Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress
Abstract
:1. Introduction
2. Results
2.1. Genome Circular Map
2.2. The Influence of Different Days on Products of A. pullulans
2.3. The Influence of Different pH Levels on the Product
2.4. Observing the Morphology of A. pullulans at Different pH Levels
2.5. Gene Expression Analysis
2.6. Differential Gene Expression Analysis
2.7. Functional Annotation of Differentially Expressed Genes
2.7.1. GO Analysis
2.7.2. KEGG Analysis
3. Discussion
4. Materials and Methods
4.1. Strains and Materials
4.2. Genome Analysis
4.3. The Impact of Fermentation Time on Products of A. pullulans
4.4. Influence of Different pH Levels on Product Formation
4.5. Observing the Morphology of A. pullulans at Different pH Levels
4.6. Transcriptome Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Lin, C.Y.; Zhao, S.S.; Wang, W.; Zhou, W.; Ru, X.; Cong, H.; Yang, Q. The role of pH transcription factor Appacc in upregulation of pullulan biosynthesis in Aureobasidium pullulans using potato waste as a substrate. Int. J. Biol. Macromol. 2023, 242, 124797. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-C.; Liu, N.-N.; Chi, Z.; Liu, G.-L.; Chi, Z.-M. Genetic Modification of the Marine-Isolated Yeast P16 for Efficient Pullulan Production from Inulin. Mar. Biotechnol. 2015, 17, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Zhang, K.; Zhao, S.S.; Wang, W.; Ru, X.; Song, J.Z.; Cong, H.; Yang, Q. Screening and identification of a strain of and its application in potato starch industrial waste. Environ. Res. 2022, 214, 113947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, W.; Wang, W.; Zhao, S.S.; Lin, C.Y.; Ru, X.; Guan, J.Q.; Cong, H.; Yang, Q. Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans. Foods 2023, 12, 660. [Google Scholar] [CrossRef]
- Li, B.-X.; Zhang, N.; Peng, Q.; Yin, T.; Guan, F.-F.; Wang, G.-L.; Li, Y. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl. Microbiol. Biotechnol. 2009, 84, 293–300. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, N.-N.; Liu, G.-L.; Chi, Z.; Wang, J.-M.; Zhang, L.-L.; Chi, Z.-M. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles 2016, 20, 567–577. [Google Scholar] [CrossRef]
- Chi, Z.-M.; Liu, T.-T.; Chi, Z.; Liu, G.-L.; Wang, Z.-P. Occurrence and Diversity of Yeasts in the Mangrove Ecosystems in Fujian, Guangdong and Hainan Provinces of China. Indian J. Microbiol. 2012, 52, 346–353. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Z.; Wang, G.-Y.; Wang, Z.-P.; Liu, G.-L.; Lee, C.-F.; Ma, Z.-C.; Chi, Z.-M. Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit. Rev. Microbiol. 2015, 41, 228–237. [Google Scholar] [CrossRef]
- Stratilová, E.; Dzúrová, M.; Breierová, E.; Malovíková, A.; Omelková, J. The life style of and the multiple forms of its polygalacturonase. Biologia 2006, 61, 257–262. [Google Scholar] [CrossRef]
- Wei, X.; Liu, G.-L.; Jia, S.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr. Polym. 2021, 251, 117076. [Google Scholar] [CrossRef]
- Aung, T.; Jiang, H.; Liu, G.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides. Int. J. Biol. Macromol. 2019, 130, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Song, X.D.; Wang, Y.K.; Wang, P.; Pu, G.H.; Zou, X. GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans. Environ. Microbiol. 2020, 22, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Belo, I.; Lopes, M. Highly aerated cultures boost gluconic acid production by the yeast-like fungus. Biochem. Eng. J. 2021, 175, 108133. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, K.; Lin, C.Y.; Zhao, S.S.; Guan, J.Q.; Zhou, W.; Ru, X.; Cong, H.; Yang, Q. Influence of in the Regulation of Antioxidant Function Melanin Biosynthesis in Aureobasidium pullulans. Foods 2023, 12, 2135. [Google Scholar] [CrossRef] [PubMed]
