a significant advancement in the potential application of vanadium
compounds with pharmacological properties through the development of new vana-
dium(V) and (IV) complexes with various organic ligands. The primary objective was
to improve the absorption, tissue uptake, and intracellular behavior of vanadium com-
pounds, ultimately leading to a reduction in the required dosage for achieving optimal
effects. Numerous ligands have been synthesized for coordinating with vanadyl due to
its lower toxicity compared to vanadate. Additionally, vanadyl has a higher affinity for
blood and cell membrane transporters, along with lower residence time in the body and
increased renal clearance. Furthermore, it forms more stable bonds with organic ligands
and consistently demonstrates antidiabetic effects [5].

Bis(allixinato) oxovanadium(IV) ((6), Figure 3) is another complex with VO(O4) coor-
dination mode, which is a potent agent that has been shown to improve hyperglycemia not
only in STZ mice but also in obesity-linked KKAytype-2 diabetic mice model. This complex
incorporates allixin, a garlic component known for its remarkable in vitro insulin-mimetic
activity, demonstrated by its ability to inhibit free fatty acid (FFA) release and enhance
glucose uptake in isolated rat adipocytes. These authors believe that the lipophilicity of
this vanadyl complex plays a crucial role in its insulin-mimetic properties [74,75].

Other interesting candidate complexes of vanadyl, with ligands such as hydroxypyridi-
none derivatives ((7), (8), and (9)), Figure 3), have been prepared and insulin-mimetic
activities have been demonstrated. In vitro studies, using FFA release from isolated rat
adipocytes show that all these complexes have an inhibitory effect on FFA release and
that complex ((7), Figure 3) has significantly better insulin-mimetic activity than vanadyl
sulfate [20,76].



Int. J. Mol. Sci. 2023, 24, 15675 9 of 22

In a study conducted on 7-week-old Zucker lean and Zucker fatty rats, promising
findings were observed concerning the effects of VO(dmpp)2 ((8), Figure 3). The results
demonstrated that VO(dmpp)2 shows potential in restoring normal glucose and lipid
metabolism in Zucker fatty rats. These findings suggest that VO(dmpp)2 could be a
potential therapeutic agent to address metabolic imbalances associated with Zucker fatty
rats [77]. Remarkably, this restoration led to a reversal of several pathological pre-diabetic
indicators in these rats. Specifically, the treatment with VO(dmpp)2 resulted in a significant
reduction in body weight gain, subcutaneous fat thickness, high triglyceride (HTG) content,
and insulin resistance. These results highlight the therapeutic potential of VO(dmpp)2 in
addressing the metabolic disturbances associated with pre-diabetic conditions in this animal
model. VO(dmpp)2 treatment in the T2D GK rats significantly decreases hyperglycemia and
improves glucose intolerance acting on key proteins of the insulin pathway, thus confirming
the anti-diabetic properties of this vanadium compound which may be a promising therapy
for diabetes [78].

Some findings have emerged from research on bidentate ligand complexes of acetylacet-
onate, particularly VO(acac)2, ((10), Figure 3), and its 3-alkyl-acetylacetonate analogs [79,80].

VO(acac)2, when administered orally or injected, showed a sustained reduction in
glycemic levels lasting up to 5 days in STZ-diabetic rats. This compound’s prolonged effect
is ascribed to its stability and ability to interact with serum albumin, which significantly
extends its presence in the bloodstream. The enhanced blood residence time of VO(acac)2
contributes to its long-lasting therapeutic impact, making it a promising candidate for
managing diabetic conditions [81].

Vanadium dipicolinate complexes ((11), Figure 3) have been the subject of significant re-
search work (reviewed in [82]). The advantage of these complexes, like hydroxypyridinones,
lies in their various analogs, which offer an excellent opportunity to explore the structure-
activity relationship concerning their anti-diabetic properties. Among these analogs, bis(6-
methylpicolinato)oxovanadium(IV), ((12), Figure 3) and bis(5-iodopicolinato)oxovanadium(IV)
((13), Figure 3) have demonstrated enhanced in vitro insulin-mimetic activity and greater
efficacy in reducing blood glucose levels in STZ-induced diabetic rats [83].

