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Abstract: Monoterpene thiols are one of the classes of natural flavors that impart the smell of
citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents
in the food and perfume industries. Synthetic monoterpene thiols have found an application in
asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis
and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are
emerging trends to use monoterpene thiols as monomers for producing new types of green polymers.
Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and
antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and
bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation
of the compounds with antimicrobial properties.

Keywords: monoterpenoids; thiols; asymmetric synthesis; disulfides; thiosulfonates; sulfenimines;
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1. Introduction

Sulfur-containing monoterpenoids, and especially thiols, being natural flavoring
agents that impart the pleasant aroma to citrus fruits, wine, and black currants, are of inter-
est in the exploration of flavors and fragrances [1–4]. Synthetic monoterpene thiols, known
for their natural enantiomeric purity, have found applications in asymmetric synthesis.
For example, pinane, menthane, and bornane thiols are used as chiral auxiliaries [5–10],
chiral ligands for metal complex catalysis [11–14], organocatalysts [15], and chiral resolving
agents [16]. Recently, there has been a tendency to exploit monoterpenes—in particular,
monoterpene thiols—as monomers for producing green polymers [17,18].

The spread of multidrug-resistant pathogenic microorganisms poses the challenge of
searching for new antimicrobials with novel modes of action to which microorganisms
have not yet developed resistance [19]. The acquisition of genes encoding efflux systems or
enzymes able to hydrolyze antimicrobials, the increased biofilm formation, and the struc-
tural changes in target molecules and the cell wall reduce the effectiveness of traditional
antibiotics [20].

Among the various classes of molecules which can keep down the growth of pathogenic
bacteria and fungi, monoterpene derivatives stand out for their broad spectrum of antimi-
crobial activity [21–23]. The ability of monoterpenoids to inhibit the growth of diverse
bacteria and fungi has been reported [21,24–29].
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The combination of terpenes with known antimicrobials increases the activity of the
latter [30–32]. The introduction of sulfur functional groups into the structure of biologically
active terpenes often enhances the antibacterial and antifungal activity of the resulting
thio-modified monoterpenoids compared to the original terpenes [21,29,33–36]. Pinane and
menthane sulfides containing a fragment of 2-mercaptoacetic acid methyl ester showed
a wide range of antifungal activity against pathogenic strains of Candida albicans and a
number of mycelial fungi [21,29].

The reason for these synergistic effects may be explained by the increased affinity of
terpenes for the membrane or membrane-associated proteins. The binding site for cyclic
hydrocarbons, including terpenes, is known to be in the cell membrane of pathogenic
microorganisms [37]. Some terpenes, such as limonene, α- and β-pinenes, and γ-terpinene,
can suppress respiration and other energy-dependent processes localized in the cell mem-
branes of fungi and bacteria [22,38–41]. Furthermore, some terpene derivatives interact
with eukaryotic cell membranes [29,42].

Only a few reviews have been devoted to the synthesis and biological activity of thio-
modified monoterpenoids [21,29,43]. The current review covers methods for the synthesis
of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to
their usage for preparing new compounds with antimicrobial properties.

2. Synthesis of Monoterpene Thiols

Thiols are one of the most convenient synthons in the synthesis of organosulfur
compounds. The typical methods to prepare monoterpene thiols include the electrophilic
addition of H2S or dithiols to the double bond of monoterpenes; nucleophilic substitution
of halides; tosylates/mesylates obtained from corresponding monoterpene alcohols; thia-
Michael addition of S-nucleophiles to α,β-unsaturated ketones; nucleophilic epoxide ring
opening; nucleophilic substitution of the activated methylene protons; and reduction of
sulfochlorides, dithiolanes, thiiranes, and sultones.

2.1. Synthesis from Alkenes

The synthesis of terpene thiols from limonene, α-pinene, α-, γ-terpinenes, terpinolene,
and 3-carene via a reaction of them with H2S in the presence of Lewis acids such as AlCl3
or AlBr3 is described in [44]. The addition of H2S usually occurs without selectivity and
is accompanied by numerous side reactions, including the rearrangement of the terpene
skeleton, especially in cases with bicyclic systems. The addition of H2S to limonene 1
catalyzed by AlCl3 proceeds with no regioselectivity and gives thiols 2–5 in low yields,
with the intramolecular cyclization of thiols 4 and 5 at the double bond affording sulfides 6
and 7 as the main products (Scheme 1) [45–47].
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Scheme 1. The addition of H2S to limonene 1 catalyzed by AlCl3.

The interaction of α-pinene 8 with H2S under the same conditions leads to products
2–7, as well as cyclic sulfide 9 [44].
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with H2S, gives thiol 4. The softer Lewis acid EtAlCl2 (B) stereoselectively catalyzes the
anti-addition of H2S via the formation of intermediate 11 and leads to trans-pinane-2-thiol
12 (Scheme 2) [4]. With a strong Lewis acid (BF3·Et2O) used as a catalyst, the Wagner–
Meerwein rearrangement occurs to yield isobornanethiol 13 [4,46].
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Scheme 2. The addition of H2S to α-pinene 8.

The addition of hydrogen sulfide to 3-carene 14 in the presence of AlCl3 proceeds
nonselectively to give the products in low yields. The detected products included a mixture
of cis- and trans-thiols 15; episulfides 16, 6, and 7; and para-menthane thiols 17, 18, 2, and 3
(Scheme 3) [44].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 23 
 

 

 

Electrophilic thiylation of α-pinene 8 with H2S in the presence of AlBr3 (A) is followed 

by the pinene–menthane rearrangement, providing carbocation 10, which, when reacting 

with H2S, gives thiol 4. The softer Lewis acid EtAlCl2 (B) stereoselectively catalyzes the 

anti-addition of H2S via the formation of intermediate 11 and leads to trans-pinane-2-thiol 

12 (Scheme 2) [4]. With a strong Lewis acid (BF3·Et2O) used as a catalyst, the Wagner–

Meerwein rearrangement occurs to yield isobornanethiol 13 [4,46].  

