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Abstract: Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-
random position within the cell nucleus, where it plays a key role in regulating various functions of
the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution
imaging, among other new technologies developed in the last decade. In addition to challenging early
assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made
it possible to visualize and characterize different chromatin structures such as clutches, domains
and compartments. More specifically, super-resolution microscopy facilitates the study of different
cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within
the nucleus in different environments. In this review, we describe recent imaging techniques to
study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss
recent findings, elucidated by these techniques, on the chromatin landscape during different cellular
processes, with an emphasis on the DNA damage response.

Keywords: chromatin organization and dynamics; high resolution imaging; DNA repair

1. Introduction

Over the last two decades, extensive studies across different model systems have
revealed that nuclear organization plays fundamental biological roles. Chromosomes, and
the genes they host, are arranged within the three-dimensional space of the nucleus in a
specific manner, occupying a preferred location. Far from being a polymer with a static
organization, chromatin diffuses inside living cells with specific properties, and its dynam-
ics are often altered following specific stresses or in cells from diseased tissue. Several key
questions remain open. How does our genome fit into a nucleus around 200,000 times
smaller than unwrapped DNA? To what extent does the chromatin architecture in topo-
logical regions contribute to nuclear function? On what length scales does this structural
organization occur? How is chromatin dynamically organized during the cell cycle? How
do essential nuclear functions such as DNA replication, transcription or repair alter the
dynamic organization of chromatin?

With the rapid development of high spatiotemporal resolution imaging techniques
during the last 15 years, it became possible to visualize the structure and dynamics of
chromatin at the scale of a few nanometers in space and milliseconds in time. These
observations revealed different levels of chromatin organization and dynamics. In this
review, we will first present single imaging techniques allowing for the study of dynamic
organization of chromatin at unprecedented resolution. Then, we will describe the state
of the art on the multi-scale organization of chromatin. Finally, we will present how
several biological processes modify the dynamic organization of chromatin, focusing on
DNA damage.

Int. J. Mol. Sci. 2023, 24, 15975. https://doi.org/10.3390/ijms242115975 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242115975
https://doi.org/10.3390/ijms242115975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3978-0003
https://doi.org/10.3390/ijms242115975
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242115975?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 15975 2 of 19

2. Recent Fluorescence-Based Techniques to Study the Dynamic Organization of
Chromatin at High Spatiotemporal Resolution

The resolution in optical microscopy is limited to 0.6 L/NA ~250 nm (where l is the
wavelength used to observe the sample and NA the numerical aperture of the objective). As
a consequence, each fluorescent molecule appears as a spot of ~250 nm in radius, and spots
closer than this distance cannot be resolved by classical microscopy. During the last 20 years,
several techniques emerged to break the diffraction limit and observe structures smaller
than 250 nm [1,2]. The aim of this section is to highlight high spatiotemporal resolution
imaging techniques that have been used to address major questions on chromatin orga-
nization and dynamics. In particular, we will describe FRET-FLIM, FCS, single molecule
localization microscopy and multiplexed FISH combined with super-resolution imaging.

2.1. FRET-FLIM

FRET-FLIM (Förster resonance energy transfer by fluorescence lifetime imaging) is the
method of choice to measure the interactions between proteins in living cells. Fluorescence
resonance energy transfer (FRET) involves the energy transfer through dipole–dipole
coupling of a donor and acceptor chromophore. This transfer requires that the fluorescence
emission spectra of the donor overlap with the absorption spectra of the acceptor molecule
and that the distance between the two fluorophores is within a few nanometers. Since
this ranges with the typical size of protein complexes, FRET is an ideal tool for the study
of protein–protein interactions. Several methods have been developed to assess FRET
efficiency, probably the most quantitative being the measurement of the fluorescence
lifetime of the donor (FLIM), which has been used to measure the spatiotemporal dynamics
of chromatin in living cells [3–5].

2.2. FCS

Fluorescence correlation spectroscopy (FCS) is based on the analysis of fluorescence
fluctuations arising from fluorescently tagged proteins moving in and out of the constant
laser beam of a confocal setup [6,7]. By calculating the autocorrelation of these fluctuations,
it is possible to estimate the characteristic time spent by the tagged molecules within the
focal volume as well as their average number within this volume. Further quantitative
analysis of the autocorrelation curves can also reveal the mode of diffusion (Brownian
motion, sub-diffusion, etc.) as well as the existence of sub-populations of molecules [8,9].
Applied to nuclear proteins, FCS provides information on the binding of proteins to
chromatin and on their mobility within the chromosomal environment at the microsecond
time scale [10]. For example, Wachsmuth et al. assessed the local movement of the
chromatin fiber by analyzing fluorescence fluctuations arising from the linker histone
variant H1.0 tagged with EGFP [11]. Similarly, Bancaud et al. showed how photoactivatable
GFP dimers can easily diffuse throughout the nucleus within seconds, without dense
structures such as heterochromatin not visibly slowing down their motion [12].

2.3. Single Molecule Localization Microscopy: PALM–STORM-SPT

Single molecule localization microscopy allows the imaging of single molecules in cells.
The trick is to light only a small fraction of the fluorophores or dyes in the sample so that
their relative distance is greater than 250 nm. In this case, each spot in the image corresponds
to a single molecule that can be localized at high spatial resolution by determining the
center of its point spread function (PSF)—a common tool to describe the response of an
imaging system to a point source or object. To obtain a full image of the sample, a few
molecules are lighted on, localized and photobleached: this process is repeated for each
frame of a movie until the structure can be accurately reconstructed. This principle is
named PALM [13] (photoactivated localization microscopy) or STORM (stochastic optical
reconstruction microscopy) [14]. Both PALM and STORM need to be performed in fixed
cells and allow the study of structures at up to 5 nm resolution, such as small organelles or
local molecular clusters (Figure 1, top panel). Given the high spatial resolution accessible
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with these techniques and similar to what was reported for electron microscopy, it is
important to keep in mind that some structures can be altered by the fixation process [15].

Figure 1. PALM and SPT: Principle, example and observables. Top: PALM/STORM principles.
Left: a sparse subset of fluorescent probes is activated to produce single-particle images (represented
by white circles) that do not overlap (left). After acquisition of images at a given time interval
(t), a super-resolution image is reconstructed by plotting the measured positions of the fluorescent
probes. Middle: example of histone H2B-mEOS distribution within a cell nucleus. (Right): further
analysis of the final reconstructed images provides several parameters of the structure formed by the
observed protein. Bottom: principle of SPT. (Left): during image acquisition, images are taken with a
given exposure time (t) for the duration of several minutes. In each image, only a sparse number of
emitters (white dots) are detected. Middle: using tracking and localization methods, it is possible
to reconstruct the super-resolved trajectories of single molecules. Each histone H2B trajectory is
represented within a cell nucleus by a colored trace. Right: different dynamic parameters can be
extracted from SPT data by using mathematical approaches. (Image by Olga Markova).

