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Abstract: Andrographolide, a medicinal compound, exhibits several pharmacological activities,
including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits
Epstein–Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncoge-
nesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying
mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells
is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells
and the molecular modeling and docking simulation of protein. Based on the results, the expression
of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated
EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte
enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated
with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andro-
grapholide treatment also significantly induced the expression of DNA Methyltransferase (DNMT)
1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and
docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In
our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than
EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the
expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater
in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent
activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and
induces cell death, probably via necroptosis.

Keywords: andrographolide; EBV; EBV lytic reactivation; HDAC5; MEF2D; SP1; SP3; cell death;
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1. Introduction

The Epstein–Barr virus (EBV), a member of the gamma-herpesvirus family, is an
enveloped virus containing a linear, double-stranded DNA genome. EBV is ubiquitous, in-
fecting more than 90% of the world’s adult population, with transmission mostly mediated
via the oral route. The primary infection by EBV occurs in the oral cavity. EBV infection
is closely associated with various types of human malignancies, including Burkitt’s lym-
phoma, Hodgkin’s lymphoma, NK/T-cell lymphoma, nasopharyngeal carcinoma (NPC),
EBV-associated gastric carcinoma (EBVaGC), breast carcinoma, and oral squamous cell
carcinoma (OSCC) [1–3].

EBV exhibits two alternative phases in the course of infection: latent and lytic. During
the lytic phase, new virions are produced and released from the host cell to infect new
target cells. EBV lytic reactivation is mediated by both host and virus factors. The molecular
mechanism underlying the regulation of EBV lytic reactivation has yet to be fully elucidated.
Accumulating evidence has demonstrated that the host master transcriptional regulators
of cell differentiation, such as BLIMP1 and KLF4, and transcription factors (TFs), such as
ATF, Sp1/3, MEF2D, XBPs, CREB family members, C/EBP family members, AP1, and
HIF1-α, can activate the Zta promoter (Zp) and Rta promoter (Rp) of EBV by binding to
the responsive elements located on these promoters. On the other hand, host TFs, such as
YY1, ZEB1, and ZEB2, can suppress the activation of Zp and Rp [4–10].

Recent evidence suggests that both latent EBV infection and lytic EBV infection con-
tribute to the genesis of EBV-associated malignancies. BZLF1 is a lytic gene of EBV that
plays a critical role in transcriptional transactivation to regulate the switching of EBV from
latency to lytic replication [7]. The Zta, a product of the BZLF1 gene, contributes to the
oncogenesis of EBV-associated malignancies by inducing genome instability, inflammation,
cell proliferation, and inhibiting cell death through the activation of several signaling
pathways [11–13]. In addition, Rta, a product of the BRLF1 gene, can also promote the
oncogenesis of EBV-associated malignancies by inducing cell migration via the activation
of the IL6/JAK/STAT3 signaling pathway [14]. Moreover, BRLF1 can also activate the
expression of LMP1 during EBV lytic replication in epithelial cells. The expression of
LMP1 enhances the promotor activity of Zp and Rp [15–20]. It is well documented that
LMP1 plays critical roles in EBV-mediated malignant transformation, including resistance
to apoptosis and increased angiogenesis, invasion, and metastasis in EBV-harboring cancer
cells through the activation of oncogenic signaling pathways, such as the NF-κB, PI3-K/Akt
and JAK/STAT pathways [1,21–24].

As mentioned previously, the lytic infection of EBV is not only associated with the
transmission of virus, but it also plays a role in the development of various cancers. There-
fore, the inhibition of lytic reactivation by using natural compounds is valuable for the
prevention and treatment of EBV-associated diseases. Andrographolide is a medicinal
compound that is extracted from the herb Andrographis paniculata (Burm. f.) Nees. This
compound exhibits antiviral activity, including severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) and EBV [25,26]. Andrographolide inhibits EBV replication by
inhibiting the expression of EBV lytic proteins, including Rta, Zta, and EA-D, during lytic
activation in P3HR1 cells and thus inhibits the promoter activities of Zta and Rta [27].
Similarly, our previous study also demonstrated that andrographolide inhibits lytic gene
expression and hinders the production of viral particles [28,29]. However, the underlying
molecular mechanism through which andrographolide performs these functions in each
type of epithelial malignancy is still unknown. Therefore, we aimed to fill this knowledge
gap using EBV-positive head-and-neck cancer (HNC) cell lines. Here, we demonstrate for
the first time that andrographolide exhibits two concurrent activities in such cells. Firstly,
it limits EBV lytic reactivation through the inhibition of the expression of relevant EBV
genes and EBV virion production via the inhibition of TFs, MEF2D, SP1, and SP3, possi-
bly through epigenetic mechanisms. Secondly, andrographolide also induces cell death,
probably via necroptosis in HNC cells.
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2. Results
2.1. Andrographolide Modulates the Pattern of Protein Expression in the EBV-Infected NPC
Cell Line