Bis(pyrrolidine-N-carbodithioato)oxovanadium(IV) [VO(pyd)2] complex, ((14), Figure 3)
was found to be the most effective among the prepared complexes with the VO(S4) co-
ordination mode, being dose-dependent in the in vitro model and also in treating type 1
STZ-rats by both daily intraperitoneal injections (i. p.) and oral administration [84–86].

Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) VO(opt)2 complex, ((15), Figure 3)
with the VO(S2O2) coordination mode exhibited strong insulin-mimetic activity in a dose-
dependent manner in an in vitro system and normalized the blood glucose levels in STZ-
rats when given daily injections or oral administrations [87,88].

Moreover, the VO(opt)2 complex was tested in ob/ob mice, an animal model for obese
T2D. During a 15-day oral treatment with the complex, there was a clear dose-dependent
reduction in glucose, insulin, and triglyceride levels in the bloodstream of these mice [89].

The interest in this type of complexes has increased, as shown by the growing number
of publications since 2009 [90], and several complexes of vanadium with potential for the
treatment of DM have been developed and tested in animal models showing similar effects,
but less toxic features or non-observable adverse effects. Vanadium(IV)-diamine complex,
shows hypoglycemic activity and a reduction in testicular atrophy [91]; [Bis(2,2,6,6-tetra
methyl-3,5-heptanedione)(imidazol)oxovanadium(IV)], VO(BHED) ((16), Figure 3) reduces
serum glucose levels in animals and behave as inhibitors to suppress the overexpression of
PTP-1B enzyme. [Bis(2,2,6,6-tetra methyl-3,5-heptanedione)(imidazol)oxovanadium(IV)],
4-imi, ((17), Figure 3) reduces serum glucose levels in animals and behave as inhibitors
to suppress the overexpression of PTP-1B enzyme [92]. The compound N,N’-1,3-propyl-
bis(salicyladimine)]oxovanadium (IV), (BPOV) ((18), Figure 3) has demonstrated promising
insulin-enhancing and antidiabetic properties [93].

Vanadium(IV) complexes of Schiff bases, derived from acetohydrazide, ((19), Figure 3),
(HL1-3) or 4-aminoantipyrine (HL4-7), ((20) and (21), Figure 3), have been prepared and
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in vivo effects of vanadium complexes were studied using STZ-induced diabetes model
in rats. Results revealed that the oral management of vanadium complexes significantly
reduced the blood glucose level in rats suffering from diabetes [94].

Oxidation states V(III) and V(V) have also been explored for the insulin-mimetic prop-
erties of their complexes. An interesting study was conducted to investigate if the chemical
valence and anti-oxidation effects of vanadium compounds are involved in the antidiabetic
effects observed in STZ-induced diabetic rats treated with different vanadium compounds.
Oral administration of various organic V(III, IV, V) compounds with dipicolinate (dipic),
and (dipic-Cl), ((22), (23), (24), Figure 3) showed that the V(V) compound appears to be
more effective than V(III) and V(IV) oxidation states, at lowering high blood glucose in STZ-
induced diabetic rats, in contrast to previous studies in which the V(IV)−maltol complex,
(BMOV) was the most effective [95,96].

A series of oxovanadium complexes prepared with triazole derivatives with hydroxy-
benzyl moieties has also shown promising insulin-like activity, reducing glycemic levels and
controlling cholesterol and triglycerides in the BALB/c mice model of type 2 diabetes [97].

5.2. Vanadium Therapy: Studies in Humans

Human clinical studies with vanadium compounds for the management of diabetes
started in the 1990s, following the promising results obtained with rodent diabetes models.