- Saur, K.M.; Brumhard, O.; Scholz, K.; Hayen, H.; Tiso, T. A pH shift induces high-titer liamocin production in Aureobasidium pullulans. Appl. Microbiol. Biotechnol. 2019, 103, 4741–4752. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, T.-J.; Zhao, M.-J.; Zhang, H.; Feng, F.-Q. Screening, purification, and characterization of an extracellular lipase from Aureobasidium pullulans isolated from stuffed buns steamers. J. Zhejiang Univ. B 2019, 20, 332–342. [Google Scholar] [CrossRef]
- Wang, B.; Han, Z.H.; Gong, D.; Xu, X.B.; Li, Y.C.; Sionov, E.; Prusky, D.; Bi, Y.; Zong, Y.Y. The pH signalling transcription factor PacC modulate growth, development, stress response and pathogenicity of Trichothecium roseum. Environ. Microbiol. 2022, 24, 1608–1621. [Google Scholar] [CrossRef]
- Manteau, S.; Abouna, S.; Lambert, B.; Legendre, L. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus. FEMS Microbiol. Ecol. 2003, 43, 359–366. [Google Scholar] [CrossRef]
- Soto, W.; Nishiguchi, M.K. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front. Ecol. Evol. 2021, 9, 616937. [Google Scholar] [CrossRef]
- Kawamukai, A.; Iwano, A.; Shibata, M.; Kishi, Y.; Matsuura, A. Serine metabolism contributes to cell survival by regulating extracellular pH and providing an energy source in Saccharomyces cerevisiae. Yeast 2023, 40, 59–67. [Google Scholar] [CrossRef]
- Viladevall, L.; Serrano, R.; Ruiz, A.; Domenech, G.; Giraldo, J.; Barcelo, A.; Arino, J. Characterization of the Calcium-mediated Response to Alkaline stress in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 43614–43624. [Google Scholar] [CrossRef] [PubMed]
- Smets, B.; Ghillebert, R.; De Snijder, P.; Binda, M.; Swinnen, E.; De Virgilio, C.; Winderickx, J. Life in the midst of scarcity: Adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 2010, 56, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, M.A.; Tilburn, J.; Bignell, E.; Arst, H.N. Ambient pH gene regulation in fungi: Making connections. Trends Microbiol. 2008, 16, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Franco-Frías, E.; Ruiz-Herrera, J.; Aréchiga-Carvajal, E.T. Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment. Microbiology 2014, 160, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, M.A.; Arst, H.N. Recent advances in the characterization of ambient pH regulation of gene expression in filamentour fungi and yeasts. Annu. Rev. Microbiol. 2004, 58, 425–451. [Google Scholar] [CrossRef] [PubMed]
- Selvig, K.; Alspaugh, J.A. pH Response Pathways in Fungi: Adapting to Host-derived and Environmental Signals. Mycobiology 2011, 39, 249–256. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Hicks, D.B.; Ito, M. Cation/proton antiporter complements of bacteria: Why so large and diverse? Mol. Microbiol. 2009, 74, 257–260. [Google Scholar] [CrossRef]
- Pessenda, G.; da Silva, J.S. Arginase and its mechanisms in persistence. Parasite Immunol. 2020, 42, e12722. [Google Scholar] [CrossRef]
- Alkan, N.; Espeso, E.A.; Prusky, D. Virulence Regulation of Phytopathogenic Fungi by pH. Antioxid. Redox Signal. 2013, 19, 1012–1025. [Google Scholar] [CrossRef]
- Liu, F.; He, Y.; Wang, L.; Sun, G.M. Detection of Organic Acids and pH of Fruit Vinegars Using Near-Infrared Spectroscopy and Multivariate Calibration. Food Bioprocess Technol. 2011, 4, 1331–1340. [Google Scholar] [CrossRef]