To identify the proteins that were markedly differentially expressed in the EBV-infected
NPC cell line, HONE1-EBV, we analyzed the proteomic profiles of the treated cells in the
four different treatments. A Venn diagram was constructed, which is shown in Figure 1A.
In total, 1015 proteins were expressed only in the cells treated with andrographolide in
combination with NaB (Figure 1A). In addition, gene ontology (GO) enrichment analysis
was conducted on these 1015 proteins using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) as a tool for annotating gene functions. The 1015 proteins
analyzed in this study were significantly enriched in biological processes, such as cel-
lular processes (85.5%) and macromolecule metabolic processes (56.4%), among others
(Figure 1B). In addition, proteins for binding (76.2%), organic cyclic-compound binding
(35.7%), etc., were significantly enriched in the molecular function category (Figure 1C).
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Figure 1. Andrographolide alters the proteomic profile of an EBV-infected NPC cell line (HONE1-
EBV): (A) Venn diagram for proteins expressed in HNC cells treated with DMSO (control), NaB alone,
andrographolide alone, or a combination of andrographolide and NaB. GO enrichment analysis of
differentially expressed proteins was carried out using DAVID. The ten most significantly (p < 0.05)
enriched GO terms in biological process (B) and molecular function (C) are presented as bubble
diagrams. The Y-axis reveals the top ten functional enrichment results. The X-axis indicates the
percentage of genes involved in each biological process or molecular function. The color represents
the p value: a range from blue to red indicates a low to high p value, respectively. The size of each
bubble indicates the gene numbers involved in each biological process or molecular function. NaB:
sodium butyrate, Androg: andrographolide.
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2.2. Andrographolide Inhibits EBV Lytic Reactivation in HNC Cell Lines

Our previous study demonstrated that andrographolide inhibits EBV lytic reactiva-
tion through the suppression of lytic protein expression and the inhibition of EBV virion
production [28,29]. In this study, we further examined the inhibitory effect of andro-
grapholide on the inhibition of EBV lytic reactivation in HNC cell lines via the treatment
of EBV-positive HNC cell lines (HONE1-EBV, SCC25-EBV, and HSC1-EBV) with NaB
alone, andrographolide alone, or andrographolide combined with NaB. We observed a
significant decrease in the expression of EBV lytic genes in HNC cell lines treated with
andrographolide and the combination of andrographolide and NaB when compared with
NaB treatment (Figure 2A–D).
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Figure 2. Andrographolide inhibits EBV lytic reactivation in HNC cell lines. Cells were treated with
DMSO (control), NaB, andrographolide, or a combination of andrographolide and NaB for 48 h, and
the expression of EBV lytic genes, including BZLF1 (A), BRLF1 (B), and BMRF1 (C), was examined
using qRT-PCR. The expression of EBV lytic and latent proteins was examined via LC-MS/MS (D).
The EBV genome’s copy number was quantified using qPCR (E). NaB: sodium butyrate, Androg:
andrographolide. * p < 0.05, *** p < 0.001.

Additionally, the copy number of the EBV genome was estimated via qPCR. Consis-
tently, the EBV genome’s copy number was significantly lower in EBV-positive HNC cell
lines treated with andrographolide alone and the combination of andrographolide and
NaB than in those treated with NaB only (Figure 2E). Therefore, these results indicate that
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andrographolide inhibits EBV lytic reactivation in HNC cells through the suppression of
EBV lytic protein and virion production.

2.3. Andrographolide Inhibits EBV Lytic Reactivation via the Dysregulation of TFs

Accumulating evidence has demonstrated that the activation of EBV lytic replication
can be initiated or inhibited by TFs, both transcriptional transactivators and transcriptional
repressors. Hence, we hypothesized that andrographolide modulates the expression of
these TFs to regulate EBV lytic reactivation in HNC cells. To test our hypothesis, liquid
chromatography with tandem mass spectrometry (LC-MS/MS) was used to examine the
expression levels of TFs. Interestingly, MEF2D, SP1, and SP3 proteins were significantly
decreased in EBV-positive HNC cells treated with the combination of andrographolide and
NaB when compared with NaB treatment alone (Figure 3A). Consistent with this finding,
the expression of MEF2D, SP1, and SP3 genes was significantly decreased in EBV-positive
HNC cell lines treated with the combination of andrographolide and NaB when compared
with NaB treatment alone (Figure 3B–D). In addition, we also examined the expression
of transcriptional repressors via LC-MS/MS. As shown in Figure 3E, the expression of
transcriptional repressors ZEB1, ZEB2, PIAS1, and SAMHD1 was significantly increased
in EBV-positive HNC cell lines treated with the combination of andrographolide and
NaB when compared with NaB treatment alone. Surprisingly, in cells subjected to the
combination treatment, the expression of key molecules involved in epigenetic mechanisms,
including DNA methyltransferase (DNMT) 1, DNMT3B, histone deacetylase (HDAC) 5,
and HDAC9, was significantly greater (Figure 3E–H). Therefore, these results highlight the
mechanism used by andrographolide to inhibit the lytic reactivation of EBV by modulating
the expression of TFs and epigenetic changes.