Clinical trials in humans are usually classified as Phase 1, 2, or 3. In the first type,
the new drugs are administered in healthy humans to evaluate the eventual toxic effects.
According to the toxicity, then the investigation can move on to Phase 2 clinical trials aiming
to determine the effective dosage. In the following step, the treatment is administered to
patients suffering from a specific medical condition. In the end, results are shared with the
competent agencies, for approval for commercialization to humans [98].

Despite these classifications, the existent studies considering the use of vanadium to
treat diabetes do not always satisfy the common requirements. Smith et al. [99] published a
review paper summarizing the evaluation of the antidiabetic activity of vanadium in T2D
patients in which it has been demonstrated that the relevance of the obtained results is
ambiguous due to the study design. The original criteria for the review considered studies
as valid when including placebo-controlled trials, an oral dose of vanadyl sulfate between
30–150 mg daily, at least two months of treatment, and with a minimum of 10 diabetic
patients. Amongst the various listed investigations, only 5 works were considered valid by
the authors’ criteria [58,100–103]. In general, these studies presented a small sample size
and short treatment durations, and, therefore, vanadium cannot be easily recommended as
antidiabetic therapy based on these studies. Nowadays, FDA (Food and Drug Administra-
tion) agency guidelines require a randomized, placebo-controlled trial with the treatment
of oral vanadium compounds, considering at least 2 months and 10 diabetic patients per
study [98].

Nevertheless, the first report on the use of vanadium salts for the treatment of diabetes
dates from 1899 [104]. During some months, the authors first tried the administration of
sodium metavanadate on themselves and after this on a group of 60 patients, including
3 diabetics. This study was considered as a “Phase 0” clinical trial due to its preliminary
nature and results suggested some lowering on glucose levels without adverse effects.

Of the most systematic experiments, the study developed by Cohen and colleagues
in 1995 was the [100] first clinical trial using simple inorganic vanadium compounds to
treat diabetic individuals, in this case, vanadyl sulfate. The drug was orally administered
(50–125 mg/day), for 2 to 4 weeks. Results have shown improved plasma glucose levels
and daily insulin requirements. In T2D subjects, it was verified an increase in insulin
sensitivity, and a reduction in plasma glucose levels and glycosylated hemoglobin (HbA1c).
The main side effects were gastrointestinal intolerance, mainly nausea and mild diarrhea,
in some of the patients. These studies were sustained for up to 2 weeks after the end of
administration of the compound.
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In the same year, Goldfine and co-workers also published a study in which a differ-
ent inorganic vanadium compound, sodium metavanadate was orally given to insulin-
dependent diabetes mellitus (IDDM) patients and non-insulin-dependent diabetes mellitus
(NIDDM) in a dosage of 125 mg/day for 2 weeks. It was found that the vanadium adminis-
tration conducted a decrease in cholesterol levels in both groups as well as an improvement
in insulin sensitivity in NIDDM patients [105]. However, some patients experienced mild
gastrointestinal symptoms as those described in the study performed by Cohen.

In 1996, a study performed by Halberstam et al. [102] at the Albert Einstein College of
Medicine, inspected the effects of oral vanadyl sulfate (100 mg/day) in NIDDM patients
and non-diabetic subjects, considering the administration of 2 weeks of placebo and 3 weeks
of the vanadium compound. The plasma glucose remained unchanged in non-diabetic
patients, and fasting plasma glucose and HbAlc decreased in NIDDM patients. Only minor
gastrointestinal discomfort and stool discoloration have been reported as side effects.

In the same year, Boden and colleagues [101] designed an investigation comprising the
oral administration of 50 mg of vanadyl sulfate twice daily for 4 weeks in NIDDM patients,
followed by more than 4 weeks in which patients were treated with a placebo. The results
evidenced the decreased fasting plasma glucose levels during vanadyl administration, as
well as during the administration of a placebo. Similarly, some side effects such as diarrhea,
flatulence, slight nausea, and abdominal cramps were observed.