The difference between PALM and STORM is the nature of the fluorescent probes
used to realize the “light on–localization–bleaching” sequence. PALM uses fluorescent
probes directly fused to the protein of interest and emitting light stochastically at low
frequency under an illumination at 405 nm. PALM is also the best technique to estimate
the number of tagged molecules inside cells or in sub-compartments. In contrast, STORM
uses inorganic dyes indirectly linked to the protein of interest (through a Halo, Snap GFP-
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antiGFP nanobody system, etc.). These dyes emit light stochastically almost indefinitely,
limiting the estimation of the number of molecules.

PALM/STORM microscopy gives access to several observables that are not easily
accessible without such a single molecule approach. From the cloud of points obtained
by PALM/STORM, the simplest observable is the local density of proteins, defined as
the number of neighbors in a certain radius around each detection. To further quantify
the distribution of points, a common method consists in calculating the Voronoi diagram
of a cloud of points. This diagram is tiling of the plane into regions from a discrete set
of points called seeds: Each region encloses a single germ and forms the set of points in
the plane closer to this germ than any other. The Delaunay triangulation, also used for
PALM/STORM analysis, is dual to the Voronoi diagram set. This computation geometry
analysis allows then for quantifying clusters, to access the amount of space unoccupied by
the protein of interest also called the lacunarity, and to characterize these wholes (number,
distribution of sizes surfaces, volumes and shapes) [16,17].

The dynamic motion at a single molecular level can be tracked in living cells using
single particle tracking (SPT): in that case, the same type of fluorescent probes can be
used allowing the imaging of individual molecules one after another. However, instead of
bleaching them immediately after lighting them, the aim is to follow their motion in time
over multiple timeframes. To track the molecule correctly, the density of visible molecules
needs to be low to avoid overlapping point emitters, i.e., mis-linking. This approach allows
us to directly access the dynamics of individual molecules at unprecedented resolution,
giving access to their types of motion, diffusion coefficient, residence time on a substrate,
etc. (Figure 1, bottom panel). Using more advanced analysis, it is also possible to test the
existence of an energy potential attracting or repelling molecules within distances smaller
than the diffraction limit or to distinguish between different types of macromolecular
condensates [18].

2.4. Multiplexed FISH Combined with Super-Resolution Imaging

Despite a very high spatial resolution, the main limitation of the imaging methods
described above is their inability to identify specific genomic regions. In contrast, fluo-
rescent in situ hybridization (FISH) and in situ sequencing-based approaches have the
advantage of obtaining both the spatial and genomic information of the signal in single
cells [19]. A catalyst of these approaches was the development of massively parallel oligonu-
cleotide synthesis methods to generate customized complex oligonucleotide libraries such
as Oligopaint [20], which greatly facilitate the detection of multiple non-repetitive nu-
cleic acid species. However, these classical FISH techniques did not have the genomic
and spatial resolution necessary to characterize the organization of chromatin at the sub-
microscopic scale.

More recently, Beliveau et al. combined FISH and STORM to access the fine structure of
chromosomes at known chromosomal loci [21]. They fluorescently marked 46 epigenetically
defined genomic domains in Drosophila Kc167 cells and measured the physical volume
occupied by each domain. Chromosomes exhibit fascinating behaviors on length scales
of ~100 nm to 1 micron. Thus, adapting FISH and STORM techniques to image a whole
chromosome will considerably widen our possibilities in the field of high spatial resolution
imaging of chromosomes [22–24]. Another approach is to combine live cell chromatin
imaging and multiplexed FISH labelling, which allows first to track the movement of
chromosomal loci and then to resolve their identities [25,26].

3. The Basics of Chromatin Organization and Dynamics Unveiled by
Super-Resolution Microscopy
3.1. Chromatin Organization

In eukaryotic cells, genomic DNA is assembled into nucleosomes consisting of a 146 bp
of DNA wrapped around an octamer of histones H2A, H2B, H3, and H4. Single nucleo-
somes are connected by 20 to 75 bp of linker DNA that can bind to histone H1. Together,
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the nucleosome and linker form repetitive structures of 160–200 bp that is referred to as the
10-nm fiber. This 10 nm fiber was early observed in in vitro studies in which purified nucle-
osomes formed the well-known “beads-on-a-string” structure [27,28]. A further level of
structural compaction was thought to be necessary to fit 2 m of human genomic DNA into
the nucleus. Thus, following the in vitro paradigm of chromosome organization, the 10 nm
chromatin fiber is assumed to fold into more ordered 30 nm fibers [29]. However, this key
theory has currently been challenged, as in vivo imaging experiments have failed to detect
the presence of regular 30 nm fibers [30–34]. Instead, STORM-super-resolution imaging has
evidenced that nucleosomes assembled in heterogeneous groups of varying sizes, termed
“clutches”, which are interspersed with nucleosome-depleted regions [32]. Likewise, an
elegant combination of EM tomography and a DNA labeling method (ChromEMT) showed
that nucleosomes assemble into disordered chains with diameters ranging from 5 to 24 nm
but at different concentration densities in the nucleus [31]. These two latter examples are in
disagreement with the existence of a well-defined 30 nm fiber and highlight the significant
heterogeneity and diameter variation in the nucleosome clusters.

Beyond nucleosome assembly, a number of large-scale structures have been described
in mammalian cells using recent imaging, biophysical, biochemical and deep sequencing
technologies [35–40]. Chromosome conformation capture (3C) techniques, useful for map-
ping chromatin interactions across the genome, have uncovered the existence of chromatin
loops along the fiber that can range from tens of Kb to several 100 kb [37]. In addition
to Hi-C evidence, a pioneering study using interferometric PALM (iPALM) has recently
provided the first direct visualization of individual chromatin loops with unprecedented
resolution [38]. iPALM showed large structural heterogeneity of chromatin loops involving
several factors such as cohesin-mediated extrusion, CTCF anchoring and nucleosome stack-
ing. The formation of these structures appears to be highly dynamic, at least once every
cell cycle in cycling mammalian cells (~15–30 h), and are often linked to DNA transactions
such as transcription and repair [41].