2.4. Prediction of the Interaction of Histone Deacetylases (HDACs and TFs) Using Molecular
Modeling and Docking

It is well documented that HDACs regulate gene expression via deacetylation and
that some HDACs can directly interact with target proteins [30,31]. Therefore, we further
examined whether HDAC5 and HDAC9 can directly interact with MEF2D, SP1, and SP3
by using the PSOPIA web tool. The results showed that, based on protein sequences, both
HDAC5 and HDAC9 could directly interact with MEF2D, SP1, and SP3, as evidenced by
the Averaged One-Dependence Estimator (AODE) scores (Table 1). Consistent with this
result, using the Search Tool for the Retrieval of Interacting Genes (STRING) database, we
predicted that proteins related to the regulation of EBV lytic replication are able to interact
with each other, except for SAMHD1 (Figure 4A).

Table 1. Prediction of protein–protein interactions (PPIs).

Protein Protein
AODE Scores

Sseq * Sdom * Snet * All *

HDAC5

MEF2D 0.9962 0.9965 0.8351 0.9991
SP1 0.813 0.5146 0.8351 0.9011
SP3 0.813 0.5146 0.8351 0.9011

SAMHD1 0.3537 0.5146 0.0000 0.3197

HDAC9

MEF2D 0.9962 0.9965 0.8351 0.9991
SP1 0.813 0.5146 0.8351 0.9011
SP3 0.813 0.5146 0.8351 0.9011

SAMHD1 0.3537 0.5146 0.0000 0.3197
* Sseq is a score assigned using sequence similarities to a known interacting protein pair. Sdom is a score assigned
using the statistical propensities of domain–domain interactions. Snet is a score assigned using a sum of edge
weights along the shortest path between homologous proteins in a PPI network. ALL is a score assigned using all
three features: Sseq, Sdom, and Snet.
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Figure 3. Andrographolide inhibits the expression of TFs related to EBV lytic reactivation. Cells
were treated for 48 h with NaB, andrographolide, or a combination of andrographolide and NaB.
The expression of TFs was examined via LC-MS/MS (A). The expression of MEF2D (B), SP1 (C),
and SP3 (D) was determined using qRT-PCR. The expression of repressors was examined via LC-
MS/MS (E), and the expression of DNMT3B (F), HDAC5 (G), and HDAC9 (H) was examined using
qRT-PCR. NaB: sodium butyrate, Androg: andrographolide. * p < 0.05, *** p < 0.001.
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Figure 4. HDAC5 and HDAC9 can directly interact with MEF2D, SP1, and SP3. The PPI was
constructed using the STRING database and Cytoscape software version 3.9.1 (A). The interactions of
HDAC5/MEF2D (B), HDAC5/SP1 (C), HDAC5/SP3 (D), HDAC9/MEF2D (E), HDAC9/SP1 (F), and
HDAC9/SP3 (G) were predicted using ClusPro and visualized with PyMOL and Discovery Studio
2021 software version 21.1.

To confirm whether HDACs can directly bind with TFs, molecular modeling and
docking simulation were performed. As expected, HDACs could bind to TFs via several
electrostatic interactions and hydrogen bonds (Figure 4B–G and Tables S1 and S2). The co-
efficient weights of the lowest energy of the interactions of HDAC5/MEF2D, HDAC5/SP1,
HDAC5/SP3, HDAC9/MEF2D, HDAC9/SP1, and HDAC9/SP3 were −765.9, −1155.5,
−940.7, −815.3, −1019.8, and −1065.3, respectively. These results suggest that HDAC5 and
HDAC9 can directly interact with MEF2D, SP1, and SP3, and thus they can inhibit their
transactivation activity.

2.5. Andrographolide Induces Cytotoxicity and Cell Death of HNC Cells

To determine whether andrographolide is cytotoxic for HNC cells and induces cell
death, the Cell Counting Kit-8 (CCK-8) was used to determine cytotoxicity in both EBV-
positive and EBV-negative HNC cell lines. As shown in Figure 5, andrographolide treatment
significantly reduced the cell viability of EBV-positive cell lines but not EBV-negative cell
lines, when compared with the NaB treatment. This result suggests that andrographolide
is cytotoxic for HNC cells and induces cell death, particularly in EBV-positive HNC cells.