 

Scheme 2. The addition of H2S to α-pinene 8. 

The addition of hydrogen sulfide to 3-carene 14 in the presence of AlCl3 proceeds 

nonselectively to give the products in low yields. The detected products included a 

mixture of cis- and trans-thiols 15; episulfides 16, 6, and 7; and para-menthane thiols 17, 18, 

2, and 3 (Scheme 3) [44].  

 

Scheme 3. The addition of H2S to 3-carene 14 catalyzed by AlCl3. 

Reactions of racemic camphene 19 with thioacetic acid under various conditions were 

investigated in [48] (Scheme 4). It was established that, under catalyst-free conditions and 

with a long reaction time (12 h), the anti-Markovnikov product 20 was predominantly 

formed. The use of p-toluenesulfonic acid as a catalyst also leads to thioester 20, but in a 

15% yield. Catalysis with trifluoromethanesulfonic acid (TfOH) and InCl3 at different 

temperatures gives different ratios of products. The optimal yield of thioacetate 21 (75%), 

a product of the Wagner–Meerwein rearrangement, was achieved using a catalyst TfOH 

at 40 °C for 20 min. The yield of a by-product, thioacetate 20, from this procedure does not 

exceed 25%. The best method to obtain Markovnikov product 22 (82%) with a preserving 

camphane structure was catalysis via In(OTf)3 at ≤0 °C. The deacylation of thioacetate 22 

with LiAlH4 leads to racemic camphane thiol 23 at an 86% yield. 

Scheme 3. The addition of H2S to 3-carene 14 catalyzed by AlCl3.

Reactions of racemic camphene 19 with thioacetic acid under various conditions were
investigated in [48] (Scheme 4). It was established that, under catalyst-free conditions and
with a long reaction time (12 h), the anti-Markovnikov product 20 was predominantly
formed. The use of p-toluenesulfonic acid as a catalyst also leads to thioester 20, but in
a 15% yield. Catalysis with trifluoromethanesulfonic acid (TfOH) and InCl3 at different
temperatures gives different ratios of products. The optimal yield of thioacetate 21 (75%), a
product of the Wagner–Meerwein rearrangement, was achieved using a catalyst TfOH at
40 ◦C for 20 min. The yield of a by-product, thioacetate 20, from this procedure does not
exceed 25%. The best method to obtain Markovnikov product 22 (82%) with a preserving
camphane structure was catalysis via In(OTf)3 at ≤0 ◦C. The deacylation of thioacetate 22
with LiAlH4 leads to racemic camphane thiol 23 at an 86% yield.
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Photochemical addition of thioacetic acid to (−)-sabinene 24 gives a mixture of anti-
Markovnikov bicyclic thioacetate 25 and unsaturated thioacetate 26 in an overall yield of
24% and a 3:1 ratio, respectively [49]. The unexpected formation of thioacetate 26 results
from cyclopropane ring cleavage. The mixture of thioacetates 25 and 26 was treated with
LiAlH4 to produce thiols 27 and 28 in an overall yield of 95% (Scheme 5). The obtained
thiols were isolated by preparative capillary GC.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 23 
 

 

 

Scheme 4. Synthesis of camphane thiol 23. 

Photochemical addition of thioacetic acid to (−)-sabinene 24 gives a mixture of anti-

Markovnikov bicyclic thioacetate 25 and unsaturated thioacetate 26 in an overall yield of 

24% and a 3:1 ratio, respectively [49]. The unexpected formation of thioacetate 26 results 

from cyclopropane ring cleavage. The mixture of thioacetates 25 and 26 was treated with 

LiAlH4 to produce thiols 27 and 28 in an overall yield of 95% (Scheme 5). The obtained 

thiols were isolated by preparative capillary GC. 

 

Scheme 5. Synthesis of thiols from sabinene 24. 

2.2. Ene Reaction of Monoterpenes with N-sulfinylbenzenesulfonamide 

An efficient method for the synthesis of monoterpene allyl thiols using N-

sulfinylbenzenesulfonamide 29 as an enophile in ene reaction was proposed in the paper 

[50] (Scheme 6). The interaction of terpenes (α- and β-pinenes 8 and 30; 2- and 3-carenes 

31 and 14; and α-thujene 32) with N-sulfinylbenzenesulfonamide 29 proceeds at a double 

bond with the formation of adducts 33–37 with a migration of the double bond to an α-

position. It should be noted that these reactions occur stereo- and regioselectively. The 

adducts 33–37, when reduced with LiAlH4, provide the corresponding allyl thiols, 38–42. 

 

Scheme 6. Synthesis of allylic terpene thiols 38–42. 

  

Scheme 5. Synthesis of thiols from sabinene 24.

2.2. Ene Reaction of Monoterpenes with N-sulfinylbenzenesulfonamide

An efficient method for the synthesis of monoterpene allyl thiols using N-sulfinyl
benzenesulfonamide 29 as an enophile in ene reaction was proposed in the paper [50]
(Scheme 6). The interaction of terpenes (α- and β-pinenes 8 and 30; 2- and 3-carenes 31 and
14; and α-thujene 32) with N-sulfinylbenzenesulfonamide 29 proceeds at a double bond
with the formation of adducts 33–37 with a migration of the double bond to an α-position.
It should be noted that these reactions occur stereo- and regioselectively. The adducts 33–37,
when reduced with LiAlH4, provide the corresponding allyl thiols, 38–42.
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2.3. Synthesis from α,β-Unsaturated Carbonyl Compounds

Thiols are good nucleophiles for thia-Michael addition to α,β-unsaturated carbonyl
compounds [51]. However, harsh reaction conditions are required to convert the newly
formed sulfide group into a synthetically more versatile SH group. Thioacids (RCOSH) are
more attractive as nucleophiles for the Michael addition reaction, since the resulting thioesters
can be easily transformed into corresponding thiols under mild conditions [5,52,53].