- Follmann, M.; Ochrombel, I.; Krämer, R.; Trötschel, C.; Poetsch, A.; Rückert, C.; Hüser, A.; Persicke, M.; Seiferling, D.; Kalinowski, J.; et al. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genom. 2009, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Slonczewski, J.L.; Fujisawa, M.; Dopson, M.; Krulwich, T.A. Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea. Adv. Microb. Physiol. 2009, 55, 317. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-Y.; Wang, M.-Q.; Wang, B.-J.; Liu, M.; Jiang, K.-Y.; Wang, L. A comparative study on oxidative stress response in the hepatopancreas and midgut of the white shrimp under gradual changes to low or high pH environment. Fish Shellfish. Immunol. 2018, 76, 27–34. [Google Scholar] [CrossRef]
- Azan, A.; Gailliègue, F.; Mir, L.M.; Breton, M. Cell Membrane Electropulsation: Chemical Analysis of Cell Membrane Mod-ifications and Associated Transport Mechanisms. Adv. Anat. Embryol. Cel. 2017, 227, 59–71. [Google Scholar] [CrossRef]
- Penñalva, M.A.; Arst, H.N. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 426–446. [Google Scholar] [CrossRef]
- Rzechonek, D.A.; Szczepańczyk, M.; Mirończuk, A.M. Mutation in yl-HOG1 represses the filament-to-yeast transition in the dimorphic yeast Yarrowia lipolytica. Microb. Cell Factories 2023, 22, 1–13. [Google Scholar] [CrossRef]
- Shu, T.; He, X.-Y.; Chen, J.-W.; Mao, Y.-S.; Gao, X.-D. The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast. Msphere 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Simongini, M.; Puglisi, A.; Genovese, F.; Hochkoeppler, A. Trehalose counteracts the dissociation of tetrameric rabbit lactate dehydrogenase induced by acidic pH conditions. Arch. Biochem. Biophys. 2023, 740, 109584. [Google Scholar] [CrossRef]
- Miyara, I.; Shnaiderman, C.; Meng, X.; Vargas, W.A.; Diaz-Minguez, J.M.; Sherman, A.; Thon, M.; Prusky, D. Role of Nitrogen-Metabolism Genes Expressed During Pathogenicity of the Alkalinizing and Their Differential Expression in Acidifying Pathogens. Mol. Plant-Microbe Interact. 2012, 25, 1251–1263. [Google Scholar] [CrossRef]
- Gostinčar, C.; Ohm, R.A.; Kogej, T.; Sonjak, S.; Turk, M.; Zajc, J.; Zalar, P.; Grube, M.; Sun, H.; Han, J.; et al. Genome sequencing of four Aureobasidium pullulans varieties: Biotechnological potential, stress tolerance, and description of new species. BMC Genom. 2014, 15, 549. [Google Scholar] [CrossRef]
- Xue, S.-J.; Chen, L.; Jiang, H.; Liu, G.-L.; Chi, Z.-M.; Hu, Z.; Chi, Z. High pullulan biosynthesis from high concentration of glucose by a hyperosmotic resistant, yeast-like fungal strain isolated from a natural comb-honey. Food Chem. 2019, 286, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, B.Q.; Li, B.Y.; Yang, J.; Xu, X.R.; Yang, S.-T.; Zou, X. Carbon-economic biosynthesis of poly-2-hydrobutanedioic acid driven by nonfermentable substrate ethanol. Green Chem. 2022, 24, 6599–6612. [Google Scholar] [CrossRef]
Database/Number | pH 4.0 vs. pH 7.0 | pH 4.0 vs. pH 10.0 | pH 7.0 vs. pH 10.0 |
---|---|---|---|
GO | 652 | 1331 | 1132 |
KEGG | 479 | 1021 | 862 |
KOG | 354 | 695 | 602 |
Pfam | 680 | 1408 | 1183 |
Swissprot | 452 | 886 | 731 |
NR | 1019 | 1923 | 1756 |
Total | 1019 | 1952 | 1756 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, W.; Yang, Q. Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress. Int. J. Mol. Sci. 2023, 24, 16103. https://doi.org/10.3390/ijms242216103
Zhang K, Wang W, Yang Q. Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress. International Journal of Molecular Sciences. 2023; 24(22):16103. https://doi.org/10.3390/ijms242216103
Chicago/Turabian StyleZhang, Kai, Wan Wang, and Qian Yang. 2023. "Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress" International Journal of Molecular Sciences 24, no. 22: 16103. https://doi.org/10.3390/ijms242216103
APA StyleZhang, K., Wang, W., & Yang, Q. (2023). Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress. International Journal of Molecular Sciences, 24(22), 16103. https://doi.org/10.3390/ijms242216103