Int. J. Mol. Sci. 2023, 24, 15867 8 of 18

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 17 
 

 

Table 1. Prediction of protein–protein interactions (PPIs). 

Protein Protein 
AODE Scores 

Sseq * Sdom * Snet * All * 

HDAC5 

MEF2D 0.9962 0.9965 0.8351 0.9991 

SP1 0.813 0.5146 0.8351 0.9011 

SP3 0.813 0.5146 0.8351 0.9011 

SAMHD1 0.3537 0.5146 0.0000 0.3197 

HDAC9 

MEF2D 0.9962 0.9965 0.8351 0.9991 

SP1 0.813 0.5146 0.8351 0.9011 

SP3 0.813 0.5146 0.8351 0.9011 

SAMHD1 0.3537 0.5146 0.0000 0.3197 

* Sseq is a score assigned using sequence similarities to a known interacting protein pair. Sdom is a 

score assigned using the statistical propensities of domain–domain interactions. Snet is a score as-

signed using a sum of edge weights along the shortest path between homologous proteins in a PPI 

network. ALL is a score assigned using all three features: Sseq, Sdom, and Snet. 

To confirm whether HDACs can directly bind with TFs, molecular modeling and 

docking simulation were performed. As expected, HDACs could bind to TFs via several 

electrostatic interactions and hydrogen bonds (Figure 4B–G and Tables S1 and S2). The 

coefficient weights of the lowest energy of the interactions of HDAC5/MEF2D, 

HDAC5/SP1, HDAC5/SP3, HDAC9/MEF2D, HDAC9/SP1, and HDAC9/SP3 were −765.9, 

−1155.5, −940.7, −815.3, −1019.8, and −1065.3, respectively. These results suggest that 

HDAC5 and HDAC9 can directly interact with MEF2D, SP1, and SP3, and thus they can 

inhibit their transactivation activity.  

2.5. Andrographolide Induces Cytotoxicity and Cell Death of HNC Cells 

To determine whether andrographolide is cytotoxic for HNC cells and induces cell 

death, the Cell Counting Kit-8 (CCK-8) was used to determine cytotoxicity in both EBV-

positive and EBV-negative HNC cell lines. As shown in Figure 5, andrographolide treat-

ment significantly reduced the cell viability of EBV-positive cell lines but not EBV-nega-

tive cell lines, when compared with the NaB treatment. This result suggests that andro-

grapholide is cytotoxic for HNC cells and induces cell death, particularly in EBV-positive 

HNC cells. 

 

Figure 5. Andrographolide exhibits a strong cytotoxic effect on EBV-positive HNC cell lines. Cells 

were treated with DMSO (1% v/v), NaB (3 mM), andrographolide (HONE1 and HONE1-EBV: 36.3 

μM; SCC25 and SCC25-EBV: 35.0 μM; and HSC1 and HSC1-EBV: 35.0 μM), or the combination of 

andrographolide and NaB for 48 h, and cytotoxicity in HONE1 (A), SCC25 (B), and HSC1 (C) was 

examined using CCK-8. Staurosporine (100 nM) was used as a positive control for cytotoxicity. *** 

p < 0.001. 

To gain more insight into the functional pathway that was influenced by andro-

grapholide treatment, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis to investigate differentially expressed proteins. The result revealed that, in 

Figure 5. Andrographolide exhibits a strong cytotoxic effect on EBV-positive HNC cell lines. Cells
were treated with DMSO (1% v/v), NaB (3 mM), andrographolide (HONE1 and HONE1-EBV:
36.3 µM; SCC25 and SCC25-EBV: 35.0 µM; and HSC1 and HSC1-EBV: 35.0 µM), or the combination
of andrographolide and NaB for 48 h, and cytotoxicity in HONE1 (A), SCC25 (B), and HSC1 (C) was
examined using CCK-8. Staurosporine (100 nM) was used as a positive control for cytotoxicity.
*** p < 0.001.

To gain more insight into the functional pathway that was influenced by andro-
grapholide treatment, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis to investigate differentially expressed proteins. The result revealed that, in addi-
tion to apoptosis, the necroptosis pathway was enriched in andrographolide-treated cells
when compared with NaB-treated cells. Furthermore, we confirmed the proteomic results
via the determination of cell death using flow cytometry. As expected, andrographolide
dramatically induced cell death in HNC cell lines, especially EBV-positive cell lines, via
both necrosis and apoptosis when compared with NaB treatment (Figure 6A,B).

Furthermore, we confirmed the expression of key molecules in the necroptosis path-
way, namely RIPK1, RIPK3, and MLKL, via qRT-PCR. As expected, the expression of
these genes was significantly greater in andrographolide-treated cells (Figure 6C–E). These
results suggest that andrographolide induces cell death in HNC cells, probably via the
necroptosis pathway.