Myrtenal-based hydroxythiol 43 was synthesized by two methods with a high yield
and stereoselectivity [5]. The treatment of (−)-myrtenal 44 with benzylthiol and 10% aque-
ous NaOH in THF at room temperature for 18 h led to sulfide 45 (yield 92%, de 96%).
Compound 45 was reduced to the corresponding alcohol 46 (yield 96%) with LiAlH4 in
Et2O, which was then hydrogenolyzed to hydroxythiol 43 under Birch reduction conditions
(Scheme 7). The hydrogenolysis did not provide satisfactory results because small differ-
ences in reaction conditions altered the reaction course dramatically, sometimes producing
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a complex mixture of unidentified compounds. The same reaction conditions become
reproducible in switching to thioacetic acid as a nucleophilic reagent, which demonstrated
a high selectivity when added to (−)-myrtenal 44 to give thioacetate 47 (1,4-addition) in
yield of 98% and de > 99%. Thioester 47 was reduced by LiAlH4 to obtain hydroxythiol 43
in a 95% yield. This one-pot method allowed us to simultaneously convert thioether and
aldehyde group to the corresponding thiol and primary alcohol (Scheme 7).
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Trifluoromethylation of 2-formylisopinocampheyl-3-thioacetate 47 by Ruppert–Prakash
reagent in the presence of tetra-n-butylammonium fluoride (TBAF) was carried out at
−30 ◦C for 3 days. Diastereomers 48 and 49 are formed in a 52% total yield and de 42% with
the predominance of thioacetate 48. Deacylation of thioacetates 48 and 49 with LiAlH4 in
dry Et2O under an argon atmosphere gives the corresponding thiols 50 and 51 with 84 and
90% yields, respectively (Scheme 7) [54].

Thioacetate 52 was obtained from (1S)-(−)-verbenone 53 by using a procedure similar
to the synthesis of 2-formylisopinocampheyl-3-thioacetate 47. The reaction produces one of
two theoretically possible diastereomers with the R-configuration of C-2 with a 71% yield
(Scheme 8). Thioacetate 52 does not react with the Rupert–Prakash reagent under the above
conditions, possibly because of the bulky TBAF use.
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Scheme 8. Synthesis of pinane hydroxythiols based on verbenone 53.

The addition of fluorine-containing initiator CsF made it possible to obtain the only
(4S)-diastereomer 54 in a 37% yield together with trifluoromethyl alcohol 55 (31%) that is a
by-product of desulfurization (Scheme 8). Deacylation of thioacetate 54 gave hydroxythiol
56 in 73% yield [54].

The synthesis of isomeric hydroxythiols 57–59 was carried out on the basis of β-pinene
30 (Scheme 9) [55]. Trans-pinocarveol 60 was synthesized via the oxidation of β-pinene 30
with the SeO2/TBHP system, and its further oxidation with MnO2 led to pinocarvone 61.
An inseparable mixture of two isomeric ketothioacetates (2S)-62 and (2R)-63 in a 2:1 ratio
in 95% yield is formed during the thia-Michael reaction of pinocarvone 61 with AcSH in
the presence of catalytic amount of pyridine at −5 ◦C. The reduction of thioacetates with
LiAlH4 leads to three isomeric hydroxythiols, 57–59.
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Scheme 9. Synthesis of pinane hydroxythiols based on β-pinene 30.

The synthesis of pinane ketothiols 64 and 65 was implemented from α,β-unsaturated
pinane ketones 61 and 66 [56]. To obtain thioacetate 62 from enone 61, the synthetical
protocol proposed in [5] was used. However, the diastereoselectivity of this reaction
under the described conditions did not exceed 33%, as mentioned in [55]. The de value of
thioacetate 62 can be increased from 33 up to 92% if the reaction between pinocarvone 61
and AcSH is carried out in THF in a temperature range from −60 to −65 ◦C, with pyridine
as a co-solvent. The same conditions are applicable for the addition of BzSH to ketone 61,
with thioacetate 67 being formed in this case with a comparable de of 93% (Scheme 10).
Reducing thioacetate 62 via NH2NH2·H2O affords thiol 64 within 4-5 h in up to a 90%
yield, while deacylation of thiobenzoate 67 by the same reagent gives the thiol in only a
38-50% yield due to incomplete conversion. Thus, at comparable maximum de values of
thioesters 62 and 67, the preparation of thiol 64 from compound 62 is more optimal, taking
into account the higher total yield of thiol and the diacylation time.
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Scheme 10. Synthesis of β-ketothiol from pinocarvone 61.

A multistep synthesis of 2-norpinanone 66 from (−)-β-pinene 30 was provided in [57]
(Scheme 11). This compound was obtained via nopinone 69 and then ketoenol 68 formation.
Ketoenol 68 was produced in a 96% yield from ketone 69 by its reaction with isoamyl
formate and t-BuOK in THF at 0 ◦C for 6 h [56]. The following dihydroxylation of ketoal-
cohol 68 by formaldehyde in sodium carbonate solution afforded 2-norpinanone 66 [56].
An addition of thioacetic acid to 2-norpinanone 66 was, for the first time, implemented
according to the procedure [5] and then by using pyridine as a catalyst [51] in THF at
room temperature [56]. The main product of this reaction was the isomer (3R)-70 (de 98%)
(Scheme 11). Its deacylation by hydrazine hydrate (NH2NH2·H2O) led to 2-ketothiol 65
and disulfide 71 in a 3:1 ratio, respectively. Because of the mild reducing properties of
NH2NH2·H2O and its inability to donate protons, the diacylation proceeds chemoselec-
tively with the preservation of the carbonyl group [58], a behavior that is not typical for
LiAlH4 when used [55].
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Scheme 11. Synthesis of β-ketothiol based on 2-norpinanone 66.

