The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos
Abstract
:1. Introduction
2. Adverse Effects of Abnormal Gene Expression on ZGA
2.1. BDNF (Brain-Derived Neurotrophic Factor) Is Associated with Egg Maturation
2.2. Y-Box Binding Protein 1 (YBX1) Reduces Attenuation of Damaging Maternal Genes
3. Adverse Effects of Abnormal Gene Expression on Zygotic Genome Activation
3.1. Down-Regulation Centromeric Protein F (CENPF) May Cause the Embryo to Stagnate at the 8-Cell Stage Formatting of Mathematical Components
3.2. Zinc Finger and SCAN Domain Containing 4 (ZSCAN4) May Result in 16-Cell Phase Growth Arrest
3.3. Interaction of TEA Domain Transcription Factor 4 (TEAD4) and CCN2
3.4. Deletion of GLI-Similar 1 (GLIS1) May Lead to ZGA Failure
3.5. Upstream Stimulating Factor 1 (USF1) Gene Knockout Affects Early Embryonic Development in Cattle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TE | Trophoblastic ectoderm |
ICM | Inner cell mass |
ESCs | Embryonic stem cells |
MEGs | Maternal effector genes |
NOBOX | Newborn ovary homeobox |
OCT4 | Octamer-binding transcription factor 4 |
ZNFO | Krüppel-associated box (KRAB) containing zinc finger transcription factor |
SOX2 | SRY (sex determining region Y)-box 2 |
K-252a | NTRK2 inhibitor |
pep5 | p75 inhibitor |
K-252a | NTRK2 inhibitor |
TSPY | Testis specific protein Y-encoded |
BDNF | Brain-derived neurotrophic factor |
IVM | Oocytes in vitro maturation |
NTs | Neurotrophins |
YBX1 | Y-Box Binding Protein 1 |
MZT | Maternal-to-zygotic transition |
AS | Alternative Splicing |
m6A | N6-methyladenosine |
CENPF | Centromeric protein F |
ZSCAN4 | Zinc Finger and SCAN Domain Containing 4 |
PIWIL2 | Piwi-like RNA-mediated gene silencing 2 |
DPPA2 | Developmental pluripotency-associated gene 2 |
TE | Trophoblast ectoderm |
PGK1 | Phosphor glycolate 15 kinase 1 |
PDHA1 | Pyruvate dehydrogenase 1α |
HSC70 | Heat shock homologous protein 70 |
GLIS1 | GLI-Similar 1 |
USF1 | Upstream stimulating factor 1 |
References
- Ren, W.; Gao, L.; Mou, Y.; Deng, W.; Hua, J.; Yang, F. DUX: One Transcription Factor Controls 2-Cell-like Fate. Int. J. Mol. Sci. 2022, 23, 2067. [Google Scholar] [CrossRef]
- Rossant, J. Genetic control of early cell lineages in the mammalian embryo. Annu. Rev. Genet. 2018, 52, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Tripurani, S.K.; Kyung-Bon, L.; Lei, W.; Gabbine, W.; Smith, G.W.; Lee, Y.S.; Latham, K.E.; Yao, J. A novel functional role for the oocyte-specific transcription factor newborn ovary homeobox (NOBOX) during early embryonic development in cattle. Endocrinology 2011, 152, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Hand, J.M.; Zhang, K.; Wang, L.; Koganti, P.P.; Mastrantoni, K.; Rajput, S.K.; Ashry, M.; Smith, G.W.; Yao, J. Discovery of a novel oocyte-specific Krüppel-associated box domain-containing zinc finger protein required for early embryogenesis in cattle. Mech. Dev. 2017, 144, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Telford, N.A.; Watson, A.J.; Schultz, G.A. Transition from maternal to embryonic control in early mammalian development: A comparison of several species. Mol. Reprod. Dev. 1990, 26, 90–100. [Google Scholar] [CrossRef]
- Simmet, K.; Zakhartchenko, V.; Philippou-Massier, J.; Blum, H.; Klymiuk, N.; Wolf, E. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2770–2775. [Google Scholar] [CrossRef]
- Sakurai, N.; Takahashi, K.; Emura, N.; Fujii, T.; Hirayama, H.; Kageyama, S.; Hashizume, T.; Sawai, K. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Cell. Reprogramming 2016, 18, 309–318. [Google Scholar] [CrossRef]
- Yao, X.; Amaral, T.F.; Ross, P.J.; Soto, D.A.; Diffenderfer, K.E.; Pankonin, A.R.; Surawich, J.; Paula, T.; Hansen, P.J. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells. Biol. Reprod. 2021, 105, 52–63. [Google Scholar]