Overall, we demonstrated, for the first time, that the mechanism through which
andrographolide inhibits EBV lytic reactivation in HNC cells is the dysregulation of TFs
through epigenetic mechanisms, namely DNA methylation and histone deacetylation.
HDAC5 and HDAC9 may also directly interact with MEF2D, SP1, and SP3 proteins and
thus inhibit their transactivator activities. At the same time, andrographolide also induces
HNC cell death, probably via the necroptosis pathway (Figure 7).
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Figure 6. Andrographolide induces cell death via the necroptosis pathway. The effect of andro-
grapholide on the induction of cell death in NPC (A) and OSCC (B) cells was assessed via flow
cytometry. The expression levels of key mediators of necroptosis, namely RIPK1 (C), RIPK3 (D),
and MLKL (E), were examined using qRT-PCR. Staurosporine was used as a positive control for cell
apoptosis. *** p < 0.001.
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Figure 7. Possible mechanisms through which andrographolide inhibits EBV lytic reactivation and
induces cell death in HNC cells. Andrographolide treatment induces the expression of the key
mediators of necroptosis, namely RIPK1, RIPK3, and MLKL, resulting in cell death. In addition,
andrographolide also induces the silencing of target genes, in particular TF genes (MEF2, SP1, and
SP3), via the increased expression of DNMT1, DNMT3B, HDAC5, and HDAC9. HDAC5 and HDAC9
may directly interact with MEF2, SP1, and SP3, resulting in the inhibition of the transcriptional
activity of these TFs.

3. Discussion

As stated earlier, EBV infection is closely associated with various types of tumors,
including B-cell tumors and epithelial tumors. EBV has two infection cycles: lytic and latent.
The lytic replication of EBV is associated with viral transmission and plays an important
role in the oncogenesis of EBV-associated malignancies [3,11,32]. Therefore, the inhibition
of EBV lytic replication could be beneficial for the treatment of EBV-associated diseases.

Our study is the first report pointing to the inhibition of EBV lytic reactivation and the
induction of cell death in EBV-positive HNC cell lines via andrographolide treatment. We
demonstrated this using proteomic analysis, PPI network prediction, molecular docking,
and in vitro study. Andrographolide treatment inhibits EBV lytic replication in P3HR1
cells by inhibiting the expression of lytic proteins, Zta, Rta, and EA-D, and suppressing
the promoter activity of Zp and Rp [27]. Consistent with previous reports, we also showed
that andrographolide can inhibit EBV lytic reactivation in EBV-positive HNC cell lines
via the inhibition of EBV gene expression and EBV particle production. Similarly, other
plant-derived compounds, such as glycyrrhizic acid, (-)-epigallocatechin gallate (EGCG),
moronic acid, resveratrol, and protoapigenone, can also inhibit EBV lytic replication via
the inhibition of the expression of EBV lytic genes through the suppression of Zp and
Rp [33–37].
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As mentioned previously, host factors and TFs, among other factors, play an important
role in the regulation of EBV lytic replication. In this study, we also clearly showed that
andrographolide treatment inhibited the expression of the transcription factors, MEF2D,
SP1, and SP3. Dehydroandrographolide, another major compound extracted from A.
paniculata, significantly reduces the expression of TFs, c-Fos, c-Jun, and SP1 in SCC9 cells
(an oral cancer cell line) [38]. In addition, luteolin, a natural compound extracted from
plants, disrupts the binding of SP1 to the Zta and Rta promoters in NA cells during the
induction of EBV lytic reactivation via TPA and NaB treatment, as evidenced by chromatin
immunoprecipitation (CHIP) [39]. Thus, our findings are consistent with these previous
studies in indicating that andrographolide inhibits EBV lytic reactivation by inhibiting the
expression of TFs.

Several host factors are involved in the inhibition of EBV lytic replication. The zinc-
finger E-box binding factors, ZEB1 and ZEB2, maintain EBV latency by binding to the
ZV element on Zp of EBV in EBV-positive B-lymphocyte cell lines [40,41]. In addition,
PIAS1 acts synergistically with SAMHD1 to inhibit EBV lytic replication through protein–
protein interactions and SUMOylation [42,43]. Our proteome analysis also showed that
PIAS1, SAMHD1, ZEB1, and ZEB2, repressors for EBV lytic replication, were significantly
increased in the cells treated with andrographolide and were subsequently induced to
become lytic with NaB. This result suggests that andrographolide induces the expression
of cellular proteins, playing a role in the inhibition of EBV lytic reactivation.