At a larger scale, loops that are characterized by unique chromatin features can coalesce
into megabase-sized local chromatin interaction domains termed topological association
domains (TADs) [42,43]. STORM and 3D-SIM technology allowed for characterization
of TADs at the single-cell level, defining them as globular structures with sharp domain
boundaries and strong physical segregation between neighboring domains [44,45]. Fur-
thermore, single-cell analysis revealed that, similar to loops, TADs are also dynamically
formed and can sporadically dissolve [39]. In addition to chromatin organization in loops
and TADs, other high-order structures of approximatively 200 nm were described in the
literature: from the early described chromonema fibers (100–200 nm) [46] to the more
recent PALM-detected nucleosome domains (200 nm) [35], “slinky units” observed by
EM (200–300 nm) [47] and chromatin blobs evidenced by deep PALM (~45–90-nm) [36].
Notably, these structures seem to share some of the properties of TADs.

The next level of chromatin organization consists of compartments. These compart-
ments of several mega-bases of DNA are composed of numerous TADs grouped according
to their loop density, nucleosome composition and functional state [39,48,49]. Two spa-
tially polarized compartments were distinguished: a transcriptionally active compartment
composed of open chromatin (compartment A) and an inactive compartment composed of
closed chromatin (compartment B) [50]. Recent assays with sophisticated FISH technology
provided a high spatiotemporal resolution view of chromatin loci in the A and B compart-
ments organized in individual cells [51,52]. Although most A and B loci segregated in
essentially non-overlapping spatial territories, confirming their spatially polarized organi-
zation [51], there was a subtle spatial overlap between a few A and B loci [52]. Interestingly,
overlapping loci corresponded to a single or series of TADs, highlighting that TADs are the
dynamic functional units inside the A/B compartments.

Finally, at the highest level of chromatin organization, fluorescence microscopy por-
trayed each chromosome occupying its own three-dimensional space in the nucleus, giving
rise to “chromosome territories” [53,54]. Overall, as illustrated in Figure 2, eukaryote
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chromatin exhibits a dynamic and hierarchical organization ranging from the 10 nm fiber,
loops, topological domains and A/B compartments to chromosomal territories.

Beyond the different chromatin structures described above, molecular condensates—
micron-scale structures in eukaryotic cells that lack surrounding membranes but function
to concentrate proteins and nucleic acids—are becoming increasingly important in un-
derstanding chromatin compartmentalization. Several models of condensates have been
described according to their physical nature. The formation of these condensates appears
to be involved in diverse processes, including RNA metabolism, ribosome biogenesis, the
DNA damage response and signal transduction (reviewed in [55,56]).

3.2. Chromatin Dynamics

Far from being a polymer with a static organization, chromatin diffuses within the
nucleus of living cells with specific properties. This dynamic behavior of chromatin seems
to provide a degree of DNA accessibility and, thus, prompt nuclear scanning and possible
functional interactions with molecular partners critical for DNA transaction processes
such as replication, transcription and repair [36,57]. However, what is the nature of chro-
matin motion?

Several methods exist to analyze chromatin dynamics. A major analytical tool used to
quantify chromatin loci motion consists of measuring their position (x, y, z) over time and
calculating their mean square displacement (MSD) [58].

MSD ≡ 〈|x(t)− x0|2〉 = 1
N

N
∑

i=1

∣∣∣x(i)(t)− x(i)(0)
∣∣∣2

MSD(n·∆t) = 1
N−n

N−n
∑

i=1

[
(xi+n − xi)

2 + (yi+n − yi)
2
]

The MSD averages all the displacements made by a locus over a given time step.
Besides giving a quantitative readout of chromatin motion, the shape of the MSD curve
also reveals the nature of this motion (Figure 1, bottom panel): while a linear increase
in the MSD with the time interval indicates Brownian motion, an MSD curve deflected
upwards or downwards means super-diffusive or sub-diffusive motion, respectively [59].
Interestingly, MSD curves generated from chromatin loci in yeast, flies and mammals
revealed sub-diffusive motion [60]. Several kinds of sub-diffusive motions have been
described depending on the way particles explore the nuclear space. When the motion
is confined inside a sub-volume of the nucleus, the motion is called confined, and the
MSD exhibits a plateau: MSD(t) = R2

∞

(
1− e−2dDt/R2

∞

)
+ 4σ2, where d is the dimension

of the motion, D is the diffusion coefficient, R∞ is the plateau, and σ is the noise due to
experimental measurements. The confinement radius from which the particle cannot escape

is given by Rc = R∞

√
2+d

2 . When the motion is not a simple confinement but is modulated
in time and space with scaling properties, the diffusion is called anomalous. In this case,
sub-diffusive particles are constrained, but, unlike confined loci, they can diffuse without
boundaries and thus reach further targets if given enough time. For sub-diffusive motion,
the MSD exhibits a power law and is fitted: MSD(t) = A t α + ε where α, the anomalous
exponent, is smaller than 1, A is the anomalous diffusion coefficient, and ε is the noise.
Combining MSD analysis with physical modelling of chromatin described by the Rouse
model, it is possible to access the properties of the environment in which chromatin is
diffusing, such as the local viscosity and the chromatin persistence length. More specifically,
the Rouse model predicts that MSD(t) follows a power law (MSD ~ A t 0.5) with an
anomalous diffusion coefficient increasing as a function of the chromatin’s persistence

length Lp as A =

√
64 L2

p kBT
3πζ , (kBT is the Boltzmann thermal energy, and ζ is the monomer

friction coefficient) [61]. In other words, when chromatin follows anomalous motion with
an anomalous coefficient of 0.5, the amplitude of the MSD is directly proportional to
chromatin’s stiffness and can be easily identified on a log–log scale MSD plot.
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Although most of the studies describe chromatin mobility with one model, multi-scale
tracking of chromatin in yeast reveals that a single mode of diffusion is not sufficient to
describe DNA motion at different time scales. Instead, DNA motion is composed of several
diffusion regimes that simultaneously drive DNA at each time scale [62]. An interpretation
of such multi-scale dynamics is that the different scales of chromatin organization translate
into different scales in chromatin mobility that can be independently regulated.

The tracking of individual histones by SPT has also provided new insights about
chromatin movement at the nucleosome scale. Since the trajectories obtained by SPT are
often short, they can be analyzed using the probability density function (PDF). Further
analyses, such as distribution angles or residence time, are useful to extract additional
dynamic features (Figure 1, bottom panel). For example, most SPT studies have distin-
guished two histone populations based on their diffusion [63–66]: a slow-population
(with a D < 0.01 µm2/s) that constitutes more than ~70% of all histones within a nucleus
and a fast population (with a D > 2 µm2/s) that constitutes the remaining ~30%. These
two populations were interpreted as chromatin-bound and chromatin-free histones, re-
spectively [65]. Interestingly, these two diffusion states were modeled as spatially separate
domains within the nucleus, highlighting the heterogeneity of chromatin dynamics in
living cells [67,68]. However, new evidence showed that individual histone H2B molecules
can dynamically switch between slow and fast states, challenging the notion of spatially
separated domains [63]. In line with this, some studies have unveiled a third histone popu-
lation (with a D −0.5 µm2/s), which would represent histones that transiently interact with
chromatin [69,70]. Importantly, similar to chromatin loci motion, nucleosome dynamics
were also characterized as sub-diffusive, either anomalous or confined.