- Denicol, A.C.; Dobbs, K.B.; Mclean, K.M.; Carambula, S.F.; Loureiro, B.; Hansen, P.J. Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci. Rep. 2013, 3, 1266. [Google Scholar] [CrossRef]
- Tribulo, P.; Leão BC, D.S.; Lehloenya, K.C.; Mingoti, G.Z.; Hansen, P.J. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol. Reprod. Off. J. Soc. Study Reprod. 2017, 96, 1129–1141. [Google Scholar] [CrossRef]
- Rho, N. Key Role of Testis Specific Protein y Encoded (TSPY) in Bovine Early Embryo Development. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2020. [Google Scholar]
- Dissen, G.A.; Mayerhofer, A.; Ojeda, S.R. Participation of nerve growth factor in the regulation of ovarian function. Zygote 1996, 4, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Lara, H.E.; Hill, D.F.; Katz, K.H.; Ojeda, S.R. The gene encoding nerve growth factor is expressed in the immature rat ovary: Effect of denervation and hormonal treatment. Endocrinology 1990, 126, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Mayerhofer, A.; Dissen, G.; Parrott, J.; Hill, D.; Mayerhofer, D.; Garfield, R.; Costa, M.; Skinner, M.; Ojeda, S.J.E. Involvement of nerve growth factor in the ovulatory cascade: trkA receptor activation inhibits gap junctional communication between thecal cells. Endocrinology 1996, 137, 5662–5670. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, S.R.; Romero, C.; Tapia, V.; Dissen, G.A. Neurotrophic and cell–cell dependent control of early follicular development. Mol. Cell. Endocrinol. 2000, 163, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Waraksa, J.A.; Lindsay, R.M.; Ip, N.Y.; Hutz, R.J. Neurotrophin-3 augments steroid secretion by hamster ovarian follicles in vitro. Zool. Sci. 1995, 12, 499–502. [Google Scholar] [CrossRef]
- Barbacid, M. The Trk family of neurotrophin receptors. J. Neurobiol. 1994, 25, 1386–1403. [Google Scholar] [CrossRef]
- Dissen, G.A.; Garcia-Rudaz, C.; Ojeda, S.R. Role of Neurotrophic Factors in Early Ovarian Development. In Seminars in Reproductive Medicine; Thieme Medical Publishers: New York, NY, USA, 2009; pp. 24–31. [Google Scholar]
- Seifer, D.B.; Feng, B.; Shelden, R.M.; Chen, S.; Dreyfus, C.F. Brain-derived neurotrophic factor: A novel human ovarian follicular protein. J. Clin. Endocrinol. Metab. 2002, 87, 655–659. [Google Scholar] [CrossRef]
- Zhao, X.; Du, F.; Liu, X.; Ruan, Q.; Wu, Z.; Lei, C.; Deng, Y.; Luo, C.; Jiang, J.; Shi, D. Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology 2019, 130, 79–88. [Google Scholar] [CrossRef]
- Mordovkina, D.; Lyabin, D.N.; Smolin, E.A.; Sogorina, E.M.; Ovchinnikov, L.P.; Eliseeva, I.J.B. Y-box binding proteins in mRNP assembly, translation, and stability control. Biomolecules 2020, 10, 591. [Google Scholar] [CrossRef]
- Bouvet, P.; Wolffe, A.P. A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell 1994, 77, 931–941. [Google Scholar] [CrossRef]
- Lau, E.S.-W.; Zhu, B.; Sun, M.-A.; Ngai, S.M.; Ge, W. Proteomic analysis of zebrafish folliculogenesis identifies YB-1 (Ybx1/ybx1) as a potential gatekeeping molecule controlling early ovarian folliculogenesis. Biol. Reprod. 2023, 109, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yan, L.; Shen, W.; Meng, A.J.D. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 2018, 145, dev166587. [Google Scholar] [CrossRef]
- Deng, M.; Chen, B.; Liu, Z.; Wan, Y.; Li, D.; Yang, Y.; Wang, F. YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Kakourou, G.; Jaroudi, S.; Tulay, P.; Heath, C.; Serhal, P.; Harper, J.C.; SenGupta, S.B. Investigation of gene expression profiles before and after embryonic genome activation and assessment of functional pathways at the human metaphase II oocyte and blastocyst stage. Fertil. Steril. 2013, 99, 803–814.e23. [Google Scholar] [CrossRef]