Pulegone 73 was used to synthesize para-menthane-derived β-hydroxythiol 72
(Scheme 12) [59–62]. The 1,4-addition of sodium benzyl thiolate to pulegone led to a
diastereomeric mixture of ketosulfides 74 in a 4:1 ratio. Then, the mixture 74 was reduced
under Birch conditions by Na in liquid NH3 to give a mixture of hydroxythiols 72. Con-
densation of 72 with benzaldehyde and subsequent crystallization from acetone afforded
diastereomerically pure oxathiane 75 in a 50% yield. When oxidized by AgNO3 in the
presence of NCS, oxathiane 75 is transformed into sultines 76, the reduction of which with
LiAlH4 gives pure β-hydroxythiol 72.
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Scheme 12. Synthesis of β-hydroxythiol based on pulegone 73.

Isomeric α,β-hydroxythiols 77 and 78 were obtained from natural 3-carene 14
(Scheme 13) [63]. 3-Carene, when oxidized by m-CPBA, selectively forms trans-epoxide
79, which is isomerized in the presence of diethylaluminum 2,2,6-tetramethylpiperidide
(DATMP) to enol 80 [64]. The oxidation of alcohol 80 to enone 81 is successfully im-
plemented by the bis(acetoxy)iodobenzene (BAIB)–2,2,6,6-tetramethylpiperidine 1-oxyl
(TEMPO) system. Enone 81, being an unstable compound, cannot be isolated in its pure
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form. The two-step thia-Michael addition of AcSH to α,β-unsaturated ketone 81 proceeds
in one pot in pyridine. As a result, only one of the two theoretically possible diastereomers,
thioacetate 82, is formed. The subsequent reduction of ketothioacetate 82 by LiAlH4 leads
to two diastereomeric β-hydroxythiols, 77 and 78, in a 1:2 ratio, respectively [63].
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2.4. Synthesis from Alcohol via Tosylates, Halides, Isothiouronium Salts

The works [65–68] cover the methods for the selective preparation of neomenthanethiol
83 using thioacetic acid (AcSH) (Scheme 14). Starting menthol 84 reacts with p-TsCl in
pyridine to form tosylate 85, which, when heated with AcSK, gives thioacetate 86 in a 77%
yield. Substitution of the OTs (p-toluenesulfonate, tosylate) by the AcS-group occurs with
an inversion of the chiral center via the SN2 mechanism. The reduction of 86 by LiAlH4
provides diastereomerically pure thiol 83 in a 26–40% yield (Scheme 14).
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Neomenthanethiol 83 [68,69] and isobornanethiol 13 [68,70–72] were also synthesized
in good yields via isothiouronium salts 87 and 88, proceeding from alcohols 84 and 89
(Scheme 14).

In addition to neomenthanethiol 83 and isobornanethiol 13, the authors of [68] pre-
pared 4-caranethiol 91 and cis-myrtanethiol 92 using the same method.
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N,N-dimethyldithiocarbamate in the presence of triphenylphosphine and diethylazodi-
carboxylate (DEAD) is accompanied by an inversion of C-3 configuration and leads to
dithiocarbamate 95 in a 66% yield. Dithiocarbamates baced on menthol 84 and borneol
89 were also obtained by the same procedure [73,74]. The reduction of dithiocarbamate
95 by LiAlH4 gives thiol 93 in a 92% yield. The approach to obtain thiol 93 through the
corresponding mesylate 96 and thioacetate 97 was described in [12].
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Scheme 15. Synthesis of (1S,2S,3R,5R)-3-pinanethiol 93.

Geraniol 98 reacts with thioacetic acid under Mitsunobu-type conditions [75] to form
thioacetate 99 in a good yield, which, when treated with LiAlH4, is converted into the
corresponding thiol 100 in a 61% yield (Scheme 16) [76].
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Scheme 16. Synthesis of thiogeraniol 100.

The ability of nerol 101 to be converted into bromide 102 under the action of PBr3, and
then into thiol 103 by using NaSH via two successive nucleophilic substitutions with yields
of 86 and 66%, respectively, was described in [77] (Scheme 17).
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Scheme 17. Synthesis of thionerol 103.

Diastereomerically pure hydroxythiol 57 can also be obtained via two alterna-
tive routes [55]. The first one involves the bromination of β-pinene 30 by NBS (N-
bromosuccinimide) to form myrtenyl bromide 104, which undergoes hydroboration–oxidation
and is selectively transformed to bromoalcohol 105. The nucleophilic replacement of bro-
mide by thioacetate AcS− leads to compound 106, which can also be synthesized starting
from α-pinene 8 (Scheme 18). The second route is associated with the oxidation of α-pinene
8 to myrtenal, followed by its reduction to myrtenol 107, which is converted into diol 108
by the same hydroboration–oxidation procedure. The further reaction of tosyl chloride with
diol 108 leads to both monotosylate 109 (76%) and ditosylate 110 (10%). The nucleophilic
substitution of the para-toluenesulfonate group in 109 by AcS− also results in thioacetate
106. When reduced, thioacetate 106 affords hydroxythiol 57 (Scheme 18) [55].
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2.5. Nucleophilic Substitution of the Activated Methylene Proton

The synthesis of bornane α-hydroxythiol 111 was described in [78,79] (Scheme 19).
The nucleophilic substitution of a proton of the activated methylene group in camphor 112
by benzyl p-toluenesulfonate promoted by LDA leads to the formation of ketosulfide 113,
which, being reduced by NaBH4 in methanol or dibutylaluminum hydride (DIBAL) in THF,
gives hydroxysulfide 114, which is capable of being transformed into hydroxythiol 111 by
the Birch reduction.
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Scheme 19. Synthesis of bornane α-hydroxythiol 111 from camphor 112.