A question that remains to be answered is how the dynamics of individual histones
can be correlated to that of chromatin loci or domains. If we compare the diffusion
coefficient of a single nucleosome and of a lacO-labeled chromatin region (encompassing
20–50 nucleosomes), the diffusion coefficient of a single histone tracked at 0–30 ms time
intervals (0.032 µm2/s) is approximately 100 times higher than that of a chromatin locus
tracked at the same time scales for several minutes (1 × 10−4 µm2/s) [57].

While the dynamic of a chromatin locus corresponds to the diffusion of large chro-
matin fiber regions, histone mobility measured by SPT can capture the local diffusion of
nucleosomes wrapped into chromatin, their rapid turnover and free histones.

A study using SPT-PALM has examined more precisely whether individual histone
H2B tagged nucleosome’s movement reflects the dynamics of the DNA replication domain
to which they belong. Interestingly, the MSD plot of nucleosome movement was similar
to that of replication foci movement, highlighting correlated movements [35]. Likewise, it
was shown that the movements of H2B histones within ∼0.3 µm2 chromatin microdomains
were highly correlated. Interestingly, the correlation distances between these microdomains
were up to 2 µm in the cell nucleus, spanning chromatin compartments and even beyond
chromosomal territories [68]. Similarly, deep-PALM experiments emphasized the presence
of spatiotemporal cross-correlations between chromatin structure and dynamics, extending
several micrometers in space and tens of seconds in time [36]. While chromatin density
loses its correlation after 3–4 µm and roughly 40 s, chromatin mobility correlations extend
over ~6 µm and persist for at least 40 s [36,71].

3.3. Key Players in Chromatin Organization and Dynamics

The dynamic organization of chromatin is governed by several factors that are essen-
tial for its changes in compaction and thus its compartmentalization. Recent high temporal
resolution and single molecule imaging studies revealed that the chromosome structural
maintenance complexes (SMCs), consisting of cohesins, condensins and Smc5/6, are crucial
in the extrusion of DNA loops and thus in the assembly of higher-order chromatin struc-
tures [72–75]. It has been shown by 3D SIM and Hi-C technology that TADs are unfolded
in cohesion-depleted cells [45,76]. Likewise, cohesin depletion led to decondensation of
the nucleosome domains detected by PALM in Nozaki et al. [35]. Strikingly, whereas
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TADs and domains were greatly reduced in cohesin-depleted cells, the detectability of
chromosome compartments by Hi-C was increased. This is explained by an increase in
long-range interactions in the absence of cohesin, which results in less contact specificity
within compartments and a weakening in compartmentalization strength [77]. Consis-
tent with an increased long-range interaction in cells lacking cohesin, higher dynamics of
chromatin loci and domains were observed in the absence of cohesin [35,78–81]. However,
super-resolution microscopy recently demonstrated the persistence of A/B compartments
after cohesin depletion [82]. At the chromosome level, condensin is the main SMC complex
that is involved in the formation of chromatin territories [83,84]. In addition to chromosome
territories, a Hi-C study of genomic organization in 24 species covering the eukaryotic
kingdom revealed a strong correlation between condensin and the Rabl configuration—a
highly conserved chromosome conformation in a large number of eukaryotic genomes
characterized by the clustering of centromeres and the anchoring of telomeres to the nuclear
envelope [84].
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Figure 2. Schematic representation of genome organization in mammals. From left to right: DNA
wrapped around histones forms nucleosomes, which are organized into clutches. Each nucleosome
clutch contains ~1–2 kb of DNA, as revealed by super-resolution image [32]. Genomic approaches
and super-resolution imaging revealed the existence of chromatin loops, which are formed by loop
extrusion and in a greater extent stabilized by CTCF and the cohesin ring [38]. At the scale of
~1 Mb, chromatin loops are the base of topologically associating domains (TADs), structures with
delimited boundaries and high-rate interactions inside of these domains [45]. At a higher scale, up
to several mega-bases, chromatin segregates into gene-active and gene-inactive compartments (A
and B, respectively) [40]. Finally, as revealed by chromosome painting and fluorescence microscopy,
individual chromosomes occupy specific regions, known as chromosome territories, that are several
micrometers in length [82]. Top images are representations of each level of chromatin organization
(art by Olga Markova), while the bottom images are real microscopy images taken from different
studies (cited at the bottom of each image).

The multiple associations of chromatin with the nuclear envelope can also shape
epigenomic landscapes and high-order genome architecture (reviewed in [85]). For example,
depletion of lamin A, a scaffolding protein adjacent to the inner side of the nuclear envelope,
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alters genome dynamics, inducing a dramatic transition from slow anomalous diffusion to
fast and normal diffusion [86]. Importantly, this molecular regulation of chromatin diffusion
by lamin A is considered critical for the maintenance of genome organization. Likewise,
studies using species displaying Rabl configuration have shown that chromosome tethering
to the nuclear envelope has a major effect on gene positioning, chromatin dynamics,
transcription and DNA damage repair [87–89].

4. Chromatin Conformation as Proxy of Chromatin Accessibility

It is well established now that the chromatin packing state is uneven within the cell
nucleus. Single-cell techniques such as ChromEMT and super-resolution microscopy have
allowed the mapping of chromatin within a cell nucleus according to its density [31,32,36,47,90].
In these maps, two types of regions previously observed by electron microscopy and soft
X-ray tomography can be differentiated: highly dense regions such as the nuclear periphery
and nucleolus, known as heterochromatin (HC), and much less dense regions dispersed in
the center of the nucleoplasm, known as euchromatin (EC) [91–93]. However, a recent study
applying FLIM-FRET microscopy to analyze the spatial organization at the nanometer-
range proximity between nucleosomes, termed “nanocompaction”, showed that, contrary
to expectations, constitutive HC is much less compacted than bulk chromatin [3]. This
suggests a new view of the distribution in nucleosomes in HC versus EC: more frequent
nucleosome–nucleosome contact would occur in EC (closer than 10 nm) than in HC, but
these clusters would be more spaced, resulting in a less dense distribution at a larger scale.
Interestingly, this recent evidence was found strictly in living cells, suggesting a bias caused
by fixation on precedent studies.