Later in 2001, Cusi and colleagues studied the effect of vanadyl sulfate (150 mg/day)
in T2D over a period of 6 weeks and the authors verified a significantly improved glycemic
control, indicated by a decrease in fasting plasma glucose and HbAlc levels. The treatment
was well tolerated, with minor side effects, mainly related to the gastrointestinal tract as
found in the previous clinical trials [58].

In between, some other relevant studies have been reported such as the one performed
by the Goldfine/Kahn team in 2000 [103]. Herein, vanadyl sulfate was orally administered
for 6 weeks in T2D patients and investigations found a decrease in the fasting blood glucose
as well as in HbA1c. Moreover, the treatment significantly increased some insulin-mediated
activation of insulin receptors, like IRS-1 protein kinase and PI3K, without increasing insulin
secretion. Once again, some gastrointestinal intolerance has been verified. The authors
concluded that the treatment was apparently well tolerated but they also stated that the
long-term safety of administration of this compound has not been assessed.

Another study [106] has shown that a randomized placebo-controlled clinical trial
involving a total of forty subjects in which sodium monovanadate (100 mg/day) was
administered to T2D patients over 6 weeks conducted to a reduction in fasting blood
glucose, HbA1C, total cholesterol, and low-density lipoproteins.

Later, Jacques-Camarena and co-workers [107] investigated the effect on insulin
sensitivity and results showed that the administration of vanadyl sulfate for 4 weeks
(50 mg twice/day) did not modify insulin sensitivity, but increased triglyceride concentra-
tions in obese T2D patients with impaired glucose tolerance compared with the placebo
group. The undesired effects reported were nausea, abdominal pain, and diarrhea, but
with low relevance since it was verified for only one patient with a previous history of
intestinal disorders. In addition to the inorganic salts of vanadium tested, organic forms
comprising chelating units have also been investigated in human subjects. Of this, and
as previously described for studies using rodents, the most representative family is hy-
droxypyridinone ligands, particularly, 3- hydroxy-4-pyridinones. In comparison with
animal tests, the doses are lower, and thus slightly antidiabetic activity was observed
(reviewed in [5]).

BEOV ((2), Figure 3) was the vanadium complex selected for the first clinical trials,
which completed Phase I and then advanced to Phase II studies. This compound is
structurally related to BMOV ((1), Figure 3) which was first reported by McNeill and Orvig
and tested in animals as described above [67]. BEOV is the ethylmaltol analog of BMOV
and was selected based on its better performance in the structure-activity relationship
investigations carried out with a set of other maltol-derived vanadium complexes [108].
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In the first set of experiments, the complex was tested in single doses (10–90 mg) orally
given to 40 non-diabetic subjects, and no side effects were described. Vanadyl sulfate has
been tested as a control and studies revealed that the bioavailability of vanadium from
BEOV was three times higher than from the inorganic salt tested. No adverse health effects
were observed, and blood parameters also remained within normal values throughout the
study. Then, in Phase II trials, the safety and efficacy of 20 mg/day were evaluated for
28 days in T2D individuals, followed by 14 days without therapy. Results have shown a
decrease in fasting blood glucose when compared to placebo subjects [108,109].

However, the clinical studies conducted by Akesis Pharmaceuticals Inc., finished
in 2009. The company announced that upon three months of preclinical safety studies,
some renal problems have been described thus compromising the use of the complex for
antidiabetic purposes (reviewed in [90,110]).

A few years later, another study assessed the long-term efficacy and safety of oral
vanadyl sulfate in T1D patients. Firstly 80–120 mg/day was given for 2–5 weeks and then
a higher dose (225–300 mg/day) was administered for 30 months. Results have shown that
the fasting blood glucose and insulin requirement of the patients was significantly reduced,
without major side effects, except for some mild diarrhea episodes at the beginning of
treatment. The study pointed out the effectiveness and long-term safety of vanadium
administration in T1D patients [111].