2.6. Epoxide and Thiiran Ring Opening

The nucleophilic ring opening of epoxide 79 with AcSH catalyzed by tetramethylam-
monium fluoride (TMAF) yields hydroxythioacetate 115, which is readily deacylated by
LiAlH4 to form the corresponding α-hydroxythiol 116 (Scheme 20).
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Scheme 20. Synthesis of monoterpene hydroxythiols 116 and 120 based on 3-carene 14.

Cis-epoxide 117 was obtained according to the known method [80] through bromo-
hydrin 118 in 70% total yield. The interaction of epoxide 117 with AcSH in the presence
of TMAF leads to thioacetate 119, the deacylation of which gives α-hydroxythiol 120
(Scheme 20) [63].

The nucleophilic sulfenylation of carane thiiranes, cis-121 and trans-122, by mono-
(MeSH, EtSH, n-BuSH, PhSH) and bifunctional (HSCH2CH2OH) thiols, promoting with
sodium ethoxide and thiolates, affords mercaptosulfides 123–128 with only moderate yields.
By-product disulfides 129 and 130 are additionally formed during the reaction of thiiranes
121 and 122 with 2-mercaptoethanol (Scheme 21) [43].
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2.7. Reduction of Thiiranes, Thiolanes, Sulfonyl Chlorides, and Sultones

Monoterpene thiols can be obtained via the reduction of thiiranes. A method for the
directed synthesis of racemic thiol 4 from thiirane 131 through oxirane 132 and isothiouro-
nium salt 133 was described in [47]. The sequential reflux of epoxide 132 with thiourea
and Na2CO3 leads to the corresponding thiirane 131, the reduction of which by LiAlH4
gives thiol 4 in a moderate yield. A similar protocol for obtaining racemic thiol 5 was
reported in [1]; however, thiiran 134 in this study was synthesized from oxirane 135 using
the N,N-dimethylthioformamide (DMTF)–TFA system as a reagent (Scheme 22).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 23 
 

 

yields. By-product disulfides 129 and 130 are additionally formed during the reaction of 

thiiranes 121 and 122 with 2-mercaptoethanol (Scheme 21) [43]. 

O

(NH2)2C=S
H2SO4

S

a) RSH, NaOEt
b) NaSR

SH
SR

R = Me (123), 46%; Et 
(124), 60%; n-Bu (125), 
39%; Ph (126), 40%

79 121 123–126

51%

SH
SCH2CH2OH

127

SSCH2CH2OH
SCH2CH2OH

129

+

S

122

HSCH2CH2OH, 
NaOEt

SH
SCH2CH2OH

128

SSCH2CH2OH
SCH2CH2OH

130

+HSCH2CH2OH, 
NaOEt

22% 40%

38% 32%

 

Scheme 21. Sulfenylation of carane thiiranes 121 and 122. 

2.7. Reduction of Thiiranes, Thiolanes, Sulfonyl Chlorides, and Sultones 

Monoterpene thiols can be obtained via the reduction of thiiranes. A method for the 

directed synthesis of racemic thiol 4 from thiirane 131 through oxirane 132 and 

isothiouronium salt 133 was described in [47]. The sequential reflux of epoxide 132 with 

thiourea and Na2CO3 leads to the corresponding thiirane 131, the reduction of which by 

LiAlH4 gives thiol 4 in a moderate yield. A similar protocol for obtaining racemic thiol 5 

was reported in [1]; however, thiiran 134 in this study was synthesized from oxirane 135 

using the N,N-dimethylthioformamide (DMTF)–TFA system as a reagent (Scheme 22). 

 

CH2Cl2

mCPBA

136

O
CF3COOH

(CH3)2NCHS

S
THF

LiAlH4

SH
89% 41% 23%

135 134 5  

Scheme 22. Scheme for the synthesis of racemic 1-p-menthene-8-thiol 4 and 1-p-menthene-4-thiol 5. 

Trans-limonene-1,2-epoxide 137 and cis-1,2-limonene-1,2-epoxide 138 were 

transformed by the DMTF-TFA system into cis-139 and trans-1,2-epithio-p-ment-8-ene 140, 

respectively (Scheme 23) [2]. The yield of thiirane 140 is lower than that of thiirane 139, 

since the reaction is accompanied by the formation of the by-product diol 141, which is 

yielded during the acid hydrolysis of epoxide 138. The reductive cleavage of the thiirane 

ring of 139 proceeds readily to give thiols 142 and 143, of which only thiol 142 was isolated 

in its pure form. Thiirane 140 was proposed to reduce to thiol 144 at only a 37% yield. 

Scheme 22. Scheme for the synthesis of racemic 1-p-menthene-8-thiol 4 and 1-p-menthene-4-thiol 5.

Trans-limonene-1,2-epoxide 137 and cis-1,2-limonene-1,2-epoxide 138 were transformed
by the DMTF-TFA system into cis-139 and trans-1,2-epithio-p-ment-8-ene 140, respectively
(Scheme 23) [2]. The yield of thiirane 140 is lower than that of thiirane 139, since the reaction
is accompanied by the formation of the by-product diol 141, which is yielded during the
acid hydrolysis of epoxide 138. The reductive cleavage of the thiirane ring of 139 proceeds
readily to give thiols 142 and 143, of which only thiol 142 was isolated in its pure form.
Thiirane 140 was proposed to reduce to thiol 144 at only a 37% yield.
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Scheme 23. Synthesis and reduction of para-menthane thiiranes 139 and 140.