Given that chromatin compaction and chromatin accessibility are in general strongly
correlated, it is not surprising that DNA processes such as transcription, replication and
repair occur differently in HC than in EC. During transcription, for example, gene expres-
sion is regulated by DNA accessibility and binding of transcription factors. Thus, HC is
often associated with a transcriptionally inactive or repressed state decorated by histone H3
methylation (H3K9me2/3, H3K27me3) and heterochromatin protein-1 (HP1) association.
Interestingly, in vitro and in vivo studies shown that HP1 protein forms phase-separated
condensates upon binding DNA, indicating that gene silencing may occur in part through
sequestration of compacted chromatin in HP1 droplets [94,95]. However, the role of HP1 in
the compaction, accessibility and size of HC condensates was challenged by evidence in
mice arguing that the HC condensates lack a separated liquid HP1 pool, and its compaction
can alternate between two digital states (compacted or uncompacted) depending on the
presence of a strong transcriptional activator [96]. Likewise, a study using biophysical
modeling has recently proposed that the specific affinity of HP1 for H3K9me2/3 loci pro-
motes the formation of stable HC condensates at HP1 levels well below those observed
in vitro, highlighting that the H3K9me2/3 landscape governs the HC droplet rather than
HP1 itself [97].

On the other hand, EC is characterized by active gene expression, histone depletion
around transcriptional start sites, histone H3 acetylated and methylated histones marks
(H3K27ac, H3K4me3) [90]. Likewise, some evidence across species has shown how repli-
cation timing is controlled by chromatin architecture. Thus, the open-structured and
frequently transcribed EC replicates more rapidly than HC [98–102]. Similarly, during cell
differentiation, there is a progressive transition of chromatin compaction accompanied
by repression of certain genes and HC-landmarks, a process termed heterochromatiniza-
tion [103–106]. Genome-wide chromatin modification assays and super-resolution imaging
have compared the profiles of undifferentiated embryonic stem cells (ESCs) with those of
differentiated cells. Both mouse and human ESCs revealed widespread active chromatin do-
mains, characterized by dimmer, sparser histone H2B domains and enrichment of H3K27ac,
H3K4me3. In contrast, highly condensed histone H2B domains and HC marks such as
H3K9m and H3K27 become more abundant in differentiated cells [32,35]. Importantly,



Int. J. Mol. Sci. 2023, 24, 15975 10 of 19

alterations in this transition have critical consequences on proper differentiation during
development [107].

Chromatin compaction was also closely correlated to constrained movement at differ-
ent chromatin scales [35,43,68,104,108,109]. Heatmaps resulting from either single histone
H2B tracking or tracking of H2B-bound chromatin domains showed a big heterogeneity in
chromatin motion inside a nucleus, showing less movement within HC-rich regions than
regions elsewhere in the genome [35,43,68,109]. Interestingly, despite evidence showing
heterogeneity in chromatin dynamics due to compaction, a recent study has described a
steady-state motion of interphase chromatin, independent of changes in chromatin com-
paction, cell cycle and DNA replication [66]. This motion profile was discovered by tracking
individual nucleosomes but also chromatin loci on a second (1 s) time scale. Beyond this
time scale, steady-state motion is lost, which explains the discrepancy with previous work
using longer time scales. In terms of function, the steady-state behavior of chromatin may
allow cells to cope with changes in the nuclear environment in order to maintain their
routine cellular functions in similar nuclear environments [66].

Thus, the organizational rearrangement of chromatin during different DNA process is
not haphazard but seems to have a specific function mainly regulating chromatin accessi-
bility and motion.

5. DNA Repair and Genome Stability

So far, we have reviewed the organization and dynamics of chromatin in its physio-
logical state. In the last section, we focus on the behavior of chromatin when it undergoes
damage. In fact, DNA is continuously threatened by endogenous and exogenous factors
that can result in different types of lesions, double strand breaks (DSBs) being the most
detrimental. A network of cellular mechanisms, named together the DNA damage response
(DDR), monitor DNA lesions, guarantee faithful repair and, therefore, chromosome stability.
Two of the most well-known DSB repair mechanisms are homologous recombination (HR)
and non-homologous end joining (NHEJ). While HR repairs DNA breaks by copying the
missing information across the lesion from an undamaged template, as from the replicated
sister chromatid, NHEJ does it by ligation of the broken ends after their juxtaposition
(reviewed in [110–113]).

To decipher the mechanisms underlying the DDR, several methods to induce DNA
damage have been developed over the years. Methods such as ionizing radiations, crosslink-
ing agents, radiomimetic compounds and localized UV laser micro-irradiation induce dam-
age randomly throughout the genome. In contrast, homing endonucleases and restriction
enzymes allow the induction of damage at a targeted position on the genome, which is
useful for understanding local chromatin changes around the break [114].

As seen in in vitro studies, chromatin constitutes a barrier to the DDR machinery [115]
and, therefore, needs to be remodeled to allow DNA accessibility. Thus, the chromatin
structure undergoes dynamic changes that are crucial for the DDR progression (Figure 3).
Certainly, the original architecture of a damaged chromatin domain and its near and
distant environment affect signaling and repair kinetics. Thus, it is not surprising that
damaged HC regions required more extensive remodeling than damaged EC ones [116–118].
Despite massive heterochromatin unfolding upon UV irradiation, its specific histone marks
and transcriptional silencing are maintained [119]. However, recent evidence showed a
significant drop in HC histone markers under oxidative stress and, on the contrary, a raise
in H3K9Ac levels, suggesting a positive gene expression epigenetic profile [120].

Chromatin remodeling starts with a first step of chromatin relaxation within seconds
after DNA damage [68,121,122]. Interestingly, single-molecule microscopy has shown
that this relaxation effect is specific to damaged chromatin, with nuclear regions distal
to the damage being more compact [121]. This first remodeling event is dependent on
histone poly-ADP-ribosylation and crucial for the recruitment of downstream DDR factors
such as the ATM kinase [123,124]. In a second step, ATM and other kinases mediate the
phosphorylation of histone H2AX (
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of chromatin surrounding DNA damage [125–127]. ATM signaling has been shown to
lead to a more compacted fiber [128]. This compaction level is required for upstream
signaling by facilitating the recruitment of some adaptor proteins such as 53BP1 [124].
Interestingly, chromatin compaction here was also involved in loop extrusion and TAD
organization [129–131]. Indeed, super-resolution microscopy revealed that CTCF and
cohesin, loop/TAD mediators, are juxtaposed to
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of these domains is governed by high-order structures [131]. The potential functions of loop
extrusion around DNA damage are to amplify the DDR signaling by enhancing chromatin–
protein interactions and to protect 3D genome integrity during DNA repair [132,133],
although a reduction in TAD number and insulation was found under hyperosmotic
stress [134]. Notably, whereas compacted chromatin boosts upstream DDR signaling, it impairs
downstream repair and restoration [124]. Thus, a second step of chromatin relaxation is needed
to complete repair. Although this last remodeling step has not been fully characterized, it was
associated with histone SUMOylation and ubiquitination [135,136].
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Figure 3. Chromatin remodeling during the DNA damage response: Upon DNA damage, PARP1 is
activated and binds to the DNA damage site within seconds. Activated PARP1 catalyzes PAR chain
formation and also PARylates the histone tails. This results in relaxation of the chromatin structure.
Then, the PARylated PARP1 also activates and recruits other DDR factors at the DNA damage site.
Among them, the ATM kinase is required to phosphorylate the H2AX histone. ATM signaling is
performed through chromatin loops, which in turn triggers
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of chromatin condensation allows the recruitment of upstream checkpoint factors. According to [124]
Burgess et al., a second relaxation seems to be needed, since effector proteins cannot be recruited
when chromatin is still condensed. Finally, certain repair proteins such as 53BP1 form condensates
architecting chromatin in a way that repair is favored. (image by Olga Markova).