In the same year, Willsky et al. [112] continued the investigations to obtain insight into
vanadium pharmacokinetics and biodistribution. Vanadyl sulfate (25–100 mg/day) was
orally administered for 6 weeks to T2D patients and elemental V was then determined in
serum, blood, and urine. Authors concluded that vanadium pools other than total serum
vanadium were probably related to its insulin-like activity thus pointing out the need
for further investigations on the coordination chemistry of metabolites and interaction of
proteins with vanadium chelates.

Very recently, a randomized, double-blind, placebo-controlled clinical trial was re-
ported in which the IRS-1 regulation and the clinical responses upon the administration of
vanadium-enriched yeast supplementation in 44 obese T2D patients were investigated for
12 weeks [113]. The supplementation contained vanadium pentoxide (0.9 mg/day) and the
results demonstrated that their fasting blood glucose and HbA1c decreased, while their
insulin sensitivity increased.

Overall, although the effects of vanadium, both considering inorganic salts or ligand-
based coordination complexes, are well supported, there are relatively few studies on
human patients with positive results, and they are generally short-lived. (Table 1). There-
fore, vanadium administration for the treatment of human diabetes remains relatively
limited, and major improvements and novel strategies must be taken into consideration
to reach the desired long-term antidiabetic activity without compromising the safety of
the treatment.

An overview of the most relevant studies on humans regarding the use of vanadium
compounds to treat diabetes is depicted in Figure 4. The timeline shows that despite
the great findings reported, in almost 125 years it was not possible to find a lead com-
pound with applicability in clinics. This fact is critical in a drug discovery pipeline and
points out the challenges that these types of compounds offer when considered in an
industrial-scale study.

Table 1. Summary of the experimental details and main results obtained in the most relevant clinical
trials regarding vanadium antidiabetic activity.

Oral Treatment Experimental Design Main Results Reference

Vanadyl sulfate
100 mg/day (50 mg twice daily)
3 weeks active
2 weeks follow-up

Single-blind, placebo-controlled
6 T2D patients

No diabetic subjects

Reduction in plasma glucose
and HbA1c

Reduction of FFA
Gastrointestinal intolerance

[92]
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Table 1. Cont.

Oral Treatment Experimental Design Main Results Reference

Sodium metavanadate
125 mg/day
(50 + 50 + 25 mg/daily)
2 weeks active
2 weeks follow-up

Non-randomized,
non-placebo-controlled

5 T1D patients
5 T2D patients

No diabetic subjects

No changes in insulin sensitivity in
T1D patients

No changes in plasma glucose and
HbA1c in both diabetic types

Decrease of total cholesterol in both
diabetic types

Mild gastrointestinal side effects in
both diabetic types

[97]

Vanadyl sulfate
100 mg/day (50 mg twice daily)
4 weeks active
4 weeks follow-up

Single-blind, placebo-controlled
8 T2D patients

No diabetic subjects

Reduction in plasma glucose
No information about HbA1c
Gastrointestinal side-effects

[93]

Vanadyl sulfate
100 mg/day (50 mg twice daily)
3 weeks active
No follow-up

Single-blind, placebo-controlled
7 T2D patients

6 non-diabetic subjects

Reduction in plasma glucose and
HbA1c

Decrease of total cholesterol
Reduction of FFA

Minor gastrointestinal side-effects
Stool discoloration

[94]

Vanadyl sulfate
75, 150, and 300 mg/day (25, 50,
and 100 mg/3 times daily)
6 weeks active
2 weeks follow-up

Single-blind, placebo-controlled
16 T2D patients

No diabetic subjects

Reduction in plasma glucose and
HbA1c

Some gastrointestinal intolerance
[95]