Thioketals can also be used as the starting compounds for the synthesis of monoterpene
thiols. Thus, the reductive cleavage of menthone dithiolane 145 using n-BuLi leads to the
diastereomeric mixture of menthanethiol 146 and neomenthanethiol 83 (Scheme 24) (A) [81],
(B) [82].
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Scheme 24. Reductive cleavage of menthone dithiolane 145 and camphor dithiolane 147.

The reductive cleavage of camphor dithiolane 147 induced by n-BuLi produces thio-
camphor 148 (62%) as the major product; the mixture of exo-13 and endo-149 thiols accounts
for only 38% (Scheme 24) [83].

Some methods to obtain bornane β-hydroxythiols 150 and 151 by reducing camphor-
10-sulfonyl chloride 152 are described in [22–24]. As a result of this transformation, two
diastereomeric hydroxythiols, 150 and 151, are formed (Scheme 25). Camphor-10-sulfonyl
chloride 152 can also be selectively converted into ketothiol 153 by using PPh3 as a reducing
agent [84,85].
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The authors of [86,87] carried out the reduction of bornane sultones 154 and 155 by
LiAlH4 in THF to form the corresponding mixture of hydroxythiols 156 and 150, sultines
157 and 158, borneol 89, and isoborneol 159 (Scheme 26).
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3. Syntheses Involving Monoterpene Thiols for the Production of Biologically
Active Substances

CF3-Containing N-substituted sulfinamides synthesized from 4-caranethiol via sulfen-
imines and sulfinimines are reported in [34]. 4-Caranethiol 91, when treated with NCS
in liquid ammonia, forms the unstable sulfenamide 160, which is condensed in situ with
4-nitrobenzaldehyde or salicylic aldehyde to produce sulfenimines 161a,b in 73-87% yields.
The further asymmetric oxidation of sulfenimines by various oxidants and oxidation
systems (m-CPBA, TBHP, CHP–VO(acac)2, and H2O2–VO(acac)2–L*) leads to the corre-
sponding diastereomeric sulfinimines 162a,b (85–99%). In the work [34], a convenient
one-step procedure for the synthesis of chiral primary sulfinamides 163 (overall yield 65%,
de 12%) from 4-caranethiol 91 via the in situ treatment of sulfenamide 160 with m-CPBA
was proposed. Sulfinamide 163 also reacts with salicylic- and 4-nitrobenzaldehyde to give
sulfinimines 162a,b in yields from 75 up to 85%. The addition of the Ruppert–Prakash
reagent to sulfinimines 162a,b provides diastereomeric N-substituted trifluoromethyl sulfi-
namides 164a,b (yield 68-85%). Similarly, using the Reformatsky reagent based on ethyl
bromodifluoroacetate allows us to obtain fluorinated N-substituted sulfinamides 165a,b
(42–74%, de 9-81%) from sulfinimines 162a,b (Scheme 27). All diastereomers indicated in
Scheme 27 were isolated in pure forms by column chromatography and evaluated for an-
timicrobial activity against ESKAPE pathogens (six highly virulent and antibiotic-resistant
bacterial pathogenic bacteria, including E. faecium, S. aureus, K. pneumoniae, A. baumannii,
P. aeruginosa, and Enterobacter spp.) [88], fungi C. Albicans, and C. neoformans. As the refer-
ence antimicrobials for Gram-negative and Gram-positive bacteria, colistin and vancomycin
were used, respectively, and for the fungi, fluconazole was applied.
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Compounds 161a, (SS)-162b, (RSS)-164a, (SSR)-164b, (RSR)-165a, and (SSS)-165b at a
concentration of 32 µg/mL showed antibacterial activity against Acinetobacter baumannii,
and sulfinamide (RSR)-165a has antifungal activity against Candida albicans. The MIC
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(minimum inhibitory concentration) value of (RSR)-165a against Candida was 0.25 µg/mL.
This compound also showed moderate cytotoxicity against human embryonic kidney cells
(Hek-293) at a concentration of 32 µg/mL. All of this indicates that sulfinamide (RSR)-
165a is not only a selective antifungal agent but also a promising compound for further
medical trials.

A similar approach was used to synthesize sulfenimines 166a–f, 167a–f, and 168a
based on trifluoromethylated monoterpene thiols 43, 50, and 51 [5,54] by varying the
stereochemistry of the terpene moiety and the aldehyde structure [35]. The interaction
of thiols 43, 50, and 51 with NCS in liquid ammonia gives sulfenamides 169–171, which
can be transformed to sulfenimines 166a–f, 167a–f, and 168a in yields of up to 81% by
condensation with various aldehydes (Scheme 28).
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The antimicrobial activity of the newly synthesized sulfenimines 166a–f, 167a–f,
and 168a was assessed against Gram-positive methicillin-susceptible S. aureus (MSSA)
and methicillin-resistant S. aureus (MRSA), Gram-negative bacterium P. aeruginosa, and a
fluconazole-sensitive C. albicans. These microorganisms are characterized by a high fre-
quency of resistant isolates and cause diseases of various mucous membranes, the skin,
and the respiratory tract.