As expected, chromatin remodeling during the DDR is accompanied by changes in
chromatin motion. Several studies have shown enhanced chromatin dynamics after DNA
damage, which was shown to facilitate homology search during HR [118,137,138] (Figure 4).
Rad51, the central protein of HR, has an essential role to promote increased mobility since
in the absence of Rad51, no change is observed both at the damaged site but globally in the
nucleus [137]. Miné-Hattab et al. proposed a model in which stiffening of the damaged
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ends by Rad51 polymerization along the single strand DNA tail, combined with globally
increased stiffness, “act like a needle in a ball of yarn”, enhancing the ability of the break
to traverse the chromatin meshwork. A global change in chromatin stiffening due to H2A
phosphorylation has also been proposed to explain increased chromatin mobility upon
DSB [139–141]. More recently, the direct visualization of Rad51 in living cells revealed that
the dynamics of Rad51-ssDNA filaments constitute a robust search strategy, allowing DSB
to rapidly explore the nuclear volume and thus enable efficient HR [142].
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Figure 4. Chromatin dynamics upon DNA damage. Representation of chromatin mobility after
a single DSB in a mammalian nucleus under two different conditions. When a DSB is repaired
by NHEJ (left, blue fiber), there is no change in chromatin mobility, and it thus remains compact.
Repair by HR (right, red fiber), on the other hand, requires increased chromatin mobility (red flash),
enabling a homology search within the nucleus. This increased mobility appears to be accompanied
by chromatin decompaction and stiffening (image by Olga Markova).

However, these notions come largely from studies in yeast [89,137,139,141,143,144] but
remain controversial in mammals [145–149]. Notably, most of these studies have followed
the dynamics of large regions of chromatin, while there is little evidence for the mobil-
ity of damaged chromatin at the nucleosomal level. A recent study performing histone
PALM-SPT showed that motion heterogeneity changes also throughout the nucleus upon
DNA damage. While heterogeneity decreases in regions around the break, the motion of
regions elsewhere in the nucleus becomes homogenous [68]. This difference in the behavior
of damaged and undamaged chromatin within the nucleus is proposed to be linked to
the formation of repair foci or membrane-less condensates at the site of the DNA lesions.
Indeed, many repair proteins relocalize from a diffuse nuclear distribution to highly concen-
trated nuclear foci in lesions (i.e., condensates). Consequently, these condensates change
the structure of damaged chromatin, which may favor certain molecular interactions while
preventing others [150]. The DDR protein 53BP1 forms one of the most studied conden-
sates [151]. Live-cell microscopy revealed how 53BP1 condensates organize damaged
chromatin into a larger repair compartment, while pushing undamaged chromatin regions
away [152,153]. This is consistent with the notion of global compaction and homogenous
motion in undamaged regions observed in [68,121]. Furthermore, a more recent study
using STED and 3D SIM has shown that 53BP1 distribution stabilizes several neighboring
loops at the break ends in an ordered circular arrangement [154]. Therefore, 53BP1 deple-
tion disrupts this circular architecture, leading to persistent decompaction of damaged
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chromatin and aberrant spreading of DNA repair proteins. Indeed, inherited or acquired
defects in nuclear chromatin organization during the DDR lead to genome instability. By
optimizing STORM for imaging pathological tissues, a study revealed gradual chromatin
decompaction and fragmentation throughout tumorigenesis. Importantly, this chromatin
feature may improve diagnosis, risk stratification and cancer prevention [155].

6. Conclusions

During the last 10 years, high spatiotemporal resolution imaging techniques have
contributed to elucidating the highly dynamic conformation of chromatin. Indeed, it is now
possible to visualize and track labeled chromatin structures on size scales beyond the diffrac-
tion limit. Concomitant with the development of new single-cell techniques and computer
modelling, high spatiotemporal resolution imaging allowed for better characterization of
how chromatin organization regulates almost all genetic activities.

As discussed in this review, defects in chromatin conformation and dynamics have
detrimental consequences in cell differentiation, gene expression and DNA damage repair.
In the future, characterization of chromatin conformation in non-physiological states may
provide “chromatin hallmarks” that could contribute to diagnostic imaging and thus
prevent pathologies.
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45. Szabo, Q.; Donjon, A.; Jerković, I.; Papadopoulos, G.L.; Cheutin, T.; Bonev, B.; Nora, E.P.; Bruneau, B.G.; Bantignies, F.; Cavalli,
G. Regulation of Single-Cell Genome Organization into TADs and Chromatin Nanodomains. Nat. Genet. 2020, 52, 1151–1157.
[CrossRef] [PubMed]

46. Belmont, A.S.; Bruce, K. Visualization of G1 Chromosomes: A Folded, Twisted, Supercoiled Chromonema Model of Interphase
Chromatid Structure. J. Cell Biol. 1994, 127, 287–302. [CrossRef] [PubMed]

47. Sedat, J.; McDonald, A.; Kasler, H.; Verdin, E.; Cang, H.; Arigovindan, M.; Murre, C.; Elbaum, M. A Proposed Unified Mitotic
Chromosome Architecture. Proc. Natl. Acad. Sci. USA 2022, 119, e2119107119. [CrossRef] [PubMed]

48. Janssen, A.; Colmenares, S.U.; Karpen, G.H. Heterochromatin: Guardian of the Genome. Annu. Rev. Cell Dev. Biol. 2018,
34, 265–288. [CrossRef] [PubMed]

49. Szabo, Q.; Bantignies, F.; Cavalli, G. Principles of Genome Folding into Topologically Associating Domains. Sci. Adv. 2019,
5, eaaw1668. [CrossRef]