In addition, the expression of the epigenetic factors DNMT1, DNMT3B, HDAC5,
and HDAC9 also increased in the cells treated with the combination of andrographolide
and NaB. DNA methyltransferase enzymes, especially DNMT1 and DNMT3B, but not
DNMT3A, play a critical role in the maintenance of EBV latency via the restriction of
EBNA and LMP expression through DNA methylation in B-lymphocyte cell lines [44,45].
On the other hand, the inhibition of DNMT activities by 5-azacytidine can activate the
lytic cycle of EBV by inducing the expression of the lytic gene, BZLF1 [46]. In addition to
DNMTs, HDACs can modulate the expression of multiple genes of both the host and EBV
by modulating chromosome structure [46,47]. The switching of EBV infection phases from
latent to lytic can be induced by stimuli, such as HDAC inhibitors [48–52]. In this study, the
expression of HDAC5 and HDAC9 was greater in the cells treated with andrographolide
and NaB, suggesting that andrographolide inhibits EBV lytic reactivation via the induction
of epigenetic machinery.

Accumulating evidence has demonstrated that MEF2 family members can interact
with HDAC family members, especially HDAC4 and HDAC5, to regulate the biological
and pathophysiological functions of cells [53–58]. Consistent with this finding, by using
the STRING database, we also found that HDAC5 and HDAC9 potentially interacted
with MEF2D. In addition, HDAC4 and HDAC5 inhibited EBV lytic replication by directly
interacting with MEF2 protein that was bound with Zp [59].

Previously, we demonstrated that andrographolide suppresses the lytic reactivation
of EBV in gastric cancer cell lines by attenuating the expression of host transcription
factors, SP1 and MEF2, via epigenetic modifications, especially through the function of
HDAC6 and DNMT3A [27,28]. However, in HNC, we demonstrated the inhibitory ef-
fect of andrographolide on the EBV lytic replication by modulating the expression of
transcription factors SP1, SP3, and MEF2, at least in part, via the epigenetic alterations,
especially through the induction of HDAC5 and DNMT3B, suggesting the cell-type-specific
mechanism through which andrographolide inhibits the lytic reactivation of EBV.

Andrographolide treatment can induce cell apoptosis via the activation of various
signaling pathways in human cancers, such as skin cancer, colon cancer, cervical cancer, and
gastric cancer [60–63]. In NPC, andrographolide treatment also inhibited cell proliferation
and induced cell apoptosis via the activation of various signaling pathways [64,65]. In
addition, our previous study also demonstrated a strong cytotoxic effect of andrographolide
in gastric cancer cell lines by inducing cell death via apoptosis through the induction of
proapoptotic proteins, including BCL2L1, EDOG, HRK, and PUMA [28]. By contrast, in
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this study, andrographolide exhibited strong cytotoxic effects in EBV-positive HNC cells by
inducing cell death. By using bioinformatic tools, we found that the necroptosis-associated
proteins were predominant in EBV-positive HNC cells treated with andrographolide and
NaB. The key genes of necroptosis, namely RIPK1, RIPK3, and MLKL, were also upregu-
lated. Therefore, this study reveals that a novel mechanism through which andrographolide
induces cell death, is, at least in part, necroptosis.

4. Materials and Methods
4.1. Cell Lines and Culture Conditions

The NPC cell lines HONE1 and HONE1-EBV (kindly provided by Professor Hironori
Yoshiyama, Shimane University, Shimane, Japan) were cultured in an RPMI-1640 medium
(Sigma, St. Louis, MO, USA). EBV-negative OSCC cell lines SCC25 and HSC1 (kindly
provided by Dr. Tohru Kiyono, National Cancer Center, Tokyo, Japan) and previously
established EBV-positive OSCC cell lines SCC25-EBV and HSC1-EBV c [66] were maintained
in Dulbecco’s modified Eagle medium/F12 (DMEM/F12; Sigma, St. Louis, MO, USA). All
cell lines were supplemented with 10% fetal bovine serum (Gibco, Breda, The Netherlands)
and a penicillin–streptomycin solution (Nacalai Tesque Inc., Kyoto, Japan). Cells were
cultured at 37 ◦C in a 5% CO2 incubator.

4.2. Natural Compounds

The andrographolide compound was prepared as previously described [67] by the
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University,
Thailand. The concentrations of andrographolide used for the treatment of HONE1-EBV,
HSC1-EBV, and SCC25-EBV cells were 36.3, 35.0, and 35.0 µM, respectively.

4.3. Proteomic Analysis via Liquid Chromatography with Tandem Mass Spectrometry
(LC-MS/MS)

Cells were treated with 0.1% DMSO, or 3 mM NaB, or andrographolide at sub-toxic
concentration and incubated for 48 h. In addition, cells were pretreated with andro-
grapholide for 3 h, and the lytic cycle was subsequently induced with NaB and further
incubated for 48 h. Protein was extracted from cells using TRIzol™ reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The concentration of
total proteins was determined using a Bio-Rad protein-assay dye reagent concentration kit.
To prepare protein samples for mass spectrometry, tryptic in-gel digestion was performed
as described [68].