- Kaňka, J.; Kepkova, K.; Němcová, L.J.T. Gene expression during minor genome activation in preimplantation bovine development. Theriogenology 2009, 72, 572–583. [Google Scholar] [CrossRef]
- Toralová, T.; Šušor, A.; Němcová, L.; Kepková, K.; Kaňka, J.J.R. Silencing CENPF in bovine preimplantation embryo induces arrest at 8-cell stage. Reproduction 2009, 138, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Bomont, P.; Maddox, P.; Shah, J.V.; Desai, A.B.; Cleveland, D.W. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J. 2005, 24, 3927–3939. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.V.; Vergnolle, M.A.; Hussein, D.; Wozniak, M.J.; Allan, V.J.; Taylor, S.S. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J. Cell Sci. 2005, 118, 4889–4900. [Google Scholar] [CrossRef]
- Liao, H.; Winkfein, R.; Mack, G.; Rattner, J.; Yen, T. CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J. Cell Biol. 1995, 130, 507–518. [Google Scholar] [CrossRef]
- Falco, G.; Lee, S.-L.; Stanghellini, I.; Bassey, U.C.; Hamatani, T.; Ko, M.S. Zscan4: A novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 2007, 307, 539–550. [Google Scholar] [CrossRef]
- Zalzman, M.; Falco, G.; Sharova, L.V.; Nishiyama, A.; Thomas, M.; Lee, S.L.; Stagg, C.A.; Hoang, H.G.; Yang, H.T.; Indig, F.E.; et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 2010, 464, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Ross, P.J.; Sawai, K. The necessity of ZSCAN4 for preimplantation development and gene expression of bovine embryos. J. Reprod. Dev. 2019, 65, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Manakov, S.A.; Pezic, D.; Marinov, G.K.; Pastor, W.A.; Sachidanandam, R.; Aravin, A.A. MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell Rep. 2015, 12, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011, 12, 246–258. [Google Scholar] [CrossRef]
- Gou, L.T.; Dai, P.; Yang, J.H.; Xue, Y.; Hu, Y.P.; Zhou, Y.; Kang, J.Y.; Wang, X.; Li, H.; Hua, M.M.; et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2014, 24, 680–700. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Hirata, T.; Falco, G.; Monti, M.; Sharova, L.V.; Amano, M.; Sheer, S.; Hoang, H.G.; Piao, Y.; Stagg, C.A.; et al. Zscan4 restores the developmental potency of embryonic stem cells. Nat. Commun. 2013, 4, 1966. [Google Scholar] [CrossRef]
- Akiyama, T.; Xin, L.; Oda, M.; Sharov, A.A.; Amano, M.; Piao, Y.; Cadet, J.S.; Dudekula, D.B.; Qian, Y.; Wang, W.J.D.R. Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Res. 2015, 22, 307–318. [Google Scholar] [CrossRef]
- Noriyuki, N.; Ken-ichi, I.; Kenjiro, A.; Hiroshi, K.; Mitsunori, O.; Amy, R.; Norikazu, Y.; Shino, H.; Robert, O.S.; Narumi, O.J.D.C. The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass. Dev. Cell 2009, 16, 398–410. [Google Scholar]
- Chen, M.; Huang, B.; Zhu, L.; Chen, K.; Liu, M.; Zhong, C. Structural and functional overview of TEAD4 in cancer biology. OncoTargets Ther. 2020, 13, 9865. [Google Scholar] [CrossRef]
- Yagi, R.; Kohn, M.J.; Karavanova, I.; Kaneko, K.J.; Vullhorst, D.; DePamphilis, M.L.; Buonanno, A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007, 134, 3827–3836. [Google Scholar] [CrossRef]
- Emura, N.; Takahashi, K.; Saito, Y.; Sawai, K. The necessity of TEAD4 for early development and gene expression involved in differentiation in porcine embryos. J. Reprod. Dev. 2019, 65, 361–368. [Google Scholar] [PubMed]
- Strumpf, D.; Mao, C.-A.; Yamanaka, Y.; Ralston, A.; Chawengsaksophak, K.; Beck, F.; Rossant, J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005, 132, 2093–2102. [Google Scholar] [PubMed]
- Saha, B.; Ganguly, A.; Home, P.; Bhattacharya, B.; Ray, S.; Ghosh, A.; Rumi, M.A.K.; Marsh, C.; French, V.A.; Gunewardena, S.; et al. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss. Proc. Natl. Acad. Sci. USA 2020, 117, 17864–17875. [Google Scholar] [PubMed]