50. Lieberman-Aiden, E.; Van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.;
Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome.
Science (1979) 2009, 326, 289–293. [CrossRef]

51. Wang, S.; Su, J.H.; Beliveau, B.J.; Bintu, B.; Moffitt, J.R.; Wu, C.T.; Zhuang, X. Spatial Organization of Chromatin Domains and
Compartments in Single Chromosomes. Science (1979) 2016, 353, 598–602. [CrossRef]

52. Su, J.H.; Zheng, P.; Kinrot, S.S.; Bintu, B.; Zhuang, X. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity
of Chromatin. Cell 2020, 182, 1641–1659.e26. [CrossRef]

53. Pinkel, D.; Landegentt, J.; Collins, C.; Fuscoet, J.; Segraves, R.; Lucas, J.; Gray, J. Fluorescence in Situ Hybridization with Human
Chromosome-Specific Libraries: Detection of Trisomy 21 and Translocations of Chromosome 4. Proc. Natl. Acad. Sci. USA 1988,
85, 9138–9142. [CrossRef]

54. Cremer, T.; Cremer, C. Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells. Nat. Rev. Genet.
2001, 2, 292–301. [CrossRef]

55. Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol.
Cell Biol. 2017, 18, 285–298. [CrossRef] [PubMed]

56. Miné-Hattab, J.; Liu, S.; Taddei, A. Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes 2022, 13, 1846.
[CrossRef] [PubMed]

57. Hihara, S.; Pack, C.G.; Kaizu, K.; Tani, T.; Hanafusa, T.; Nozaki, T.; Takemoto, S.; Yoshimi, T.; Yokota, H.; Imamoto, N.; et al. Local
Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells. Cell Rep. 2012, 2, 1645–1656. [CrossRef]

58. Meister, P.; Gehlen, L.R.; Varela, E.; Kalck, V.; Gasser, S.M. Visualizing Yeast Chromosomes and Nuclear Architecture, 2nd ed.; Elsevier
Inc.: Amsterdam, The Netherlands, 2010; Volume 470. [CrossRef]

59. Barkai, E.; Garini, Y.; Metzler, R. Strange Kinetics of Single Molecules in Living Cells. Phys. Today 2012, 65, 29–35. [CrossRef]
60. Miné-Hattab, J.; Chiolo, I. Complex Chromatin Motions for DNA Repair. Front. Genet. 2020, 11, 800. [CrossRef]
61. Socol, M.; Wang, R.; Jost, D.; Carrivain, P.; Vaillant, C.; Le Cam, E.; Dahirel, V.; Normand, C.; Bystricky, K.; Victor, J.-M.; et al.

Rouse Model with Transient Intramolecular Contacts on a Timescale of Seconds Recapitulates Folding and Fluctuation of Yeast
Chromosomes. Nucleic Acids Res. 2019, 47, 6195–6207. [CrossRef] [PubMed]

62. Miné-Hattab, J.; Recamier, V.; Izeddin, I.; Rothstein, R.; Darzacq, X. Multi-Scale Tracking Reveals Scale-Dependent Chromatin
Dynamics after DNA Damage. Mol. Biol. Cell 2017, 28, 3323–3332. [CrossRef] [PubMed]

63. Wagh, K.; Stavreva, D.A.; Jensen, R.A.M.; Paakinaho, V.; Fettweis, G.; Louis Schiltz, R.; Wüstner, D.; Mandrup, S.; Presman, D.M.;
Upadhyaya, A.; et al. Dynamic Switching of Transcriptional Regulators between Two Distinct Low-Mobility Chromatin States.
Sci. Adv. 2023, 9, eade1122. [CrossRef] [PubMed]

64. Heyza, J.R.; Lei, W.; Watza, D.; Zhang, H.; Chen, W.; Back, J.B.; Schwartz, A.G.; Bepler, G.; Patrick, S.M. Identification and
Characterization of Synthetic Viability with ERCC1 Deficiency in Response to Interstrand Crosslinks in Lung Cancer. Clin. Cancer
Res. 2019, 25, 2523–2536. [CrossRef] [PubMed]

65. Hansen, A.S.; Woringer, M.; Grimm, J.B.; Lavis, L.D.; Tjian, R.; Darzacq, X. Robust Model-Based Analysis of Single-Particle
Tracking Experiments with Spot-On. eLife 2018, 7, e33125. [CrossRef] [PubMed]

https://doi.org/10.1016/j.cell.2019.01.020
https://doi.org/10.1016/j.cmet.2022.08.014
https://doi.org/10.7554/eLife.25776
https://doi.org/10.1038/nature11049
https://doi.org/10.1038/nature11082
https://www.ncbi.nlm.nih.gov/pubmed/22495300
https://doi.org/10.1126/science.aau1783
https://doi.org/10.1038/s41588-020-00716-8
https://www.ncbi.nlm.nih.gov/pubmed/33077913
https://doi.org/10.1083/jcb.127.2.287
https://www.ncbi.nlm.nih.gov/pubmed/7929576
https://doi.org/10.1073/pnas.2119107119
https://www.ncbi.nlm.nih.gov/pubmed/35544689
https://doi.org/10.1146/annurev-cellbio-100617-062653
https://www.ncbi.nlm.nih.gov/pubmed/30044650
https://doi.org/10.1126/sciadv.aaw1668
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.aaf8084
https://doi.org/10.1016/j.cell.2020.07.032
https://doi.org/10.1073/pnas.85.23.9138
https://doi.org/10.1038/35066075
https://doi.org/10.1038/nrm.2017.7
https://www.ncbi.nlm.nih.gov/pubmed/28225081
https://doi.org/10.3390/genes13101846
https://www.ncbi.nlm.nih.gov/pubmed/36292731
https://doi.org/10.1016/j.celrep.2012.11.008
https://doi.org/10.1016/S0076-6879(10)70021-5
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.3389/fgene.2020.00800
https://doi.org/10.1093/nar/gkz374
https://www.ncbi.nlm.nih.gov/pubmed/31114898
https://doi.org/10.1091/mbc.e17-05-0317
https://www.ncbi.nlm.nih.gov/pubmed/28794266
https://doi.org/10.1126/sciadv.ade1122
https://www.ncbi.nlm.nih.gov/pubmed/37315128
https://doi.org/10.1158/1078-0432.CCR-18-3094
https://www.ncbi.nlm.nih.gov/pubmed/30538112
https://doi.org/10.7554/eLife.33125
https://www.ncbi.nlm.nih.gov/pubmed/29300163