Compounds 166a, 167a, 166b, and 167e inhibited the growth of all tested pathogens,
although the activity was moderate and the MIC values (8–64 µg/mL) were generally higher
than those of the reference antimicrobials (amikacin, ampicillin, ciprofloxacin, fluconazole,
and benzalkonium chloride). It is important to note that trifluoromethylated sulfenimines
with salicylic fragments 168a and 167f were active only against methicillin-resistant S. aureus
and C. albicans, and 168a was even more active than fluconazole (MIC 8 µg/mL). In addition,
sulfenimines with a CF3 group in the terpene moiety and salicylaldehyde fragment 167a,
168a, 167b, and 167f exhibit greater antifungal activity (MIC 8–32 µg/mL) in contrast to
the non-fluorinated analogues 166a, 166e, and 166f (MIC ≥ 64 µg/mL).

However, most of the synthesized compounds are highly cytotoxic to embryonic
bovine lung (EBL) cells. All new compounds have selectivity indices (SI, the ratio of toxicity
to MIC) of 2–4, showing their high relative toxicity, which reduces the possibility to further
use these compounds as potential antibiotics and indicates the need for further optimization
of the structure with reducing the negative effect on eukaryotic cells.

Some natural [89–93] and synthetic [94–96] lipophilic disulfides have antimicrobial
properties. In [36], novel unsymmetrical monoterpenylhetaryl disulfides (169–172)a–d
based on monoterpene thiols 83, 92, 43, and 57 and heterocyclic disulfides were synthesized
in 48–88% yields (Scheme 29). Disulfides 169c–172c with 2-mercaptonicotinic acid methyl
ester moiety were converted to the corresponding acids 169d–172d to provide yields
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of them up to 73–95%. The obtained compounds were evaluated for antibacterial and
antifungal activity, cytotoxicity, and mutagenicity. Amikacin and fluconazole were used as
antimicrobial references.
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Unsymmetrical disulfides 169a–d with a neomentane fragment showed antimicrobial
activity against both S. aureus strains, with MICs of 16–32 µg/mL. Disulfides 170b (MIC
16 µg/mL) and 170d (MIC 16 µg/mL) have the highest activity against the MSSA among
the compounds 170a–d. Disulfides 172a–c bearing an OH group at the C-3 position of the
terpene fragment did not demonstrate any antibacterial properties. Pinane disulfides 171a–c
with a hydroxymethyl group at C-10 in their biological activity turned out to be similar
to neomentane thiotherpenoids 169a–c and showed MIC values of 32–64 µg/mL. Only
disulfides 169a–c, 170a, 170b, and 171a were capable of inhibiting Pseudomonas aeruginosa.
Along with that, there were no disulfides among (169–172)a–c with pronounced antifungal
activity against the clinical isolate of C. albicans. However, disulfides 169–172d containing
a 2-mercaptonicotinic acid moiety nevertheless demonstrated antifungal activity (MIC
16–128 µg/mL).

In general, the synthesized asymmetric monoterpenyl hetaryl disulfides (169–172)a–d
possess high cytotoxicity (CC50) against EBL. Pinane disulfides 170a, 170b, and 171d
showed the lowest toxicity. For neomenthane disulfides 169a and 169b, mutagenicity was
revealed in the Ames test on Salmonella typhimurium [97].

Thiosulfonates 173 and 174 were obtained via the oxidation of pinane hydroxythi-
ols 43 and 57 with chlorine dioxide in yields of 46–58% [33] (Scheme 30) and tested for
antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus) and antifungal
activity against two fungal strains (Candida albicans and Cryptococcus neoformans). Colistin
and vancomycin were used as reference antibiotics against bacteria, and fluconazole against
the fungi. The results showed that sulfonothioates 173 and 174 are active against Candida
albicans; meanwhile, compound 173 also showed activity against S. aureus and C. neoformans
at 32 µg/mL.
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Thio-modified monoterpene carboxylic acids 177a–181a were produced in 82–98%
yields via the reaction of monoterpene thiols such as myrtenethiol 40, neomenthanethiol
83, 10-hydroxyisopinocamphenylthiol 43, 3-trans-hydroxy-cis-myrtanethiol 57, and cis-
myrtanethiol 92 with bromoacetic acid and NaH in THF at 4 ◦C (Scheme 31) [98]. Similarly,
thiols 40, 83, 43, 57, and 92 react with 2-bromo-2,2-difluoroacetic acid ethyl ester in THF in
the presence of NaH. The resulting ethyl esters, i.e., 177b–181b, were not isolated in pure
their forms. Thio-monoterpene carboxylic acids 177c–181c were obtained in 56–80% yields
by treating the reaction mixture with an aqueous LiOH solution (Scheme 31) [98].
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Scheme 31. Synthesis thio-monoterpene carboxylic acids (177–178)a–c.

According to the results of antimicrobial activity testing, all compounds except 179c
and 180c exhibit weak activity against Gram-positive S. aureus (MIC 64–128 µg/mL). All
compounds, except 178c, 179c, and 180c, are equally active against both MSSA and MRSA.
Difluoroacetic acid derivatives 177c–181c have reduced antibacterial activity compared
to their non-fluorinated analogues 177a–181a. The acid with a neomenthane moiety 178a
showed weak antifungal activity against C. albicans (MIC 128 µg/mL), which is resistant to
fluconazole. Ampicillin, amikacin, benzalkonium chloride, and fluconazole were used as
reference standards.

4. Application of Monoterpene Thiols in Asymmetric Synthesis

Monoterpene thiols, known for their natural enantiomeric purity, have found applica-
tions in asymmetric synthesis. To reveal the synthetic potential of monoterpene thiols, we
provide some examples of their application in asymmetric synthesis.