- Akizawa, H.; Kobayashi, K.; Bai, H.; Takahashi, M.; Kagawa, S.; Nagatomo, H.; Kawahara, M.J.R. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction 2018, 155, 563–571. [Google Scholar]
- Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Yu, J.; Lin, J.D.; Wang, C.-Y.; Chinnaiyan, A.M.; et al. TEAD mediates YAP-dependent gene induction and growth control. Minerva Anestesiol. 2008, 22, 1962–1971. [Google Scholar]
- Lai, D.; Ho, K.C.; Hao, Y.; Yang, X. Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ and Its Downstream Transcriptional Targets Cyr61 and CTGFCyr61/CTGF Mediate TAZ-induced Taxol Resistance. Cancer Res. 2011, 71, 2728–2738. [Google Scholar]
- Nakanishi, G.; Kim, Y.-S.; Nakajima, T.; Jetten, A.M. Regulatory role for Krüppel-like zinc-finger protein Gli-similar 1 (Glis1) in PMA-treated and psoriatic epidermis. J. Investig. Dermatol. 2006, 126, 49–60. [Google Scholar] [CrossRef]
- Kang, H.S.; ZeRuth, G.; Lichti-Kaiser, K.; Vasanth, S.; Yin, Z.; Kim, Y.-S.; Jetten, A.M. Gli-similar (Glis) Krüppel-like zinc finger proteins: Insights into their physiological functions and critical roles in neonatal diabetes and cystic renal disease. Histol. Histopathol. 2010, 25, 1481. [Google Scholar]
- Khalesi, E.; Nakamura, H.; Lee, K.L.; Putra, A.C.; Fukazawa, T.; Kawahara, Y.; Makino, Y.; Poellinger, L.; Yuge, L.; Tanimoto, K. The Krüppel-like zinc finger transcription factor, GLI-similar 1, is regulated by hypoxia-inducible factors via non-canonical mechanisms. Biochem. Biophys. Res. Commun. 2013, 441, 499–506. [Google Scholar]
- Maekawa, M.; Yamaguchi, K.; Nakamura, T.; Shibukawa, R.; Kodanaka, I.; Ichisaka, T.; Kawamura, Y.; Mochizuki, H.; Goshima, N.; Yamanaka, S.J.N. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011, 474, 225–229. [Google Scholar]
- De Lima, A.S.; Stein, C.E.; Casemiro, K.P.; Rovere, R.K. Epidemiology of Melanoma in the South of Brazil: Study of a city in the Vale do Itajaí from 1999 to 2013. An. Bras. de Dermatol. 2015, 90, 185–189. [Google Scholar]
- Kim, Y.S.; Lewandoski, M.; Perantoni, A.O.; Kurebayashi, S.; Nakanishi, G.; Jetten, A.M. Identification of Glis1, a novel Gli-related, Krüppel-like zinc finger protein containing transactivation and repressor functions. J. Biol. Chem. 2002, 277, 30901–30913. [Google Scholar] [PubMed]
- Takahashi, K.; Sakurai, N.; Emura, N.; Hashizume, T.; Sawai, K. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev. 2015, 61, 369–374. [Google Scholar] [PubMed]
- Pliss, L.; Pentney, R.J.; Johnson, M.T.; Patel, M.S. Biochemical and structural brain alterations in female mice with cerebral pyruvate dehydrogenase deficiency. J. Neurochem. 2004, 91, 1082–1091. [Google Scholar] [CrossRef]
- Machado, G.M.; Ferreira, A.R.; Guardieiro, M.M.; Bastos, M.R.; Carvalho, J.O.; Lucci, C.M.; Diesel, T.O.; Sartori, R.; Rumpf, R.; Franco, M.M.; et al. Morphology, sex ratio and gene expression of day 14 in vivo and in vitro bovine embryos. Reprod. Fertil. Dev. 2013, 25, 600–608. [Google Scholar] [CrossRef]
- Datta, T.K.; Rajput, S.K.; Wee, G.; Lee, K.; Folger, J.K.; Smith, G.W. Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction 2015, 149, 203. [Google Scholar] [CrossRef]
- Franco, H.L.; Casasnovas, J.; Rodríguez-Medina, J.R.; Cadilla, C.L. Redundant or separate entities?—Roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res. 2011, 39, 1177–1186. [Google Scholar]
- Babinet, C.; Richoux, V.; Guénet, J.-L.; Renard, J.-P. The DDK inbred strain as a model for the study of interactions between parental genomes and egg cytoplasm in mouse preimplantation development. Development 1990, 108, 81–88. [Google Scholar]
- Renard, J.-P.; Baldacci, P.; Richoux-Duranthon, V.; Pournin, S.; Babinet, C.J.D. A maternal factor affecting mouse blastocyst formation. Development 1994, 120, 797–802. [Google Scholar]