Int. J. Mol. Sci. 2023, 24, 15975 16 of 19

66. Iida, S.; Shinkai, S.; Itoh, Y.; Tamura, S.; Kanemaki, M.T.; Onami, S.; Maeshima, K. Single-Nucleosome Imaging Reveals
Steady-State Motion of Interphase Chromatin in Living Human Cells. Sci. Adv. 2022, 8, eabn5626. [CrossRef]

67. Ashwin, S.S.; Nozaki, T.; Maeshima, K.; Sasai, M. Organization of Fast and Slow Chromatin Revealed by Single-Nucleosome
Dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 19939–19944. [CrossRef]

68. Locatelli, M.; Lawrimore, J.; Lin, H.; Sanaullah, S.; Seitz, C.; Segall, D.; Kefer, P.; Bloom, K.; Liu, J.; Bonin, K.; et al. DNA Damage
Reduces Heterogeneity and Coherence of Chromatin Motions. Proc. Natl. Acad. Sci. USA 2022, 119, e2205166119. [CrossRef]

69. Izeddin, I.; Récamier, V.; Bosanac, L.; Cissé, I.I.; Boudarene, L.; Dugast-Darzacq, C.; Proux, F.; Bénichou, O.; Voituriez, R.;
Bensaude, O.; et al. Single-Molecule Tracking in Live Cells Reveals Distinct Target-Search Strategies of Transcription Factors in
the Nucleus. eLife 2014, 3, e02230. [CrossRef]

70. Kim, J.M.; Visanpattanasin, P.; Jou, V.; Liu, S.; Tang, X.; Zheng, Q.; Li, K.Y.; Snedeker, J.; Lavis, L.D.; Lionnet, T.; et al. Single-
Molecule Imaging of Chromatin Remodelers Reveals Role of Atpase in Promoting Fast Kinetics of Target Search and Dissociation
from Chromatin. eLife 2021, 10, e69387. [CrossRef]

71. Zidovska, A.; Weitz, D.A.; Mitchison, T.J. Micron-Scale Coherence in Interphase Chromatin Dynamics. Proc. Natl. Acad. Sci. USA
2013, 110, 15555–15560. [CrossRef]

72. Davidson, I.F.; Bauer, B.; Goetz, D.; Tang, W.; Wutz, G.; Peters, J.-M. DNA Loop Extrusion by Human Cohesin. Science (1979) 2019,
366, 1338–1345. [CrossRef]

73. Kim, Y.; Shi, Z.; Zhang, H.; Finkelstein, I.J.; Yu, H. Human Cohesin Compacts DNA by Loop Extrusion. Science (1979) 2019, 366,
1345–1349. [CrossRef]

74. Terakawa, T.; Bisht, S.; Eeftens, J.M.; Dekker, C.; Haering, C.H.; Greene, E.C. The Condensin Complex Is a Mechanochemical
Motor That Translocates along DNA. Science (1979) 2017, 358, 672–676. [CrossRef]

75. Ganji, M.; Shaltiel, I.A.; Bisht, S.; Kim, E.; Kalichava, A.; Haering, C.H.; Dekker, C. Real-Time Imaging of DNA Loop Extrusion by
Condensin. Science (1979) 2018, 360, 102–105. [CrossRef]

76. Schwarzer, W.; Abdennur, N.; Goloborodko, A.; Pekowska, A.; Fudenberg, G.; Loe-Mie, Y.; Fonseca, N.A.; Huber, W.; Haering,
C.H.; Mirny, L.; et al. Two Independent Modes of Chromatin Organization Revealed by Cohesin Removal. Nature 2017, 551, 51–56.
[CrossRef] [PubMed]

77. Wutz, G.; Várnai, C.; Nagasaka, K.; Cisneros, D.A.; Stocsits, R.R.; Tang, W.; Schoenfelder, S.; Jessberger, G.; Muhar, M.; Hossain,
M.J.; et al. Topologically Associating Domains and Chromatin Loops Depend on Cohesin and Are Regulated by CTCF, WAPL,
and PDS5 Proteins. EMBO J. 2017, 36, 3573–3599. [CrossRef]

78. Cheblal, A.; Challa, K.; Seeber, A.; Shimada, K.; Yoshida, H.; Ferreira, H.C.; Amitai, A.; Gasser, S.M. DNA Damage-Induced
Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement. Mol. Cell 2020, 80, 311–326.e4.
[CrossRef]

79. Dion, V.; Kalck, V.; Seeber, A.; Schleker, T.; Gasser, S.M. Cohesin and the Nucleolus Constrain the Mobility of Spontaneous Repair
Foci. EMBO Rep. 2013, 14, 984–991. [CrossRef] [PubMed]

80. Hansen, A.S.; Cattoglio, C.; Darzacq, X.; Tjian, R. Recent Evidence That TADs and Chromatin Loops Are Dynamic Structures.
Nucleus 2018, 9, 20–32. [CrossRef] [PubMed]

81. Carré-Simon, À.; Fabre, E. 3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes 2022, 13, 7.
[CrossRef] [PubMed]

82. Cremer, M.; Brandstetter, K.; Maiser, A.; Rao, S.S.P.; Schmid, V.J.; Guirao-Ortiz, M.; Mitra, N.; Mamberti, S.; Klein, K.N.; Gilbert,
D.M.; et al. Cohesin Depleted Cells Rebuild Functional Nuclear Compartments after Endomitosis. Nat. Commun. 2020, 11, 6146.
[CrossRef]

83. Bauer, C.R.; Hartl, T.A.; Bosco, G. Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction
of Polyploid Interphase Chromosomes. PLoS. Genet. 2012, 8, e1002873. [CrossRef] [PubMed]

84. Hoencamp, C.; Dudchenko, O.; Elbatsh, A.M.O.; Brahmachari, S.; Raaijmakers, J.A.; van Schaik, T.; Cacciatore, Á.S.; Contessoto,
V.G.; van Heesbeen, R.G.H.P.; van den Broek, B.; et al. 3D Genomics across the Tree of Life Reveals Condensin II as a Determinant
of Architecture Type. Science (1979) 2021, 372, 984–989. [CrossRef]

85. Briand, N.; Collas, P. Lamina-Associated Domains: Peripheral Matters and Internal Affairs. Genome Biol. 2020, 21, 85. [CrossRef]
[PubMed]

86. Bronshtein, I.; Kepten, E.; Kanter, I.; Berezin, S.; Lindner, M.; Redwood, A.B.; Mai, S.; Gonzalo, S.; Foisner, R.; Shav-Tal, Y.;
et al. Loss of Lamin A Function Increases Chromatin Dynamics in the Nuclear Interior. Nat. Commun. 2015, 6, 8044. [CrossRef]
[PubMed]
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