Vanadyl sulfate
150 mg/day (50 mg 3×/daily)
6 weeks active
6 weeks follow-up

Single-blind,
non-placebo-controlled

11 T2D patients
5 non-diabetic subjects

Reduction in plasma glucose and
HbA1c

Minor gastrointestinal side-effects
[51]

BEOV
Phase I—10–90 mg/day
2 weeks active
No-follow up
Phase II—20 mg/day
28 days
14 days follow-up

Single-blind, placebo-controlled
40 non-diabetic subjects

Single-blind, placebo-controlled
7 T2D patients

No information about plasma
glucose and HbA1c

No side effects
Reduction in plasma glucose and

HbA1c
Renal side effects

[101]
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6. Insights on Vanadium Mechanism of Action in Glucose Homeostasis

In the last years, different studies have been conducted to obtain insights into the
mechanism of the antidiabetic action of vanadium compounds. Several hypotheses have
been formulated, comprising enzyme (de)activation, redox reactions, and membrane al-
terations (Figure 5). Nevertheless, the most accepted mechanism relates to the inhibition
of tyrosine kinases and phosphatases [114–116], particularly protein tyrosine phosphatase
1B (PTP-1B) in the insulin signaling cascade. But firstly, it is important to understand the
insulin signaling pathway.
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Insulin is one of the most fundamental hormones as it regulates glucose homeostasis.
When blood glucose levels rise after absorption of sugars through the intestinal tract, the
pancreatic β-cells increase insulin secretion [117]. Then, a signaling cascade is initiated
in the insulin receptors (IR) which are present in the membrane of many cells, such as
hepatocytes and adipocytes. Glucose diffuses through the cell by the glucose transporter
4 (GLUT4), and an upregulation of protein synthesis and glycogenesis occurs in striated
muscle cells, as well as of lipogenesis in adipocytes and hepatocytes, while a downregula-
tion of gluconeogenesis is verified in hepatocytes [117,118].

Upon the binding of insulin to the insulin receptor (IR) alpha units, autophosphory-
lation of the beta-units tyrosine residues occurs, which allows the binding of the insulin
receptor substrate (IRS-1) which is phosphorylated and activated.

IRS-1 then binds to the p85 subunit of phosphoinositide 3-kinase (PI3K), activating it
and causing its catalytic p110 subunit to phosphorylate phosphatidylinositol biphosphate
(PIP2) into triphosphate (PIP3). In turn, PIP3 activates phosphatidylinositol-dependent
kinase (PDK1) which then phosphorylates protein kinase B (PKB/Akt), among others (re-
viewed in [119]). PKB is then central for the translocation of GLUT4 vesicles, the activation
of glycogen synthase (GS), and the activation of ATP citrate lyase (fatty acid synthesis). It
also activates mTORC1, promoting protein synthesis and cell growth and proliferation, and
activates SIK2, inhibiting gluconeogenesis. Afterward, IR is dephosphorylated by PTP-1B
at the beta subunits of tyrosine residues and this event blocks IRS-1 binding and interrupts
the signaling cascade. When insulin concentration is low, the auto-phosphorylation rate of
IR drops, while PTP-1B activity is not directly affected by insulin. IR signaling is, in this
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way, dynamically regulated (reviewed in [118]). The activity of PTP-1B is one of the main
negative regulators of IR signaling, decreasing its phosphorylation, and the over-expression
of PTP-1B has been related to the development of insulin resistance. Therefore, the use of
PTP-1B inhibitors holds the potential to improve the sensitivity of the insulin receptor and
ameliorate insulin resistance [120].

Many investigations regarding vanadium antidiabetic activity support the hypothesis
that the already mentioned inhibition of protein tyrosine phosphatases by vanadium com-
pounds is due to the vanadate-phosphate analogy. The structural similarity of vanadate to
phosphate [121] allows its binding to tyrosine residues of PTP-1B; however, this binding is
more stable than normal phosphorylation, irreversibly deactivating PTP-1B. Since vana-
dium suppresses the dephosphorylation of tyrosine residues of the β-subunit of insulin
receptors [122], the IR, therefore, stays phosphorylated even when insulin levels decrease,
and the signaling cascade is maintained, increasing sensitivity to insulin.