The trypsin-digested peptides were introduced into LC-MS/MS using an Ultimate3000
Nano/Capillary LC System (Thermo Scientific, Waltham, MA, USA) coupled with a hybrid
quadrupole Q-Tof Impact II™ (Bruker, Billerica, MA, USA) equipped with a nano-captive
spray ion source. The proteomic analysis via LC-MS/MS was performed as previously
described [68].

4.4. Data Processing and Analysis

To identify and quantify peptides and proteins, MaxQuant version 1.6.5.0 was used.
Our data were run against the UniProtKB Human reference database (accessed in October
2020) using the Andromeda search engine. Fragment ion tolerance was set to 20 ppm,
and the option of matching between runs (0.4 min match time window) was enabled.
Trypsin was specified as the proteolytic enzyme with up to two missed cleavage sites
authorized. The N-terminal protein acetylation and oxidation of methionine were set as
variable modifications, while carbamidomethylated cysteine was set as a fixed modification.
Exploration outcomes were determined for a minimum length of seven amino acids (1%
peptide and protein FDR). If a minimum of two peptides was compared between sample
groups, the label-free protein quantification (LFQ) was calculated. The match-between-runs
feature of MaxQuant was only used in experimental replicates.
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The functional annotation (GO) of differentially expressed proteins was performed
using the DAVID v6.8 web tool (https://david.ncifcrf.gov/, accessed on 3 March 2021).
Differentially expressed proteins were analyzed in terms of two factors: biological process
and molecular function. Categories with a p value > 0.05 were considered significant, and
the top ten categories are presented in this paper. The KEGG pathway analysis was con-
ducted to identify the biological function of differentially expressed proteins. Differentially
expressed proteins that were found among the different treatments were identified using
the jvenn web tool (http://jvenn.toulouse.inra.fr, accessed on 21 March 2021).

To construct a PPI network, STRING version 11.5 (https://string-db.org/, accessed on
9 September 2021) was used to explore the possible interactions of differentially expressed
proteins at the protein level [69]. A PPI score of >0.4 was considered significant. The PPI
networks were visualized using Cytoscape software (version 3.8.2) [70], and p < 0.05 was
considered a statistically significant difference. The interactions of HDAC5 and HDAC9
with TFs were predicted by using the PSOPIA web tool [71].

To further confirm protein–protein interactions, molecular modeling and molecular
docking simulation were performed. The sequences of candidate proteins, including
HDAC5 (Uniprot ID: Q9UQL6), HDAC9 (Uniprot ID: Q9UKV0), MEF2D (Uniprot ID:
Q14814), SP1 (Uniprot ID: P08047), and SP3 (Uniprot ID: Q02447), were submitted to SWISS-
MODEL, https://swissmodel.expasy.org/ (accessed on 24 November 2021) [72], a protein
prediction software, to build the putative 3D structures. The stereochemistry of proteins
was evaluated using Ramachandran plot analysis (https://zlab.umassmed.edu/bu/rama/,
accessed on 28 November 2021). All ionizable amino acid residues in the predicted models
were protonated at pH 7.4 using H++ 1.0 (http://biophysics.cs.vt.edu/, accessed on 28
November 2021). Molecular docking simulation was performed using the web-based
service ClusPro [73] to analyze the interactions among the candidate proteins. The PyMOL
and Discovery Studio 2021 software version 21.1 were used for the visualization of 3D
models and molecular docking. The coefficient weights of protein binding were calculated
as follows: E = 0.40Erep + (−0.40)Eatt + 600Eelec + 1.00EDARS [74].

4.5. Quantification of Gene Expression via qRT-PCR

The total RNA was extracted from cells using TRIzol™ reagent (Invitrogen, Carlsbad,
CA, USA), according to the manufacturer’s instructions, and 1 µg of RNA was used to
synthesize cDNA using a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. Gene expression was
quantified with a qRT-PCR assay using SsoAdvancedTM SYBR® Green SuperMix (Bio-Rad,
Hercules, CA, USA) in the QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as
an internal control. The relative mRNA expression level was quantified using the 2−∆∆CT

method. The primers used in the present study are listed in Table 2.

Table 2. Primer sequences.