- Lonergan, P.; Gutiérrez-Adán, A.; Rizos, D.; Pintado, B.; De La Fuente, J.; Boland, M.P. Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol. Reprod. Dev. Inc. Gamete Res. 2003, 66, 297–305. [Google Scholar]
- Vastenhouw, N.L.; Cao, W.X.; Lipshitz, H.D.J.D. The maternal-to-zygotic transition revisited. Development 2019, 146, dev161471. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.M.; Stein, P.; Svoboda, P. The oocyte-to-embryo transition in mouse: Past, present, and future. Biol. Reprod. 2018, 99, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.N.; Harrison, M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019, 20, 221–234. [Google Scholar] [PubMed]
- Sha, Q.-Q.; Zhang, J.; Fan, H.-Y. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biol. Reprod. 2019, 101, 579–590. [Google Scholar] [CrossRef]
- Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y.J.S. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002, 298, 1039–1043. [Google Scholar] [CrossRef]
- Deng, M.; Chen, B.; Liu, Z.; Cai, Y.; Wan, Y.; Zhang, G.; Fan, Y.; Zhang, Y.; Wang, F. YTHDF2 regulates maternal transcriptome degradation and embryo development in goat. Front. Cell Dev. Biol. 2020, 8, 580367. [Google Scholar] [CrossRef]
- Jiang, W.J.; Sun, M.H.; Li, X.H.; Lee, S.H.; Heo, G.; Zhou, D.; Cui, X.S. Y-box binding protein 1 influences zygotic genome activation by regulating N6-methyladenosine in porcine embryos. J. Cell. Physiol. 2023, 238, 1592–1604. [Google Scholar] [CrossRef]
- Hao, J.; Hu, H.; Jiang, Z.; Yu, X.; Li, C.; Chen, L.; Xia, Y.; Liu, D.; Wang, D. microRNA-670 modulates Igf2bp1 expression to regulate RNA methylation in parthenogenetic mouse embryonic development. Sci. Rep. 2020, 10, 4782. [Google Scholar] [CrossRef]
- Xia, H.; Zhong, C.; Wu, X.; Chen, J.; Tao, B.; Xia, X.; Shi, M.; Zhu, Z.; Trudeau, V.L.; Hu, W. Mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish. Genetics 2018, 208, 729–743. [Google Scholar] [CrossRef]
- Lonergan, P.; Gutiérrez-Adán, A.; Pintado, B.; Fair, T.; Ward, F.; Fuente, J.D.L.; Boland, M. Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol. Reprod. Dev. Inc. Gamete Res. 2000, 57, 146–152. [Google Scholar]
- Gutiérrez-Adán, A.; Rizos, D.; Fair, T.; Moreira, P.; Pintado, B.; de la Fuente, J.; Boland, M.; Lonergan, P. Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. Inc. Gamete Res. 2004, 68, 441–448. [Google Scholar] [CrossRef] [PubMed]
- García, E.V.; Hamdi, M.; Barrera, A.D.; Sánchez-Calabuig, M.J.; Gutiérrez-Adán, A.; Rizos, D. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling. Reproduction 2017, 153, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Rizos Dimitrios, D.; Pintado, B.; De La Fuente, J.; Lonergan, P.; Gutiérrez Adán, A. Development and pattern of mRNA relative abundance of bovine embryos cultured in the isolated mouse oviduct in organ culture. Mol. Reprod. Dev. Inc. Gamete Res. 2007, 74, 716–723. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Yan, J.; Li, J.; Xia, W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. Int. J. Mol. Sci. 2023, 24, 16019. https://doi.org/10.3390/ijms242216019
Liu B, Yan J, Li J, Xia W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. International Journal of Molecular Sciences. 2023; 24(22):16019. https://doi.org/10.3390/ijms242216019
Chicago/Turabian StyleLiu, Bingnan, Jiaxin Yan, Junjie Li, and Wei Xia. 2023. "The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos" International Journal of Molecular Sciences 24, no. 22: 16019. https://doi.org/10.3390/ijms242216019
APA StyleLiu, B., Yan, J., Li, J., & Xia, W. (2023). The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. International Journal of Molecular Sciences, 24(22), 16019. https://doi.org/10.3390/ijms242216019