For this reason, some authors argue that vanadium is not so much an insulin-mimetic,
but more a signal modulator or insulin enhancer, for without the simultaneous activation
of the IR by insulin the signal transduction would be insufficient.

The inhibition of PTP-1B by vanadium results also in the phosphorylation of IRS-1,
leading to the activation of PI3K [90,123], which in turn increases the number of GLUT4
transporters and thus their translocation [124]. This pathway was confirmed for example
for BMOV [125] and VO(dmpp)2 [78] in which VO complexes inhibit PTP-1B and activate
phosphatidylinositol3-kinase/Akt signaling by stimulating tyrosine phosphorylation of IR
and IRS-1 (reviewed in [5,119]).

Srivastava et al. [126] reviewed the mode of action of BMOV and emphasized the
participation of this complex in the induction of phosphorylation of PKB, glycogen synthase
kinase-3 (GSK-3), and forkhead box protein 1 (FOXO1) thus contributing to the glucoregula-
tory responses. Due to the activation of the PI3K pathway, the PKB is phosphorylated, and
downstream targets are ultimately activated leading to the regulation of glucose transport
gluconeogenesis, and glycogen synthesis.

Of note, in the past some studies mentioned that the antidiabetic effects of vanadate
are independent of the IR and IRS-1 phosphorylation [127] but later, further investigations
demonstrated that vanadium compounds trigger insulin signaling, involving amongst
others, the activation of IRS-1 [128].

Another study suggests that vanadium can also inhibit PTP-1B, thus increasing the
activity of insulin-like growth factors, and therefore stimulating the production of GLUT4
transporters [129], increasing the biosynthesis of glycogen [130], and decreasing gluconeo-
genesis, through the blocking of phosphoenol pyruvate carboxykinase (PEPCK) [131] and
G6P [132], and inhibition of lipolytic pathways [133].

Recently, a clinical trial in obese T2D patients has shown that vanadium pentoxide
allowed the regulation of different insulin signaling cascade players, particularly PTP-
1B, mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF

1 
 

Ƙ B) gene
expression levels [113].

It is reported that vanadium can activate PKB (reviewed in [90]) but in opposition,
it was also reported that vanadium can inhibit different enzymes, such as phosphodi-
esterases [134,135] and phosphoglucomutase [116,136]. As an example, it was found that
vanadium impacts insulin resistance and improves glucose uptake by altering the nitric
oxide (NO)/cGMP/protein kinase (PKG) signaling pathway through the inhibition of
phosphodiesterases [134].

Vanadium has also been shown to deactivate various other phosphatases by coordina-
tion with their active centers, as for SHP-1, SHP-2, and the PTP associated with insulin-like
growth factor receptor (IGF-IR), which may potentiate its antidiabetic effect but also causes
concerns regarding its specificity of action [6]. Also, it has been described that vanadium
can activate glucose-6-phosphate dehydrogenase in mammalian cells as well as vanadate
compounds activate the tyrosine kinases p56Ick and p59fyn [137,138].
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Another proposed mechanism for the antidiabetic action of vanadium is based on the
eventual ROS and RNS (reactive oxygen and nitrogen species, respectively) produced in V
metabolism [139–141]. The free radicals produced can also inhibit PTP-1B by oxidatively
targeting the Cys residue present in this protein (reviewed in [142]). Crans and colleagues
pointed out the relevance of coordination chemistry and redox chemistry, particularly the
vanadium oxidation state (3, 4, or 5) in different vanadium complexes on their antidiabetic
activity [82]. It has also been reported that some vanadium forms can bind to the oxygen
atoms of the Tyr side groups thus leading to redox reactions, therefore probably modify-
ing some proteins in the insulin signaling cascade, namely PTP-1B through these redox
processes [143].