Gene Forward (5′-3′) Reverse (5′-3′)

BMRF1 ACCTGCCGTTGGATCTTAGTG GGCGTTGTTGGAGTCCTGTG
BRLF1 TGTTTCAACCGCTCCGACTG GGGTTATGTCGGAGACTGGG
BZLF1 TGTTTCAACCGCTCCGACTG GGGTTATGTCGGAGACTGGG
EBNA1 CCACAATGTCGTCTTACACC ATAACAGACAATGGACTCCCT
HDAC5 CCTCAACCATTCCCTCCCAC GTTCAGAGGCTGTTTTGCGG
HDAC9 CCCCTGCTGCCTCTGTTTTA GGAATTGCCACAAACGCACT
GAPDH TCATCAGCAATGCCTCCTGCA TGGGTGGCAGTGATGGCA
MEF2D CATGCCCACTGCCTACAACA TGACATTGCCTAGCGACAGC
MLKL CGGCCCTCTGTGGATGAAAT GCCTCTCCCAGCTTCTTGTC
RIPK1 CGACCTTCTGAGCAGCTTGA TCTGAATGCTCTGAGGCAGC
RIPK3 CATGGAGAACGGCTCCTTGT GGTTCTGGTCGTGCAGGTAA

SP1 CTGTGATACGGATCAGAAACCG TCCACCAAACAATAAAGAGTGCT
SP3 CAGAAAGGGTGGGCCTTGAA GCCATCTGTTAAGAGGGCGT

https://david.ncifcrf.gov/
http://jvenn.toulouse.inra.fr
https://string-db.org/
https://swissmodel.expasy.org/
https://zlab.umassmed.edu/bu/rama/
http://biophysics.cs.vt.edu/
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4.6. Quantification of EBV Genome’s Copy Number via qPCR

The EBV genome’s copy number was estimated with qPCR targeting the EBNA1 gene.
Briefly, genomic DNA was extracted from the cell-culture supernatant using the lysis buffer–
proteinase K method [75]. Calibration curves were generated in parallel with each analysis
using sequential dilutions of DNA from the pGEM-T-EBNA1 plasmid. The copy number of
the EBV genome in cells was analyzed with a calibration curve using CT values that were
obtained from the samples. The CT values were used to calculate the EBV genome’s copy
number from a linear regression equation. The results are expressed as the mean (based on
three independent experiments) of EBV copies/50 ng of host genomic DNA.

4.7. Determination of Cell Cytotoxicity Using CCK-8

Cell cytotoxicity was determined using CCK-8 (DOJINDO, Kumamoto, Japan). Cells
were seeded into a 96-well plate at 5000 cells/well and preincubated at 37 ◦C under 5%
CO2 for 24 h. The cells were treated with DMSO, NaB, or andrographolide. In addition, for
the treatment using the combination of NaB and andrographolide, the cells were pretreated
with andrographolide for 3h, followed by treatment with NaB, to induce the lytic cycle.
Subsequently, the cells were further incubated for 24 and 48 h. Then, the cells were
incubated with 10 µL/well of CCK-8 solution for 1–4 h, and absorbance was measured at
450 nm using a Varioskan LUX Multimode Microplate Reader (Thermo Scientific, Waltham,
MA, USA).

4.8. Quantification of Cell Death via Flow Cytometry

The dead cells were quantified using the Dead Cell Apoptosis Kit with Annexin
V Alexa Fluor™ 488 and Propidium Iodide (PI) Kit (Life Technologies, Carlsbad, CA,
USA). Cells were plated in 6-well plates at a seeding density of 2.5 × 105 cells/well and
preincubated at 37 ◦C under 5% CO2 until 90% confluent. The cells were then treated with
DMSO, NaB, or andrographolide, or they were pretreated with andrographolide followed
by NaB to induce the lytic cycle and further incubated for 18 h. The cells were stained with
Annexin V and PI at room temperature for 15 min and further analyzed via flow cytometry
using a BD FACSCanto™ II Cell Analyzer (BD bioscience, Franklin Lakes, NJ, USA). Data
were analyzed with FlowJo software version 9 (Flowjo, Treestar Inc., Ashland, OR, USA).
Staurosporine treatment was used as a positive control for cell apoptosis. The cells stained
by both Annexin V and PI were considered late apoptotic cells, those only positive for
Annexin V staining were considered early apoptotic cells, and those only positive for PI
staining were considered necrotic cells.

4.9. Statistical Analysis

GraphPad Prism (https://www.graphpad.com/, accessed on 28 November 2021)
(GraphPad Software Inc., San Diego, CA, USA) was used for all data analysis. Mann–
Whitney tests were used to test whether there was a difference between two independent
groups, expressed as mean ± standard deviation (SD). All experiments were repeated three
times. A probability (p) value of <0.05 was considered statistically significant.

5. Conclusions

In the present study, we have demonstrated for the first time that andrographolide
inhibits EBV lytic reactivation in HNC cell lines via the inhibition of TF expression. The
expression of TFs is probably regulated through epigenetic mechanisms, such as DNA
methylation and histone modifications. Concurrently, andrographolide also induces cell
death via necroptosis through the upregulation of key mediators, including genes encoding
RIPK1, RIPK3, and MLKL.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms242115867/s1.
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