As an example, the work of [5] can be given, which covers a method of using pinane
hydroxythiol 43 as a chiral auxiliary to synthesize certain chiral aldols and diols (Scheme 32).
When thiol 43 was treated with α,α-dimethoxyacetone, a single diastereomer, ketooxathiane
182, was formed with a yield of 32%. The further addition of Grignard reagents and
organolithium compounds at the C=O of 182 afforded the corresponding alcohols 183a–g
in good yields and high diastereoselectivity. The configuration of a newly formed chiral
center of the major diastereomers was assigned as R for tertiary alcohols 183a–f and S
for a secondary one, 183g, due to the change in seniority of substituents. LS-Selectride
(lithium trisiamylborohydride) reduces ketone 182 more selectively than LiAlH4 and DIBAL
(diisobutylaluminum hydride). Compounds 183a–g reacted with AgNO3 and NCS by
opening the oxothiane ring to give sultine 184 and aldols 185a–g, which are not isolated
in an individual form. By reducing with LiAlH4, this mixture was converted into the
separable non-racemic thiol 43 (63–72%) and diols 186a–g in a yield of 74 up to 83%.



Int. J. Mol. Sci. 2023, 24, 15884 17 of 22

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 23 
 

 

4. Application of Monoterpene Thiols in Asymmetric Synthesis 

Monoterpene thiols, known for their natural enantiomeric purity, have found 

applications in asymmetric synthesis. To reveal the synthetic potential of monoterpene 

thiols, we provide some examples of their application in asymmetric synthesis. 

As an example, the work of [5] can be given, which covers a method of using pinane 

hydroxythiol 43 as a chiral auxiliary to synthesize certain chiral aldols and diols (Scheme 

32). When thiol 43 was treated with α,α-dimethoxyacetone, a single diastereomer, 

ketooxathiane 182, was formed with a yield of 32%. The further addition of Grignard 

reagents and organolithium compounds at the C=O of 182 afforded the corresponding 

alcohols 183a–g in good yields and high diastereoselectivity. The configuration of a newly 

formed chiral center of the major diastereomers was assigned as R for tertiary alcohols 

183a–f and S for a secondary one, 183g, due to the change in seniority of substituents. LS-

Selectride (lithium trisiamylborohydride) reduces ketone 182 more selectively than 

LiAlH4 and DIBAL (diisobutylaluminum hydride). Compounds 183a–g reacted with 

AgNO3 and NCS by opening the oxothiane ring to give sultine 184 and aldols 185a–g, 

which are not isolated in an individual form. By reducing with LiAlH4, this mixture was 

converted into the separable non-racemic thiol 43 (63–72%) and diols 186a–g in a yield of 

74 up to 83%. 

The similar approaches using hydroxythiol 43 for the preparation of chiral diols, as 

well as α-hydroxy acids, are also described in [99–101]. 

 

Scheme 32. Synthesis of chiral diols 186a–g using hydroxythiol 43 as a chiral auxiliary. 

Chiral bornane 1,2- and 1,3-hydroxythiols 111, 150, and 151 were evaluated as 

catalysts for the asymmetric reduction of prochiral ketones with borane (Scheme 33) 

[14,15]. Thus, acetophenone 187 was reduced to 1-phenylethanol in yields greater than 

90% and in good enantioselectivity. The solvent nature did not affect the reaction 

enantioselectivity, and the stoichiometric ratio of catalyst to substrate used slightly 

increased it to 75%. In another work [102], a 96% yield and 87% ee were achieved for 

alcohol 188 by replacing the boron hydrogenating agent with borane dimethyl sulfide, 

conducting the reaction in toluene at 50 °C with hydroxythiol 111 as an organocatalyst. 

Scheme 32. Synthesis of chiral diols 186a–g using hydroxythiol 43 as a chiral auxiliary.

The similar approaches using hydroxythiol 43 for the preparation of chiral diols, as
well as α-hydroxy acids, are also described in [99–101].

Chiral bornane 1,2- and 1,3-hydroxythiols 111, 150, and 151 were evaluated as catalysts
for the asymmetric reduction of prochiral ketones with borane (Scheme 33) [14,15]. Thus,
acetophenone 187 was reduced to 1-phenylethanol in yields greater than 90% and in good
enantioselectivity. The solvent nature did not affect the reaction enantioselectivity, and the
stoichiometric ratio of catalyst to substrate used slightly increased it to 75%. In another
work [102], a 96% yield and 87% ee were achieved for alcohol 188 by replacing the boron
hydrogenating agent with borane dimethyl sulfide, conducting the reaction in toluene at
50 ◦C with hydroxythiol 111 as an organocatalyst.
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Scheme 33. Synthesis of chiral 1-phenylethanol 188 using hydroxythiols 111, 151, and 150 as chiral
organocatalysts.

In the presence of SmI2 and thiols 83, 93, 111, and 150, 5-oxotridecanal 189 was con-
verted to lactone 190 (Scheme 34) [12]. The Lewis acid (R*S)SmI2 can promote the addition
of R*SH to the aldehyde group of compound 189. The samarium-bound hemithioacetal in-
termediate (A) can then undergo an intramolecular hydride shift to form the δ-hydroxy acid
thioester intermediate (B). The reaction is capable of proceeding further with irreversible
lactonization, releasing the catalyst (R*S)SmI2 for the next cycle. The presented examples
clearly show that hydroxythiols more stereoselectively co-catalyze the lactonization of
ketoaldehyde 189.
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Scheme 34. Enantioselective formation of δ-lactone 190 via the treatment of 189 with SmI2 and chiral
thiols 83, 93, 111, and 150.

5. Conclusions

In summary, the synthesis of acyclic, mono-, and bicyclic monoterpene thiols has
been achieved via numerous pathways. The current review outlines a wide range of
reactions to demonstrate the synthetic importance of functionalized monoterpenoids. In
addition to focusing on the synthesis of monoterpene thiols, this review also examines their
use as convenient and versatile synthons in organic synthesis and for the production of
bioactive compounds.
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