In addition, Crans and colleagues found that the interaction of vanadium with cell
membranes results in the stabilization of vanadium complexes and conduces to alterations
in membrane proteins that may be relevant for the anti-diabetic effect, impacting the uptake
and action of the vanadium compounds [51,144]. Particularly, the authors have shown that
BMOV decreases lipid order while increasing the association of IR in specialized nanoscale
membrane microdomains. It was suggested that the observed antidiabetic effect may be
mainly caused by these modifications in the lipid order of the cell surface rather than due
to the direct interaction of vanadium with the IR [145].

Overall, these findings pointed out that vanadium can participate in numerous biolog-
ical processes, particularly by interacting with several membrane and cytosolic proteins,
which may be relevant for its both beneficial and potential adverse effects [6]. The most
relevant mechanisms of action attributed to vanadium antidiabetic activity are summarized
in Figure 5.

Since it is well documented the activity of vanadium on PTP-1B inhibition, this inter-
action may be considered a promising target for antidiabetic drug discovery. Moreover,
it is described that PTP-1B is overexpressed in diabetic and obese patients, suggesting
the interesting use of inhibitors in the treatment of diabetes and obesity. Despite the well-
demonstrated effect of many PTP-1B inhibitors, particularly for vanadium, there is no
clinically used drug for this purpose, which represents a great opportunity for vanadium
compounds in the treatment of such metabolic diseases [146].

7. Conclusions and Future Perspectives

Clinical trials with vanadium compounds have encountered significant challenges
and limitations. Despite promising results, these trials do not comply with current FDA
regulations. The studies often had outdated designs, and most included a limited number
of subjects or were carried out in a short time. Additionally, the formulation of these
compounds as potential drugs received inadequate attention, leading to concerns about the
low bioavailability presented in those studies.

A consensus among researchers is that increasing the bioavailability of these com-
pounds could significantly strengthen their effectiveness. Reinvestigation of vanadium
compounds would presumably require some improvements in compound design or de-
livery systems to enhance its efficacy. And, with our current knowledge of vanadium
biochemistry, it is most likely that different forms of vanadium and vanadium compound
formulations would be chosen for human studies.

Additionally, vanadium’s known toxicity, especially in certain forms, must be con-
sidered and further research is needed to better understand its safety profile and optimal
therapeutic use. While toxicity from normal dietary intake is minimal, it is regarded as a
hazard in highly enriched environments, such as metallurgy industrial settings.

The mechanism of the antidiabetic action of vanadium compounds is a complex and
multifaceted process involving several pathways in insulin signaling and glucose home-
ostasis regulation, that is not fully understood. One of the most accepted mechanisms
of vanadium’s antidiabetic action centers around the inhibition of protein tyrosine phos-
phatase 1B (PTP-1B), a critical regulator in the insulin signaling cascade. Despite these
promising insights into vanadium’s potential as an antidiabetic agent and its targeting
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of PTP-1B inhibition, there is currently no clinically used drug employing vanadium for
this purpose. Additionally, vanadium’s interaction with cell membranes and membrane
proteins may alter lipid order and affect the organization of insulin receptors in specialized
membrane microdomains, potentially playing a role in its antidiabetic effects.

In conclusion, the search for alternative treatments and therapeutic adjuvants remains
critical to improving the management of diabetes and reducing its impact on global health.
From our perspective, deep insights into the pharmacological effects of vanadium com-
pounds remain incompletely understood. Consequently, we maintain the view that there is
still a substantial amount of research to be carried out in this area. The multifaceted mecha-
nisms of action of vanadium compounds present a rich area of research and development
in the pursuit of effective treatments for diabetes and obesity. More studies and clinical
trials are needed to fully harness the potential of vanadium compounds in treating these
metabolic disorders.
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